morenolq commited on
Commit
329c8d3
Β·
verified Β·
1 Parent(s): 237da66

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +169 -0
README.md ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - text2text-generation
6
+ license: mit
7
+ datasets:
8
+ - PeacefulData/HyPoradise-v0
9
+ library_name: transformers
10
+ pipeline_tag: text2text-generation
11
+ widget:
12
+ - text: "Generate the correct transcription for the following n-best list of ASR hypotheses: \n\n1. nebode also typically is symphons and an ankle surf leash \n2. neboda is also typically is symphons and an ankle surf leash \n3. nebode also typically is swim fins and an ankle surf leash \n4. neboda also typically is symphons and an ankle surf leash \n5. neboda is also typically is swim fins and an ankle surf leash"
13
+ base_model:
14
+ - google/flan-t5-base
15
+ ---
16
+
17
+ # FLANEC: Exploring FLAN-T5 for Post-ASR Error Correction
18
+
19
+ ## Model Overview
20
+
21
+ FLANEC is an encoder-decoder model based on FLAN-T5, specifically fine-tuned for post-Automatic Speech Recognition (ASR) error correction, also known as Generative Speech Error Correction (GenSEC). The model utilizes n-best hypotheses from ASR systems to enhance the accuracy and grammaticality of final transcriptions by generating a single corrected output. FLANEC models are trained on diverse subsets of the [HyPoradise dataset](https://huggingface.co/datasets/PeacefulData/HyPoradise-v0), leveraging multiple ASR domains to provide robust, scalable error correction across different types of audio data.
22
+
23
+ FLANEC was developed for the **GenSEC Task 1 challenge at SLT 2024** - [Challenge website](https://sites.google.com/view/gensec-challenge/home).
24
+
25
+ > **⚠️ IMPORTANT**: This repository contains the Single-Dataset (SD) versions of FLANEC models. Each model is trained on a single specific dataset from the HyPoradise collection, allowing for domain-specialized ASR error correction. For models trained on the cumulative dataset (CD), please see the related models section below.
26
+
27
+ ## Repository Structure
28
+
29
+ This repository contains multiple model variants trained individually on each dataset from the HyPoradise collection:
30
+
31
+ ```
32
+ flanec-sd-models/
33
+ β”œβ”€β”€ flanec-base-sd-ft/ # Base models (250M params) with full fine-tuning
34
+ β”‚ β”œβ”€β”€ atis/ # ATIS dataset model
35
+ β”‚ β”œβ”€β”€ chime4/ # CHiME-4 dataset model
36
+ β”‚ └── ... # Other dataset models
37
+ β”œβ”€β”€ flanec-base-sd-lora/ # Base models with LoRA fine-tuning
38
+ β”œβ”€β”€ flanec-large-sd-ft/ # Large models (800M params) with full fine-tuning
39
+ β”œβ”€β”€ flanec-large-sd-lora/ # Large models with LoRA fine-tuning
40
+ β”œβ”€β”€ flanec-xl-sd-ft/ # XL models (3B params) with full fine-tuning
41
+ └── flanec-xl-sd-lora/ # XL models with LoRA fine-tuning
42
+ ```
43
+
44
+ Each dataset directory contains the best model checkpoint along with its tokenizer.
45
+
46
+ ## Getting Started
47
+
48
+ ### Cloning the Repository
49
+
50
+ **Warning**: This repository is very large due to containing multiple model variants across different sizes and datasets.
51
+
52
+ ```bash
53
+ git clone https://huggingface.co/morenolq/flanec-sd-models
54
+ ```
55
+
56
+ For more efficient cloning, you can use the Hugging Face CLI to clone only specific models:
57
+
58
+ ```bash
59
+ # Install the Hugging Face Hub CLI if you haven't already
60
+ pip install -U "huggingface_hub[cli]"
61
+
62
+ # Clone only a specific model variant and dataset
63
+ huggingface-cli download morenolq/flanec-sd-models --include "flanec-base-sd-ft/atis/**" --local-dir flanec-sd-models
64
+ ```
65
+
66
+ ### Using a Model
67
+
68
+ To use a specific model:
69
+
70
+ ```python
71
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
72
+
73
+ # Choose a specific model path based on:
74
+ # 1. Model size (base, large, xl)
75
+ # 2. Training method (ft, lora)
76
+ # 3. Dataset (atis, wsj, chime4, etc.)
