Update README.md
Browse files
README.md
CHANGED
|
@@ -1,18 +1,24 @@
|
|
| 1 |
---
|
| 2 |
-
library_name: sentence-transformers
|
| 3 |
pipeline_tag: sentence-similarity
|
| 4 |
tags:
|
| 5 |
- sentence-transformers
|
| 6 |
- feature-extraction
|
| 7 |
- sentence-similarity
|
| 8 |
- transformers
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
# {
|
| 13 |
|
| 14 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 15 |
|
|
|
|
| 16 |
<!--- Describe your model here -->
|
| 17 |
|
| 18 |
## Usage (Sentence-Transformers)
|
|
@@ -27,11 +33,12 @@ Then you can use the model like this:
|
|
| 27 |
|
| 28 |
```python
|
| 29 |
from sentence_transformers import SentenceTransformer
|
| 30 |
-
sentences = ["
|
| 31 |
|
| 32 |
-
model = SentenceTransformer('
|
| 33 |
embeddings = model.encode(sentences)
|
| 34 |
print(embeddings)
|
|
|
|
| 35 |
```
|
| 36 |
|
| 37 |
|
|
@@ -52,11 +59,11 @@ def mean_pooling(model_output, attention_mask):
|
|
| 52 |
|
| 53 |
|
| 54 |
# Sentences we want sentence embeddings for
|
| 55 |
-
sentences = ['
|
| 56 |
|
| 57 |
# Load model from HuggingFace Hub
|
| 58 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
| 59 |
-
model = AutoModel.from_pretrained('
|
| 60 |
|
| 61 |
# Tokenize sentences
|
| 62 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
@@ -70,6 +77,7 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
|
|
| 70 |
|
| 71 |
print("Sentence embeddings:")
|
| 72 |
print(sentence_embeddings)
|
|
|
|
| 73 |
```
|
| 74 |
|
| 75 |
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
pipeline_tag: sentence-similarity
|
| 3 |
tags:
|
| 4 |
- sentence-transformers
|
| 5 |
- feature-extraction
|
| 6 |
- sentence-similarity
|
| 7 |
- transformers
|
| 8 |
+
license: mit
|
| 9 |
+
datasets:
|
| 10 |
+
- stsb_multi_mt
|
| 11 |
+
- unicamp-dl/mmarco
|
| 12 |
+
language:
|
| 13 |
+
- it
|
| 14 |
+
library_name: sentence-transformers
|
| 15 |
---
|
| 16 |
|
| 17 |
+
# {multi-sentence-BERTino}
|
| 18 |
|
| 19 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 20 |
|
| 21 |
+
This model is trained from [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) using [mmarco italian](https://huggingface.co/datasets/unicamp-dl/mmarco) (200K) and [stsb italian](https://huggingface.co/datasets/stsb_multi_mt).
|
| 22 |
<!--- Describe your model here -->
|
| 23 |
|
| 24 |
## Usage (Sentence-Transformers)
|
|
|
|
| 33 |
|
| 34 |
```python
|
| 35 |
from sentence_transformers import SentenceTransformer
|
| 36 |
+
sentences = ["Una ragazza si acconcia i capelli.", "Una ragazza si sta spazzolando i capelli."]
|
| 37 |
|
| 38 |
+
model = SentenceTransformer('nickprock/multi-sentence-BERTino')
|
| 39 |
embeddings = model.encode(sentences)
|
| 40 |
print(embeddings)
|
| 41 |
+
|
| 42 |
```
|
| 43 |
|
| 44 |
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
# Sentences we want sentence embeddings for
|
| 62 |
+
sentences = ['Una ragazza si acconcia i capelli.', 'Una ragazza si sta spazzolando i capelli.']
|
| 63 |
|
| 64 |
# Load model from HuggingFace Hub
|
| 65 |
+
tokenizer = AutoTokenizer.from_pretrained('nickprock/multi-sentence-BERTino')
|
| 66 |
+
model = AutoModel.from_pretrained('nickprock/multi-sentence-BERTino')
|
| 67 |
|
| 68 |
# Tokenize sentences
|
| 69 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
|
| 77 |
|
| 78 |
print("Sentence embeddings:")
|
| 79 |
print(sentence_embeddings)
|
| 80 |
+
|
| 81 |
```
|
| 82 |
|
| 83 |
|