File size: 2,868 Bytes
0e1b329 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-cordv2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-cordv2
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3190
- Precision: 0.8830
- Recall: 0.8864
- F1: 0.8847
- Accuracy: 0.9201
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 0.3333 | 100 | 1.5910 | 0.5469 | 0.4954 | 0.5199 | 0.5926 |
| No log | 0.6667 | 200 | 1.0875 | 0.6533 | 0.6685 | 0.6608 | 0.7540 |
| No log | 1.0 | 300 | 0.8007 | 0.7629 | 0.7782 | 0.7705 | 0.8144 |
| No log | 1.3333 | 400 | 0.6082 | 0.8099 | 0.8130 | 0.8114 | 0.8471 |
| 1.2178 | 1.6667 | 500 | 0.5302 | 0.8222 | 0.8184 | 0.8203 | 0.8568 |
| 1.2178 | 2.0 | 600 | 0.5046 | 0.8300 | 0.8261 | 0.8280 | 0.8624 |
| 1.2178 | 2.3333 | 700 | 0.4537 | 0.8498 | 0.8485 | 0.8492 | 0.8785 |
| 1.2178 | 2.6667 | 800 | 0.4270 | 0.8566 | 0.8586 | 0.8576 | 0.8870 |
| 1.2178 | 3.0 | 900 | 0.3938 | 0.8680 | 0.8686 | 0.8683 | 0.8980 |
| 0.4128 | 3.3333 | 1000 | 0.3926 | 0.8765 | 0.8717 | 0.8741 | 0.9031 |
| 0.4128 | 3.6667 | 1100 | 0.3403 | 0.8644 | 0.8717 | 0.8680 | 0.9087 |
| 0.4128 | 4.0 | 1200 | 0.3326 | 0.8861 | 0.8841 | 0.8851 | 0.9159 |
| 0.4128 | 4.3333 | 1300 | 0.3223 | 0.8824 | 0.8872 | 0.8848 | 0.9201 |
| 0.4128 | 4.6667 | 1400 | 0.3175 | 0.8852 | 0.8879 | 0.8866 | 0.9210 |
| 0.274 | 5.0 | 1500 | 0.3190 | 0.8830 | 0.8864 | 0.8847 | 0.9201 |
### Framework versions
- Transformers 4.43.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|