77
+ model_path = "path/to/flanec-sd-models/flanec-base-sd-ft/atis"
78
+ tokenizer = T5Tokenizer.from_pretrained(model_path)
79
+ model = T5ForConditionalGeneration.from_pretrained(model_path)
80
+
81
+ # Example input with n-best ASR hypotheses
82
+ input_text = """Generate the correct transcription for the following n-best list of ASR hypotheses:
83
+
84
+ 1. i need to fly from dallas to chicago next monday
85
+ 2. i need to fly from dallas to chicago next thursday
86
+ 3. i need to fly from dallas to chicago on monday
87
+ 4. i need to fly dallas to chicago next monday
88
+ 5. i need to fly from dallas chicago next monday"""
89
+
90
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids
91
+ outputs = model.generate(input_ids, max_length=128)
92
+ corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
93
+ print(corrected_text)
94
+ ```
95
+
96
+ ## Model Variants
97
+
98
+ ### Available Model Sizes
99
+
100
+ - **Base**: ~250 million parameters
101
+ - **Large**: ~800 million parameters
102
+ - **XL**: ~3 billion parameters
103
+
104
+ ### Training Methods
105
+
106
+ - **Full Fine-tuning (ft)**: All model parameters are updated during training
107
+ - **LoRA (lora)**: Low-Rank Adaptation for parameter-efficient fine-tuning
108
+
109
+ ### Datasets
110
+
111
+ All models are trained on specific subsets of the HyPoradise dataset:
112
+
113
+ 1. **WSJ**: Business and financial news.
114
+ 2. **ATIS**: Airline travel queries.
115
+ 3. **CHiME-4**: Noisy speech.
116
+ 4. **Tedlium-3**: TED talks.
117
+ 5. **CV-accent**: Accented speech.
118
+ 6. **SwitchBoard**: Conversational speech.
119
+ 7. **LRS2**: BBC program audio.
120
+ 8. **CORAAL**: Accented speech from African American English.
121
+
122
+ For more details on each dataset, see the [HyPoradise paper](https://proceedings.neurips.cc/paper_files/paper/2023/hash/6492267465a7ac507be1f9fd1174e78d-Abstract-Datasets_and_Benchmarks.html).
123
+
124
+ ## Related Models
125
+
126
+ If you're looking for models trained on the combined datasets (Cumulative Dataset models), please check:
127
+
128
+ **Full Fine-tuning (FT) Cumulative Dataset Models:**
129
+ - [FLANEC Base CD](https://huggingface.co/morenolq/flanec-base-cd): Base model fine-tuned on all domains.
130
+ - [FLANEC Large CD](https://huggingface.co/morenolq/flanec-large-cd): Large model fine-tuned on all domains.
131
+ - [FLANEC XL CD](https://huggingface.co/morenolq/flanec-xl-cd): Extra-large model fine-tuned on all domains.
132
+
133
+ **LoRA Cumulative Dataset Models:**
134
+ - [FLANEC Base LoRA CD](https://huggingface.co/morenolq/flanec-base-cd-lora): Base model with LoRA fine-tuning.
135
+ - [FLANEC Large LoRA CD](https://huggingface.co/morenolq/flanec-large-cd-lora): Large model with LoRA fine-tuning.
136
+ - [FLANEC XL LoRA CD](https://huggingface.co/morenolq/flanec-xl-cd-lora): XL model with LoRA fine-tuning.
137
+
138
+ ## Performance Overview
139
+
140
+ Our research demonstrated that:
141
+
142
+ - Single-dataset models excel at their specific domains but may not generalize well to others
143
+ - Larger models generally deliver better performance within their domain
144
+ - Full fine-tuning typically outperforms LoRA, especially for larger models
145
+ - The CORAAL dataset presents unique challenges across all model configurations
146
+
147
+ For detailed performance metrics and analysis, please see the [FlanEC paper](https://arxiv.org/abs/2501.12979).
148
+
149
+ ## Intended Use
150
+
151
+ FLANEC is designed for the task of Generative Speech Error Correction (GenSEC). The models are suitable for post-processing ASR outputs to correct grammatical and linguistic errors. The models support the **English** language.
152
+
153
+ ## Citation
154
+
155
+ - [arXiv version](https://arxiv.org/abs/2501.12979)
156
+ - [IEEEXplore version](https://ieeexplore.ieee.org/document/10832257)
157
+
158
+ Please use the following citation to reference this work in your research:
159
+
160
+ ```bibtex
161
+ @article{quatra_2024_flanec:,
162
+ author = {Moreno La Quatra and Valerio Mario Salerno and Yu Tsao and Sabato Marco Siniscalchi},
163
+ title = {FlanEC: Exploring Flan-T5 for Post-ASR Error Correction},
164
+ journal = {2024 IEEE Spoken Language Technology Workshop (SLT)},
165
+ year = {2024},
166
+ doi = {10.1109/slt61566.2024.10832257},
167
+ url = {https://doi.org/10.1109/slt61566.2024.10832257}
168
+ }
169
+ ```