--- license: apache-2.0 --- # 🛰️ Model Card: `downstream-satvision-toa-3dclouds` ## ⚙️ Model Overview - **Model Name**: `downstream-satvision-toa-3dclouds` - **Base Model**: SatVision-TOA (Giant, 3B parameters) - **Architecture**: SwinV2 Transformer (ViT backbone) - **Pretraining Objective**: Masked Image Modeling (MIM) - **Pretraining Dataset**: 100M globally-distributed MODIS TOA image chips across 14 bands - **Resolution**: 128×128 px at ~1 km - **Pretraining Conditions**: All-sky (cloud, aerosol, ocean, land) ## 🗂️ Intended Use - **Task**: 3D cloud vertical reconstruction from satellite TOA imagery - **Downstream Data**: GOES-ABI chips paired with CloudSat/CALIPSO cloud curtain observations - **Output**: Per-pixel cloud vertical class (e.g., cloud top/base detection, multilayer structure) ## 🧠 Strengths - Learns spatial-spectral relationships across diverse global conditions - Generalizes well across sensors (MODIS → GOES-ABI) - Outperforms baseline on thin, multilayer, and obscured clouds - Pretraining improves sample efficiency for fine-tuning ## ⚠️ Limitations - **Temporal bias**: Terra-MODIS sampling (~9 AM local) may limit temporal generalization - **Resolution**: Only supports ~1 km scale chips; sub-km cloud structures not resolved - **Sensor adaptation**: While GOES-ABI is supported, optimal results may require minor domain tuning ## 🛠️ Fine-Tuning & Usage - **Decoder**: Lightweight FCN head on frozen SatVision-TOA encoder - **Training Data**: ~7,000 labeled GOES-ABI chips aligned with CloudSat/CALIPSO - **Validation Set**: 1,300 chips - **Typical Inference Output**: 2D maps of vertical cloud structure per chip ## 🔁 Adaptation Ideas - Extend to aerosol, water vapor, or ice phase classification - Fine-tune on nighttime or different orbital sensors (e.g., VIIRS, Himawari) - Use as encoder backbone for multitask satellite cloud analysis ## 📝 Citation If you use this model, please cite: @article{satvision2024, title={SatVision-TOA: A Geospatial Foundation Model for Coarse-Resolution All-Sky Remote Sensing Imagery}, author={Zhu, Le and Caraballo-Vega, Jordan and Gentine, Pierre and Tao, Wenzhong and et al.}, journal={arXiv preprint arXiv:2406.06561}, year={2024} } ## 🔗 Resources - [🗃️ Hugging Face Model Repo](https://huggingface.co/nasa-cisto-data-science-group/downstream-satvision-toa-3dclouds) - [📄 SatVision-TOA Preprint](https://arxiv.org/abs/2406.06561) - [🌐 Earthdata Overview](https://earthdata.nasa.gov/learn/articles/satvision) --- 📌 **Summary**: This model leverages a powerful foundation transformer trained on MODIS TOA data to deliver high-fidelity 3D cloud reconstructions from GOES-ABI imagery. It serves as a critical step toward operational cloud analysis from geostationary satellites using foundation model paradigms.