File size: 1,659 Bytes
8b22254 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
library_name: mlx-image
tags:
- mlx
- mlx-image
- vision
- image-classification
datasets:
- imagenet-1k
---
# mobilenet_v3_large
A MobileNetV3-Large model architecture, pretrained on ImageNet-1K.
Disclaimer: this is a port of the Torchvision model weights to Apple MLX Framework.
See [mlx-convert-scripts](https://github.com/lextoumbourou/mlx-convert-scripts) repo for the conversion script used.
## How to use
```bash
pip install mlx-image
```
Here is how to use this model for image classification:
```python
import mlx.core as mx
from mlxim.model import create_model
from mlxim.io import read_rgb
from mlxim.transform import ImageNetTransform
from mlxim.utils.imagenet import IMAGENET2012_CLASSES
transform = ImageNetTransform(train=False, img_size=224)
x = transform(read_rgb("cat.jpg"))
x = mx.array(x)
x = mx.expand_dims(x, 0)
model = create_model("mobilenet_v3_large")
model.eval()
logits = model(x)
predicted_idx = mx.argmax(logits, axis=-1).item()
predicted_class = list(IMAGENET2012_CLASSES.values())[predicted_idx]
print(f"Predicted class: {predicted_class}")
```
You can also use the embeds from layer before head:
```python
import mlx.core as mx
from mlxim.model import create_model
from mlxim.io import read_rgb
from mlxim.transform import ImageNetTransform
transform = ImageNetTransform(train=False, img_size=224)
x = transform(read_rgb("cat.jpg"))
x = mx.array(x)
x = mx.expand_dims(x, 0)
# first option
model = create_model("mobilenet_v3_large", num_classes=0)
model.eval()
embeds = model(x)
# second option
model = create_model("mobilenet_v3_large")
model.eval()
embeds = model.get_features(x)
```
|