add FAQ for tool calls.
Browse files- docs/tool_call_guidance.md +258 -241
docs/tool_call_guidance.md
CHANGED
|
@@ -1,241 +1,258 @@
|
|
| 1 |
-
## Tool Calling
|
| 2 |
-
To enable the tool calling feature, you may need to set certain tool calling parser options when starting the service. See [deploy_guidance](./deploy_guidance.md) for details.
|
| 3 |
-
In Kimi-K2, a tool calling process includes:
|
| 4 |
-
- Passing function descriptions to Kimi-K2
|
| 5 |
-
- Kimi-K2 decides to make a function call and returns the necessary information for the function call to the user
|
| 6 |
-
- The user performs the function call, collects the call results, and passes the function call results to Kimi-K2
|
| 7 |
-
- Kimi-K2 continues to generate content based on the function call results until the model believes it has obtained sufficient information to respond to the user
|
| 8 |
-
|
| 9 |
-
### Preparing Tools
|
| 10 |
-
Suppose we have a function `get_weather` that can query the weather conditions in real-time.
|
| 11 |
-
This function accepts a city name as a parameter and returns the weather conditions. We need to prepare a structured description for it so that Kimi-K2 can understand its functionality.
|
| 12 |
-
|
| 13 |
-
```python
|
| 14 |
-
def get_weather(city):
|
| 15 |
-
return {"weather": "Sunny"}
|
| 16 |
-
|
| 17 |
-
# Collect the tool descriptions in tools
|
| 18 |
-
tools = [{
|
| 19 |
-
"type": "function",
|
| 20 |
-
"function": {
|
| 21 |
-
"name": "get_weather",
|
| 22 |
-
"description": "Get weather information. Call this tool when the user needs to get weather information",
|
| 23 |
-
"parameters": {
|
| 24 |
-
"type": "object",
|
| 25 |
-
"required": ["city"],
|
| 26 |
-
"properties": {
|
| 27 |
-
"city": {
|
| 28 |
-
"type": "string",
|
| 29 |
-
"description": "City name",
|
| 30 |
-
}
|
| 31 |
-
}
|
| 32 |
-
}
|
| 33 |
-
}
|
| 34 |
-
}]
|
| 35 |
-
|
| 36 |
-
# Tool name->object mapping for easy calling later
|
| 37 |
-
tool_map = {
|
| 38 |
-
"get_weather": get_weather
|
| 39 |
-
}
|
| 40 |
-
```
|
| 41 |
-
### Chat with tools
|
| 42 |
-
We use `openai.OpenAI` to send messages to Kimi-K2 along with tool descriptions. Kimi-K2 will autonomously decide whether to use and how to use the provided tools.
|
| 43 |
-
If Kimi-K2 believes a tool call is needed, it will return a result with `finish_reason='tool_calls'`. At this point, the returned result includes the tool call information.
|
| 44 |
-
After calling tools with the provided information, we then need to append the tool call results to the chat history and continue calling Kimi-K2.
|
| 45 |
-
Kimi-K2 may need to call tools multiple times until the model believes the current results can answer the user's question. We should check `finish_reason` until it is not `tool_calls`.
|
| 46 |
-
|
| 47 |
-
The results obtained by the user after calling the tools should be added to `messages` with `role='tool'`.
