--- license: mit tags: - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-base-uncased-with-ITTL-with-freeze results: [] --- # fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-base-uncased-with-ITTL-with-freeze This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8879 - Exact Match: 37.8709 - F1: 49.7154 - Precision: 49.7719 - Recall: 58.0834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|:---------:|:-------:| | 5.9483 | 0.5 | 38 | 3.3537 | 11.1693 | 23.4040 | 24.4853 | 35.3507 | | 4.4369 | 0.99 | 76 | 2.5233 | 20.4188 | 33.3392 | 32.1575 | 50.9154 | | 2.6794 | 1.5 | 114 | 2.3296 | 24.4328 | 37.2191 | 36.0955 | 53.7639 | | 2.2821 | 1.99 | 152 | 2.1495 | 30.8901 | 41.8442 | 41.7425 | 52.9019 | | 2.2821 | 2.5 | 190 | 2.0399 | 33.6824 | 44.7895 | 44.3899 | 54.8396 | | 2.1115 | 2.99 | 228 | 1.9722 | 35.2531 | 46.6467 | 46.8349 | 56.1914 | | 1.9714 | 3.5 | 266 | 1.9103 | 36.8237 | 49.2209 | 49.2337 | 57.6828 | | 1.8507 | 3.99 | 304 | 1.8879 | 37.8709 | 49.7154 | 49.7719 | 58.0834 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2