Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -9,13 +9,17 @@ tags:
|
|
| 9 |
datasets:
|
| 10 |
- imagenet-1k
|
| 11 |
---
|
|
|
|
| 12 |
# efficientnet_b0
|
| 13 |
|
| 14 |
-
An
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
## How to use
|
|
|
|
| 19 |
```bash
|
| 20 |
pip install mlx-image
|
| 21 |
```
|
|
@@ -38,6 +42,7 @@ logits = model(x)
|
|
| 38 |
```
|
| 39 |
|
| 40 |
You can also use the embeds from layer before head:
|
|
|
|
| 41 |
```python
|
| 42 |
from mlxim.model import create_model
|
| 43 |
from mlxim.io import read_rgb
|
|
|
|
| 9 |
datasets:
|
| 10 |
- imagenet-1k
|
| 11 |
---
|
| 12 |
+
|
| 13 |
# efficientnet_b0
|
| 14 |
|
| 15 |
+
An EfficientNet B0 model architecture, pretrained on ImageNet-1K.
|
| 16 |
+
|
| 17 |
+
Disclaimer: this is a port of the Torchvision model weights to Apple MLX Framework.
|
| 18 |
|
| 19 |
+
See [mlx-convert-scripts](https://github.com/lextoumbourou/mlx-convert-scripts) repo for the conversion script used.
|
| 20 |
|
| 21 |
## How to use
|
| 22 |
+
|
| 23 |
```bash
|
| 24 |
pip install mlx-image
|
| 25 |
```
|
|
|
|
| 42 |
```
|
| 43 |
|
| 44 |
You can also use the embeds from layer before head:
|
| 45 |
+
|
| 46 |
```python
|
| 47 |
from mlxim.model import create_model
|
| 48 |
from mlxim.io import read_rgb
|