|
| 48 |
-
|
| 49 |
-
```python
|
| 50 |
-
import json
|
| 51 |
-
from openai import OpenAI
|
| 52 |
-
model_name='moonshotai/Kimi-K2-Instruct'
|
| 53 |
-
client = OpenAI(base_url=endpoint,
|
| 54 |
-
api_key='xxx')
|
| 55 |
-
|
| 56 |
-
messages = [
|
| 57 |
-
{"role": "user", "content": "What's the weather like in Beijing today? Let's check using the tool."}
|
| 58 |
-
]
|
| 59 |
-
finish_reason = None
|
| 60 |
-
while finish_reason is None or finish_reason == "tool_calls":
|
| 61 |
-
completion = client.chat.completions.create(
|
| 62 |
-
model=model_name,
|
| 63 |
-
messages=messages,
|
| 64 |
-
temperature=0.3,
|
| 65 |
-
tools=tools,
|
| 66 |
-
tool_choice="auto",
|
| 67 |
-
)
|
| 68 |
-
choice = completion.choices[0]
|
| 69 |
-
finish_reason = choice.finish_reason
|
| 70 |
-
# Note: The finish_reason when tool calls end may vary across different engines, so this condition check needs to be adjusted accordingly
|
| 71 |
-
if finish_reason == "tool_calls":
|
| 72 |
-
messages.append(choice.message)
|
| 73 |
-
for tool_call in choice.message.tool_calls:
|
| 74 |
-
tool_call_name = tool_call.function.name
|
| 75 |
-
tool_call_arguments = json.loads(tool_call.function.arguments)
|
| 76 |
-
tool_function = tool_map[tool_call_name]
|
| 77 |
-
tool_result = tool_function(tool_call_arguments)
|
| 78 |
-
print("tool_result", tool_result)
|
| 79 |
-
|
| 80 |
-
messages.append({
|
| 81 |
-
"role": "tool",
|
| 82 |
-
"tool_call_id": tool_call.id,
|
| 83 |
-
"name": tool_call_name,
|
| 84 |
-
"content": json.dumps(tool_result),
|
| 85 |
-
})
|
| 86 |
-
print('-' * 100)
|
| 87 |
-
print(choice.message.content)
|
| 88 |
-
```
|
| 89 |
-
### Tool Calling in Streaming Mode
|
| 90 |
-
Tool calling can also be used in streaming mode. In this case, we need to collect the tool call information returned in the stream until we have a complete tool call. Please refer to the code below:
|
| 91 |
-
|
| 92 |
-
```python
|
| 93 |
-
messages = [
|
| 94 |
-
{"role": "user", "content": "What's the weather like in Beijing today? Let's check using the tool."}
|
| 95 |
-
]
|
| 96 |
-
finish_reason = None
|
| 97 |
-
msg = ''
|
| 98 |
-
while finish_reason is None or finish_reason == "tool_calls":
|
| 99 |
-
completion = client.chat.completions.create(
|
| 100 |
-
model=model_name,
|
| 101 |
-
messages=messages,
|
| 102 |
-
temperature=0.3,
|
| 103 |
-
tools=tools,
|
| 104 |
-
tool_choice="auto",
|
| 105 |
-
stream=True
|
| 106 |
-
)
|
| 107 |
-
tool_calls = []
|
| 108 |
-
for chunk in completion:
|
| 109 |
-
delta = chunk.choices[0].delta
|
| 110 |
-
if delta.content:
|
| 111 |
-
msg += delta.content
|
| 112 |
-
if delta.tool_calls:
|
| 113 |
-
for tool_call_chunk in delta.tool_calls:
|
| 114 |
-
if tool_call_chunk.index is not None:
|
| 115 |
-
# Extend the tool_calls list
|
| 116 |
-
while len(tool_calls) <= tool_call_chunk.index:
|
| 117 |
-
tool_calls.append({
|
| 118 |
-
"id": "",
|
| 119 |
-
"type": "function",
|
| 120 |
-
"function": {
|
| 121 |
-
"name": "",
|
| 122 |
-
"arguments": ""
|
| 123 |
-
}
|
| 124 |
-
})
|
| 125 |
-
|
| 126 |
-
tc = tool_calls[tool_call_chunk.index]
|
| 127 |
-
|
| 128 |
-
if tool_call_chunk.id:
|
| 129 |
-
tc["id"] += tool_call_chunk.id
|
| 130 |
-
if tool_call_chunk.function.name:
|
| 131 |
-
tc["function"]["name"] += tool_call_chunk.function.name
|
| 132 |
-
if tool_call_chunk.function.arguments:
|
| 133 |
-
tc["function"]["arguments"] += tool_call_chunk.function.arguments
|
| 134 |
-
|
| 135 |
-
finish_reason = chunk.choices[0].finish_reason
|
| 136 |
-
# Note: The finish_reason when tool calls end may vary across different engines, so this condition check needs to be adjusted accordingly
|
| 137 |
-
if finish_reason == "tool_calls":
|
| 138 |
-
for tool_call in tool_calls:
|
| 139 |
-
tool_call_name = tool_call['function']['name']
|
| 140 |
-
tool_call_arguments = json.loads(tool_call['function']['arguments'])
|
| 141 |
-
tool_function = tool_map[tool_call_name]
|
| 142 |
-
tool_result = tool_function(tool_call_arguments)
|
| 143 |
-
messages.append({
|
| 144 |
-
"role": "tool",
|
| 145 |
-
"tool_call_id": tool_call['id'],
|
| 146 |
-
"name": tool_call_name,
|
| 147 |
-
"content": json.dumps(tool_result),
|
| 148 |
-
})
|
| 149 |
-
# The text generated by the tool call is not the final version, reset msg
|
| 150 |
-
msg = ''
|
| 151 |
-
|
| 152 |
-
print(msg)
|
| 153 |
-
```
|
| 154 |
-
### Manually Parsing Tool Calls
|
| 155 |
-
The tool call requests generated by Kimi-K2 can also be parsed manually, which is especially useful when the service you are using does not provide a tool-call parser.
