--- base_model: DavidAU/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - all use cases - creative - creative writing - all genres - tool calls - tool use - llama 3.1 - llama-3 - llama3 - llama-3.1 - problem solving - deep thinking - reasoning - deep reasoning - story - writing - fiction - roleplaying - bfloat16 - role play - sillytavern - backyard - llama 3.1 - context 128k - mergekit - merge - moe - mixture of experts --- ## About static quants of https://huggingface.co/DavidAU/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B-GGUF/resolve/main/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B.Q2_K.gguf) | Q2_K | 9.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B-GGUF/resolve/main/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B.Q3_K_S.gguf) | Q3_K_S | 11.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B-GGUF/resolve/main/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B.Q3_K_M.gguf) | Q3_K_M | 12.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B-GGUF/resolve/main/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B.Q3_K_L.gguf) | Q3_K_L | 13.1 | | | [GGUF](https://huggingface.co/mradermacher/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B-GGUF/resolve/main/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B.IQ4_XS.gguf) | IQ4_XS | 13.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B-GGUF/resolve/main/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B.Q4_K_S.gguf) | Q4_K_S | 14.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B-GGUF/resolve/main/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B.Q4_K_M.gguf) | Q4_K_M | 15.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B-GGUF/resolve/main/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B.Q5_K_S.gguf) | Q5_K_S | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B-GGUF/resolve/main/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B.Q5_K_M.gguf) | Q5_K_M | 17.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B-GGUF/resolve/main/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B.Q6_K.gguf) | Q6_K | 20.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B-GGUF/resolve/main/Llama3.1-MOE-4X8B-Gated-IQ-Multi-Tier-Deep-Reasoning-32B.Q8_0.gguf) | Q8_0 | 26.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.