Upload COCOM
Browse files- modelling_pisco.py +2 -1
modelling_pisco.py
CHANGED
|
@@ -1036,11 +1036,12 @@ class COCOM(PreTrainedModel):
|
|
| 1036 |
"""
|
| 1037 |
Compress a list of documents
|
| 1038 |
if questions is not None, assumes compression is done query-dependently !
|
|
|
|
| 1039 |
"""
|
| 1040 |
if questions is None:
|
| 1041 |
input_encoder = self.prepare_encoder_inputs(documents, max_length=128)
|
| 1042 |
else: # we assume query-dependent here:
|
| 1043 |
-
input_encoder = self.prepare_encoder_inputs(documents, max_length=128, q_texts=
|
| 1044 |
enc_input_ids = input_encoder['input_ids'].to(self.decoder.device)
|
| 1045 |
attention_mask = input_encoder['attention_mask'].to(self.decoder.device)
|
| 1046 |
return self.compress(enc_input_ids=enc_input_ids, enc_attention_mask=attention_mask)
|
|
|
|
| 1036 |
"""
|
| 1037 |
Compress a list of documents
|
| 1038 |
if questions is not None, assumes compression is done query-dependently !
|
| 1039 |
+
excepts as many questions as documents here (so repeat questions for multidoc)
|
| 1040 |
"""
|
| 1041 |
if questions is None:
|
| 1042 |
input_encoder = self.prepare_encoder_inputs(documents, max_length=128)
|
| 1043 |
else: # we assume query-dependent here:
|
| 1044 |
+
input_encoder = self.prepare_encoder_inputs(documents, max_length=128, q_texts=questions)
|
| 1045 |
enc_input_ids = input_encoder['input_ids'].to(self.decoder.device)
|
| 1046 |
attention_mask = input_encoder['attention_mask'].to(self.decoder.device)
|
| 1047 |
return self.compress(enc_input_ids=enc_input_ids, enc_attention_mask=attention_mask)
|