|
| 156 |
-
The tool call requests generated by Kimi-K2 are wrapped by `<|tool_calls_section_begin|>` and `<|tool_calls_section_end|>`,
|
| 157 |
-
with each tool call wrapped by `<|tool_call_begin|>` and `<|tool_call_end|>`. The tool ID and arguments are separated by `<|tool_call_argument_begin|>`.
|
| 158 |
-
The format of the tool ID is `functions.{func_name}:{idx}`, from which we can parse the function name.
|
| 159 |
-
|
| 160 |
-
Based on the above rules, we can directly post request to the completions interface and manually parse tool calls.
|
| 161 |
-
|
| 162 |
-
```python
|
| 163 |
-
import requests
|
| 164 |
-
from transformers import AutoTokenizer
|
| 165 |
-
messages = [
|
| 166 |
-
{"role": "user", "content": "What's the weather like in Beijing today? Let's check using the tool."}
|
| 167 |
-
]
|
| 168 |
-
msg = ''
|
| 169 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 170 |
-
while True:
|
| 171 |
-
text = tokenizer.apply_chat_template(
|
| 172 |
-
messages,
|
| 173 |
-
tokenize=False,
|
| 174 |
-
tools=tools,
|
| 175 |
-
add_generation_prompt=True,
|
| 176 |
-
)
|
| 177 |
-
payload = {
|
| 178 |
-
"model": model_name,
|
| 179 |
-
"prompt": text,
|
| 180 |
-
"max_tokens": 512
|
| 181 |
-
}
|
| 182 |
-
response = requests.post(
|
| 183 |
-
f"{endpoint}/completions",
|
| 184 |
-
headers={"Content-Type": "application/json"},
|
| 185 |
-
json=payload,
|
| 186 |
-
stream=False,
|
| 187 |
-
)
|
| 188 |
-
raw_out = response.json()
|
| 189 |
-
|
| 190 |
-
raw_output = raw_out["choices"][0]["text"]
|
| 191 |
-
tool_calls = extract_tool_call_info(raw_output)
|
| 192 |
-
if len(tool_calls) == 0:
|
| 193 |
-
# No tool calls
|
| 194 |
-
msg = raw_output
|
| 195 |
-
break
|
| 196 |
-
else:
|
| 197 |
-
for tool_call in tool_calls:
|
| 198 |
-
tool_call_name = tool_call['function']['name']
|
| 199 |
-
tool_call_arguments = json.loads(tool_call['function']['arguments'])
|
| 200 |
-
tool_function = tool_map[tool_call_name]
|
| 201 |
-
tool_result = tool_function(tool_call_arguments)
|
| 202 |
-
|
| 203 |
-
messages.append({
|
| 204 |
-
"role": "tool",
|
| 205 |
-
"tool_call_id": tool_call['id'],
|
| 206 |
-
"name": tool_call_name,
|
| 207 |
-
"content": json.dumps(tool_result),
|
| 208 |
-
})
|
| 209 |
-
print('-' * 100)
|
| 210 |
-
print(msg)
|
| 211 |
-
```
|
| 212 |
-
Here, `extract_tool_call_info` parses the model output and returns the model call information. A simple implementation would be:
|
| 213 |
-
```python
|
| 214 |
-
def extract_tool_call_info(tool_call_rsp: str):
|
| 215 |
-
if '<|tool_calls_section_begin|>' not in tool_call_rsp:
|
| 216 |
-
# No tool calls
|
| 217 |
-
return []
|
| 218 |
-
import re
|
| 219 |
-
pattern = r"<\|tool_calls_section_begin\|>(.*?)<\|tool_calls_section_end\|>"
|
| 220 |
-
|
| 221 |
-
tool_calls_sections = re.findall(pattern, tool_call_rsp, re.DOTALL)
|
| 222 |
-
|
| 223 |
-
# Extract multiple tool calls
|
| 224 |
-
func_call_pattern = r"<\|tool_call_begin\|>\s*(?P<tool_call_id>[\w\.]+:\d+)\s*<\|tool_call_argument_begin\|>\s*(?P<function_arguments>.*?)\s*<\|tool_call_end\|>"
|
| 225 |
-
tool_calls = []
|
| 226 |
-
for match in re.findall(func_call_pattern, tool_calls_sections[0], re.DOTALL):
|
| 227 |
-
function_id, function_args = match
