Update README.md
Browse files
README.md
CHANGED
|
@@ -54,141 +54,15 @@ The model was converted using [this notebook](https://nbviewer.org/urls/huggingf
|
|
| 54 |
### How to use
|
| 55 |
|
| 56 |
```sh
|
| 57 |
-
|
|
|
|
| 58 |
pip install bitsandbytes-cuda111==0.26.0
|
| 59 |
-
pip install datasets==1.16.1
|
| 60 |
```
|
| 61 |
|
| 62 |
```py
|
| 63 |
import transformers
|
| 64 |
-
|
| 65 |
import torch
|
| 66 |
-
|
| 67 |
-
from torch import nn
|
| 68 |
-
from torch.cuda.amp import custom_fwd, custom_bwd
|
| 69 |
-
|
| 70 |
-
from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise
|
| 71 |
-
|
| 72 |
-
from tqdm.auto import tqdm
|
| 73 |
-
|
| 74 |
-
class FrozenBNBLinear(nn.Module):
|
| 75 |
-
def __init__(self, weight, absmax, code, bias=None):
|
| 76 |
-
assert isinstance(bias, nn.Parameter) or bias is None
|
| 77 |
-
super().__init__()
|
| 78 |
-
self.out_features, self.in_features = weight.shape
|
| 79 |
-
self.register_buffer("weight", weight.requires_grad_(False))
|
| 80 |
-
self.register_buffer("absmax", absmax.requires_grad_(False))
|
| 81 |
-
self.register_buffer("code", code.requires_grad_(False))
|
| 82 |
-
self.adapter = None
|
| 83 |
-
self.bias = bias
|
| 84 |
-
|
| 85 |
-
def forward(self, input):
|
| 86 |
-
output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)
|
| 87 |
-
if self.adapter:
|
| 88 |
-
output += self.adapter(input)
|
| 89 |
-
return output
|
| 90 |
-
|
| 91 |
-
@classmethod
|
| 92 |
-
def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear":
|
| 93 |
-
weights_int8, state = quantize_blockise_lowmemory(linear.weight)
|
| 94 |
-
return cls(weights_int8, *state, linear.bias)
|
| 95 |
-
|
| 96 |
-
def __repr__(self):
|
| 97 |
-
return f"{self.__class__.__name__}({self.in_features}, {self.out_features})"
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
class DequantizeAndLinear(torch.autograd.Function):
|
| 101 |
-
@staticmethod
|
| 102 |
-
@custom_fwd
|
| 103 |
-
def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,
|
| 104 |
-
absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):
|
| 105 |
-
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
|
| 106 |
-
ctx.save_for_backward(input, weights_quantized, absmax, code)
|
| 107 |
-
ctx._has_bias = bias is not None
|
| 108 |
-
return F.linear(input, weights_deq, bias)
|
| 109 |
-
|
| 110 |
-
@staticmethod
|
| 111 |
-
@custom_bwd
|
| 112 |
-
def backward(ctx, grad_output: torch.Tensor):
|
| 113 |
-
assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]
|
| 114 |
-
input, weights_quantized, absmax, code = ctx.saved_tensors
|
| 115 |
-
# grad_output: [*batch, out_features]
|
| 116 |
-
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
|
| 117 |
-
grad_input = grad_output @ weights_deq
|
| 118 |
-
grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None
|
| 119 |
-
return grad_input, None, None, None, grad_bias
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
class FrozenBNBEmbedding(nn.Module):
|
| 123 |
-
def __init__(self, weight, absmax, code):
|
| 124 |
-
super().__init__()
|
| 125 |
-
self.num_embeddings, self.embedding_dim = weight.shape
|
| 126 |
-
self.register_buffer("weight", weight.requires_grad_(False))
|
| 127 |
-
self.register_buffer("absmax", absmax.requires_grad_(False))
|
| 128 |
-
self.register_buffer("code", code.requires_grad_(False))
|
| 129 |
-
self.adapter = None
|
| 130 |
-
|
| 131 |
-
def forward(self, input, **kwargs):
|
| 132 |
-
with torch.no_grad():
|
| 133 |
-
# note: both quantuized weights and input indices are *not* differentiable
|
| 134 |
-
weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)
|
| 135 |
-
output = F.embedding(input, weight_deq, **kwargs)
|
| 136 |
-
if self.adapter:
|
| 137 |
-
output += self.adapter(input)
|
| 138 |
-
return output
|
| 139 |
-
|
| 140 |
-
@classmethod
|
| 141 |
-
def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding":
|
| 142 |
-
weights_int8, state = quantize_blockise_lowmemory(embedding.weight)
|
| 143 |
-
return cls(weights_int8, *state)
|
| 144 |
-
|
| 145 |
-
def __repr__(self):
|
| 146 |
