File size: 2,868 Bytes
0e1b329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-cordv2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-cordv2

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3190
- Precision: 0.8830
- Recall: 0.8864
- F1: 0.8847
- Accuracy: 0.9201

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1500

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.3333 | 100  | 1.5910          | 0.5469    | 0.4954 | 0.5199 | 0.5926   |
| No log        | 0.6667 | 200  | 1.0875          | 0.6533    | 0.6685 | 0.6608 | 0.7540   |
| No log        | 1.0    | 300  | 0.8007          | 0.7629    | 0.7782 | 0.7705 | 0.8144   |
| No log        | 1.3333 | 400  | 0.6082          | 0.8099    | 0.8130 | 0.8114 | 0.8471   |
| 1.2178        | 1.6667 | 500  | 0.5302          | 0.8222    | 0.8184 | 0.8203 | 0.8568   |
| 1.2178        | 2.0    | 600  | 0.5046          | 0.8300    | 0.8261 | 0.8280 | 0.8624   |
| 1.2178        | 2.3333 | 700  | 0.4537          | 0.8498    | 0.8485 | 0.8492 | 0.8785   |
| 1.2178        | 2.6667 | 800  | 0.4270          | 0.8566    | 0.8586 | 0.8576 | 0.8870   |
| 1.2178        | 3.0    | 900  | 0.3938          | 0.8680    | 0.8686 | 0.8683 | 0.8980   |
| 0.4128        | 3.3333 | 1000 | 0.3926          | 0.8765    | 0.8717 | 0.8741 | 0.9031   |
| 0.4128        | 3.6667 | 1100 | 0.3403          | 0.8644    | 0.8717 | 0.8680 | 0.9087   |
| 0.4128        | 4.0    | 1200 | 0.3326          | 0.8861    | 0.8841 | 0.8851 | 0.9159   |
| 0.4128        | 4.3333 | 1300 | 0.3223          | 0.8824    | 0.8872 | 0.8848 | 0.9201   |
| 0.4128        | 4.6667 | 1400 | 0.3175          | 0.8852    | 0.8879 | 0.8866 | 0.9210   |
| 0.274         | 5.0    | 1500 | 0.3190          | 0.8830    | 0.8864 | 0.8847 | 0.9201   |


### Framework versions

- Transformers 4.43.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1