|
| 228 |
-
# function_id: functions.get_weather:0
|
| 229 |
-
function_name = function_id.split('.')[1].split(':')[0]
|
| 230 |
-
tool_calls.append(
|
| 231 |
-
{
|
| 232 |
-
"id": function_id,
|
| 233 |
-
"type": "function",
|
| 234 |
-
"function": {
|
| 235 |
-
"name": function_name,
|
| 236 |
-
"arguments": function_args
|
| 237 |
-
}
|
| 238 |
-
}
|
| 239 |
-
)
|
| 240 |
-
return tool_calls
|
| 241 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## Tool Calling
|
| 2 |
+
To enable the tool calling feature, you may need to set certain tool calling parser options when starting the service. See [deploy_guidance](./deploy_guidance.md) for details.
|
| 3 |
+
In Kimi-K2, a tool calling process includes:
|
| 4 |
+
- Passing function descriptions to Kimi-K2
|
| 5 |
+
- Kimi-K2 decides to make a function call and returns the necessary information for the function call to the user
|
| 6 |
+
- The user performs the function call, collects the call results, and passes the function call results to Kimi-K2
|
| 7 |
+
- Kimi-K2 continues to generate content based on the function call results until the model believes it has obtained sufficient information to respond to the user
|
| 8 |
+
|
| 9 |
+
### Preparing Tools
|
| 10 |
+
Suppose we have a function `get_weather` that can query the weather conditions in real-time.
|
| 11 |
+
This function accepts a city name as a parameter and returns the weather conditions. We need to prepare a structured description for it so that Kimi-K2 can understand its functionality.
|
| 12 |
+
|
| 13 |
+
```python
|
| 14 |
+
def get_weather(city):
|
| 15 |
+
return {"weather": "Sunny"}
|
| 16 |
+
|
| 17 |
+
# Collect the tool descriptions in tools
|
| 18 |
+
tools = [{
|
| 19 |
+
"type": "function",
|
| 20 |
+
"function": {
|
| 21 |
+
"name": "get_weather",
|
| 22 |
+
"description": "Get weather information. Call this tool when the user needs to get weather information",
|
| 23 |
+
"parameters": {
|
| 24 |
+
"type": "object",
|
| 25 |
+
"required": ["city"],
|
| 26 |
+
"properties": {
|
| 27 |
+
"city": {
|
| 28 |
+
"type": "string",
|
| 29 |
+
"description": "City name",
|
| 30 |
+
}
|
| 31 |
+
}
|
| 32 |
+
}
|
| 33 |
+
}
|
| 34 |
+
}]
|
| 35 |
+
|
| 36 |
+
# Tool name->object mapping for easy calling later
|
| 37 |
+
tool_map = {
|
| 38 |
+
"get_weather": get_weather
|
| 39 |
+
}
|
| 40 |
+
```
|
| 41 |
+
### Chat with tools
|
| 42 |
+
We use `openai.OpenAI` to send messages to Kimi-K2 along with tool descriptions. Kimi-K2 will autonomously decide whether to use and how to use the provided tools.
|
| 43 |
+
If Kimi-K2 believes a tool call is needed, it will return a result with `finish_reason='tool_calls'`. At this point, the returned result includes the tool call information.
|
| 44 |
+
After calling tools with the provided information, we then need to append the tool call results to the chat history and continue calling Kimi-K2.
|
| 45 |
+
Kimi-K2 may need to call tools multiple times until the model believes the current results can answer the user's question. We should check `finish_reason` until it is not `tool_calls`.
|
| 46 |
+
|
| 47 |
+
The results obtained by the user after calling the tools should be added to `messages` with `role='tool'`.