-
return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})"
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):
|
| 150 |
-
assert chunk_size % 4096 == 0
|
| 151 |
-
code = None
|
| 152 |
-
chunks = []
|
| 153 |
-
absmaxes = []
|
| 154 |
-
flat_tensor = matrix.view(-1)
|
| 155 |
-
for i in range((matrix.numel() - 1) // chunk_size + 1):
|
| 156 |
-
input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()
|
| 157 |
-
quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)
|
| 158 |
-
chunks.append(quantized_chunk)
|
| 159 |
-
absmaxes.append(absmax_chunk)
|
| 160 |
-
|
| 161 |
-
matrix_i8 = torch.cat(chunks).reshape_as(matrix)
|
| 162 |
-
absmax = torch.cat(absmaxes)
|
| 163 |
-
return matrix_i8, (absmax, code)
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
def convert_to_int8(model):
|
| 167 |
-
"""Convert linear and embedding modules to 8-bit with optional adapters"""
|
| 168 |
-
for module in list(model.modules()):
|
| 169 |
-
for name, child in module.named_children():
|
| 170 |
-
if isinstance(child, nn.Linear):
|
| 171 |
-
print(name, child)
|
| 172 |
-
setattr(
|
| 173 |
-
module,
|
| 174 |
-
name,
|
| 175 |
-
FrozenBNBLinear(
|
| 176 |
-
weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8),
|
| 177 |
-
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
|
| 178 |
-
code=torch.zeros(256),
|
| 179 |
-
bias=child.bias,
|
| 180 |
-
),
|
| 181 |
-
)
|
| 182 |
-
elif isinstance(child, nn.Embedding):
|
| 183 |
-
setattr(
|
| 184 |
-
module,
|
| 185 |
-
name,
|
| 186 |
-
FrozenBNBEmbedding(
|
| 187 |
-
weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8),
|
| 188 |
-
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
|
| 189 |
-
code=torch.zeros(256),
|
| 190 |
-
)
|
| 191 |
-
)
|
| 192 |
|
| 193 |
class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock):
|
| 194 |
def __init__(self, config):
|
|
@@ -210,18 +84,18 @@ class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM):
|
|
| 210 |
convert_to_int8(self)
|
| 211 |
|
| 212 |
|
|
|
|
|
|
|
| 213 |
transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock # monkey-patch GPT-J
|
| 214 |
|
| 215 |
-
config = transformers.GPTJConfig.from_pretrained("mrm8488/bertin-gpt-j-6B-ES-8bit")
|
| 216 |
tokenizer = transformers.AutoTokenizer.from_pretrained("mrm8488/bertin-gpt-j-6B-ES-8bit")
|
|
|
|
| 217 |
|
| 218 |
-
gpt = GPTJForCausalLM.from_pretrained("mrm8488/bertin-gpt-j-6B-ES-8bit", low_cpu_mem_usage=True)
|
| 219 |
-
|
| 220 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 221 |
-
gpt.to(device)
|
| 222 |
|
| 223 |
prompt = tokenizer("El sentido de la vida es", return_tensors='pt')
|
| 224 |
prompt = {key: value.to(device) for key, value in prompt.items()}
|
| 225 |
-
|
|
|
|
|
|
|
| 226 |
print(tokenizer.decode(out[0]))
|
| 227 |
```
|
|
|
|
| 54 |
### How to use
|
| 55 |
|
| 56 |
```sh
|
| 57 |
+
wget https://huggingface.co/mrm8488/bertin-gpt-j-6B-ES-8bit/resolve/main/utils.py -O utils.py
|
| 58 |
+
pip install transformers
|
| 59 |
pip install bitsandbytes-cuda111==0.26.0
|
|
|
|
| 60 |
```
|
| 61 |
|
| 62 |
```py
|
| 63 |
import transformers
|
|
|
|
| 64 |
import torch
|
| 65 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock):
|
| 68 |
def __init__(self, config):
|
|
|
|
| 84 |
convert_to_int8(self)
|
| 85 |
|
| 86 |
|
| 87 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 88 |
+
|
| 89 |
transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock # monkey-patch GPT-J
|
| 90 |
|
|
|
|
| 91 |
tokenizer = transformers.AutoTokenizer.from_pretrained("mrm8488/bertin-gpt-j-6B-ES-8bit")
|
| 92 |
+
model = GPTJForCausalLM.from_pretrained("hivemind/gpt-j-6B-8bit", pad_token_id=tokenizer.eos_token_id, low_cpu_mem_usage=True).to(device)
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
prompt = tokenizer("El sentido de la vida es", return_tensors='pt')
|
| 96 |
prompt = {key: value.to(device) for key, value in prompt.items()}
|
| 97 |
+
|
| 98 |
+
out = model.generate(**prompt, max_length=64, do_sample=True)
|
| 99 |
+
|
| 100 |
print(tokenizer.decode(out[0]))
|
| 101 |
```
|