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
import json
|
| 51 |
+
from openai import OpenAI
|
| 52 |
+
model_name='moonshotai/Kimi-K2-Instruct'
|
| 53 |
+
client = OpenAI(base_url=endpoint,
|
| 54 |
+
api_key='xxx')
|
| 55 |
+
|
| 56 |
+
messages = [
|
| 57 |
+
{"role": "user", "content": "What's the weather like in Beijing today? Let's check using the tool."}
|
| 58 |
+
]
|
| 59 |
+
finish_reason = None
|
| 60 |
+
while finish_reason is None or finish_reason == "tool_calls":
|
| 61 |
+
completion = client.chat.completions.create(
|
| 62 |
+
model=model_name,
|
| 63 |
+
messages=messages,
|
| 64 |
+
temperature=0.3,
|
| 65 |
+
tools=tools,
|
| 66 |
+
tool_choice="auto",
|
| 67 |
+
)
|
| 68 |
+
choice = completion.choices[0]
|
| 69 |
+
finish_reason = choice.finish_reason
|
| 70 |
+
# Note: The finish_reason when tool calls end may vary across different engines, so this condition check needs to be adjusted accordingly
|
| 71 |
+
if finish_reason == "tool_calls":
|
| 72 |
+
messages.append(choice.message)
|
| 73 |
+
for tool_call in choice.message.tool_calls:
|
| 74 |
+
tool_call_name = tool_call.function.name
|
| 75 |
+
tool_call_arguments = json.loads(tool_call.function.arguments)
|
| 76 |
+
tool_function = tool_map[tool_call_name]
|
| 77 |
+
tool_result = tool_function(tool_call_arguments)
|
| 78 |
+
print("tool_result", tool_result)
|
| 79 |
+
|
| 80 |
+
messages.append({
|
| 81 |
+
"role": "tool",
|
| 82 |
+
"tool_call_id": tool_call.id,
|
| 83 |
+
"name": tool_call_name,
|
| 84 |
+
"content": json.dumps(tool_result),
|
| 85 |
+
})
|
| 86 |
+
print('-' * 100)
|
| 87 |
+
print(choice.message.content)
|
| 88 |
+
```
|
| 89 |
+
### Tool Calling in Streaming Mode
|
| 90 |
+
Tool calling can also be used in streaming mode. In this case, we need to collect the tool call information returned in the stream until we have a complete tool call. Please refer to the code below:
|
| 91 |
+
|
| 92 |
+
```python
|
| 93 |
+
messages = [
|
| 94 |
+
{"role": "user", "content": "What's the weather like in Beijing today? Let's check using the tool."}
|
| 95 |
+
]
|
| 96 |
+
finish_reason = None
|
| 97 |
+
msg = ''
|
| 98 |
+
while finish_reason is None or finish_reason == "tool_calls":
|
| 99 |
+
completion = client.chat.completions.create(
|
| 100 |
+
model=model_name,
|
| 101 |
+
messages=messages,
|
| 102 |
+
temperature=0.3,
|
| 103 |
+
tools=tools,
|
| 104 |
+
tool_choice="auto",
|
| 105 |
+
stream=True
|
| 106 |
+
)
|
| 107 |
+
tool_calls = []
|
| 108 |
+
for chunk in completion:
|
| 109 |
+
delta = chunk.choices[0].delta
|
| 110 |
+
if delta.content:
|
| 111 |
+
msg += delta.content
|
| 112 |
+
if delta.tool_calls:
|
| 113 |
+
for tool_call_chunk in delta.tool_calls:
|
| 114 |
+
if tool_call_chunk.index is not None:
|
| 115 |
+
# Extend the tool_calls list
|
| 116 |
+
while len(tool_calls) <= tool_call_chunk.index:
|
| 117 |
+
tool_calls.append({
|
| 118 |
+
"id": "",
|
| 119 |
+
"type": "function",
|
| 120 |
+
"function": {
|
| 121 |
+
"name": "",
|
| 122 |
+
"arguments": ""
|
| 123 |
+
}
|
| 124 |
+
})
|
| 125 |
+
|
| 126 |
+
tc = tool_calls[tool_call_chunk.index]
|
| 127 |
+
|
| 128 |
+
if tool_call_chunk.id:
|
| 129 |
+
tc["id"] += tool_call_chunk.id
|
| 130 |
+
if tool_call_chunk.function.name:
|
| 131 |
+
tc["function"]["name"] += tool_call_chunk.function.name
|
| 132 |
+
if tool_call_chunk.function.arguments:
|
| 133 |
+
tc["function"]["arguments"] += tool_call_chunk.function.arguments
|
| 134 |
+
|
| 135 |
+
finish_reason = chunk.choices[0].finish_reason
|
| 136 |
+
# Note: The finish_reason when tool calls end may vary across different engines, so this condition check needs to be adjusted accordingly
|
| 137 |
+
if finish_reason == "tool_calls":
|
| 138 |
+
for tool_call in tool_calls:
|
| 139 |
+
tool_call_name = tool_call['function']['name']
|
| 140 |
+
tool_call_arguments = json.loads(tool_call['function']['arguments'])
|
| 141 |
+
tool_function = tool_map[tool_call_name]
|
| 142 |
+
tool_result = tool_function(tool_call_arguments)
|
| 143 |
+
messages.append({
|
| 144 |
+
"role": "tool",
|
| 145 |
+
"tool_call_id": tool_call['id'],
|
| 146 |
+
"name": tool_call_name,
|
| 147 |
+
"content": json.dumps(tool_result),
|
| 148 |
+
})
|
| 149 |
+
# The text generated by the tool call is not the final version, reset msg
|
| 150 |
+
msg = ''
|
| 151 |
+
|
| 152 |
+
print(msg)
|
| 153 |
+
```
|
| 154 |
+
### Manually Parsing Tool Calls
|
| 155 |
+
The tool call requests generated by Kimi-K2 can also be parsed manually, which is especially useful when the service you are using does not provide a tool-call parser.
|
| 156 |
+
The tool call requests generated by Kimi-K2 are wrapped by `<|tool_calls_section_begin|>` and `<|tool_calls_section_end|>`,
|
| 157 |
+
with each tool call wrapped by `<|tool_call_begin|>` and `<|tool_call_end|>`. The tool ID and arguments are separated by `<|tool_call_argument_begin|>`.
|
| 158 |
+
The format of the tool ID is `functions.{func_name}:{idx}`, from which we can parse the function name.
|
| 159 |
+
|
| 160 |
+
Based on the above rules, we can directly post request to the completions interface and manually parse tool calls.
|
| 161 |
+
|
| 162 |
+
```python
|
| 163 |
+
import requests
|
| 164 |
+
from transformers import AutoTokenizer
|
| 165 |
+
messages = [
|
| 166 |
+
{"role": "user", "content": "What's the weather like in Beijing today? Let's check using the tool."}
|
| 167 |
+
]
|
| 168 |
+
msg = ''
|
| 169 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 170 |
+
while True:
|
| 171 |
+
text = tokenizer.apply_chat_template(
|
| 172 |
+
messages,
|
| 173 |
+
tokenize=False,
|
| 174 |
+
tools=tools,
|
| 175 |
+
add_generation_prompt=True,
|
| 176 |
+
)
|
| 177 |
+
payload = {
|
| 178 |
+
"model": model_name,
|
| 179 |
+
"prompt": text,
|
| 180 |
+
"max_tokens": 512
|
| 181 |
+
}
|
| 182 |
+
response = requests.post(
|
| 183 |
+
f"{endpoint}/completions",
|
| 184 |
+
headers={"Content-Type": "application/json"},
|
| 185 |
+
json=payload,
|
| 186 |
+
stream=False,
|
| 187 |
+
)
|
| 188 |
+
raw_out = response.json()
|
| 189 |
+
|
| 190 |
+
raw_output = raw_out["choices"][0]["text"]
|
| 191 |
+
tool_calls = extract_tool_call_info(raw_output)
|
| 192 |
+
if len(tool_calls) == 0:
|
| 193 |
+
# No tool calls
|
| 194 |
+
msg = raw_output
|
| 195 |
+
break
|
| 196 |
+
else:
|
| 197 |
+
for tool_call in tool_calls:
|
| 198 |
+
tool_call_name = tool_call['function']['name']
|
| 199 |
+
tool_call_arguments = json.loads(tool_call['function']['arguments'])
|
| 200 |
+
tool_function = tool_map[tool_call_name]
|
| 201 |
+
tool_result = tool_function(tool_call_arguments)
|
| 202 |
+
|
| 203 |
+
messages.append({
|
| 204 |
+
"role": "tool",
|
| 205 |
+
"tool_call_id": tool_call['id'],
|
| 206 |
+
"name": tool_call_name,
|
| 207 |
+
"content": json.dumps(tool_result),
|
| 208 |
+
})
|
| 209 |
+
print('-' * 100)
|
| 210 |
+
print(msg)
|
| 211 |
+
```
|
| 212 |
+
Here, `extract_tool_call_info` parses the model output and returns the model call information. A simple implementation would be:
|
| 213 |
+
```python
|
| 214 |
+
def extract_tool_call_info(tool_call_rsp: str):
|
| 215 |
+
if '<|tool_calls_section_begin|>' not in tool_call_rsp:
|
| 216 |
+
# No tool calls
|
| 217 |
+
return []
|
| 218 |
+
import re
|
| 219 |
+
pattern = r"<\|tool_calls_section_begin\|>(.*?)<\|tool_calls_section_end\|>"
|
| 220 |
+
|
| 221 |
+
tool_calls_sections = re.findall(pattern, tool_call_rsp, re.DOTALL)
|
| 222 |
+
|
| 223 |
+
# Extract multiple tool calls
|
| 224 |
+
func_call_pattern = r"<\|tool_call_begin\|>\s*(?P<tool_call_id>[\w\.]+:\d+)\s*<\|tool_call_argument_begin\|>\s*(?P<function_arguments>.*?)\s*<\|tool_call_end\|>"
|
| 225 |
+
tool_calls = []
|
| 226 |
+
for match in re.findall(func_call_pattern, tool_calls_sections[0], re.DOTALL):
|
| 227 |
+
function_id, function_args = match
|
| 228 |
+
# function_id: functions.get_weather:0
|
| 229 |
+
function_name = function_id.split('.')[1].split(':')[0]
|
| 230 |
+
tool_calls.append(
|
| 231 |
+
{
|
| 232 |
+
"id": function_id,
|
| 233 |
+
"type": "function",
|
| 234 |
+
"function": {
|
| 235 |
+
"name": function_name,
|
| 236 |
+
"arguments": function_args
|
| 237 |
+
}
|
| 238 |
+
}
|
| 239 |
+
)
|
| 240 |
+
return tool_calls
|
| 241 |
+
```
|
| 242 |
+
|
| 243 |
+
## FAQ
|
| 244 |
+
|
| 245 |
+
#### Q1: I received special tokens like '<|tool_call_begin|>' in the 'content' field instead of a normal tool_call.
|
| 246 |
+
|
| 247 |
+
This indicates a tool-call crash, which most often occurs in multi-turn tool-calling scenarios due to incorrect tool-call ID. K2 expects the ID to follow the format `functions.func_name:idx`, where `functions` is a fixed string; `func_name` is the actual function name, like `get_weather`, and `idx` is a global counter that starts at 0 and increments with each function invocation.
|
| 248 |
+
Please check all tool-call IDs in the message list.
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
#### Q2: My tool-call ID is incorrect—how can I fix it?
|
| 252 |
+
|
| 253 |
+
First, make sure your code and chat template are up to date with the latest version from the Hugging Face repo.
|
| 254 |
+
If you're using vLLM or SGLang and they are generating random tool-call IDs, upgrade them to the latest release. For other frameworks, you must either parse the tool-call ID from the model output and set it correctly in the server-side response, or rewrite every tool-call ID according to the rules above on the client side before sending the messages to Kimi K2.
|
| 255 |
+
|
| 256 |
+
#### Q3: My tool call id is correct, but I still get crashed in multiturn tool call.
|
| 257 |
+
|
| 258 |
+
Please describe your situation in the [discussion](https://huggingface.co/moonshotai/Kimi-K2-Instruct-0905/discussions)
|