update model card README.md
Browse files
README.md
CHANGED
|
@@ -21,16 +21,16 @@ model-index:
|
|
| 21 |
metrics:
|
| 22 |
- name: Precision
|
| 23 |
type: precision
|
| 24 |
-
value: 0.
|
| 25 |
- name: Recall
|
| 26 |
type: recall
|
| 27 |
-
value: 0.
|
| 28 |
- name: F1
|
| 29 |
type: f1
|
| 30 |
-
value: 0.
|
| 31 |
- name: Accuracy
|
| 32 |
type: accuracy
|
| 33 |
-
value: 0.
|
| 34 |
---
|
| 35 |
|
| 36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
@@ -40,11 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 40 |
|
| 41 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord dataset.
|
| 42 |
It achieves the following results on the evaluation set:
|
| 43 |
-
- Loss: 0.
|
| 44 |
-
- Precision: 0.
|
| 45 |
-
- Recall: 0.
|
| 46 |
-
- F1: 0.
|
| 47 |
-
- Accuracy: 0.
|
| 48 |
|
| 49 |
## Model description
|
| 50 |
|
|
@@ -63,7 +63,7 @@ More information needed
|
|
| 63 |
### Training hyperparameters
|
| 64 |
|
| 65 |
The following hyperparameters were used during training:
|
| 66 |
-
- learning_rate:
|
| 67 |
- train_batch_size: 16
|
| 68 |
- eval_batch_size: 16
|
| 69 |
- seed: 42
|
|
@@ -75,16 +75,16 @@ The following hyperparameters were used during training:
|
|
| 75 |
|
| 76 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 77 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 78 |
-
| No log | 2.0 | 100 |
|
| 79 |
-
| No log | 4.0 | 200 | 0.
|
| 80 |
-
| No log | 6.0 | 300 | 0.
|
| 81 |
-
| No log | 8.0 | 400 | 0.
|
| 82 |
-
|
|
| 83 |
-
|
|
| 84 |
-
|
|
| 85 |
-
|
|
| 86 |
-
|
|
| 87 |
-
| 0.
|
| 88 |
|
| 89 |
|
| 90 |
### Framework versions
|
|
|
|
| 21 |
metrics:
|
| 22 |
- name: Precision
|
| 23 |
type: precision
|
| 24 |
+
value: 0.9619686800894854
|
| 25 |
- name: Recall
|
| 26 |
type: recall
|
| 27 |
+
value: 0.9655688622754491
|
| 28 |
- name: F1
|
| 29 |
type: f1
|
| 30 |
+
value: 0.9637654090399701
|
| 31 |
- name: Accuracy
|
| 32 |
type: accuracy
|
| 33 |
+
value: 0.9681663837011885
|
| 34 |
---
|
| 35 |
|
| 36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
|
| 40 |
|
| 41 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord dataset.
|
| 42 |
It achieves the following results on the evaluation set:
|
| 43 |
+
- Loss: 0.1845
|
| 44 |
+
- Precision: 0.9620
|
| 45 |
+
- Recall: 0.9656
|
| 46 |
+
- F1: 0.9638
|
| 47 |
+
- Accuracy: 0.9682
|
| 48 |
|
| 49 |
## Model description
|
| 50 |
|
|
|
|
| 63 |
### Training hyperparameters
|
| 64 |
|
| 65 |
The following hyperparameters were used during training:
|
| 66 |
+
- learning_rate: 5e-05
|
| 67 |
- train_batch_size: 16
|
| 68 |
- eval_batch_size: 16
|
| 69 |
- seed: 42
|
|
|
|
| 75 |
|
| 76 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 77 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 78 |
+
| No log | 2.0 | 100 | 0.5257 | 0.8223 | 0.8555 | 0.8386 | 0.8710 |
|
| 79 |
+
| No log | 4.0 | 200 | 0.3200 | 0.9118 | 0.9281 | 0.9199 | 0.9317 |
|
| 80 |
+
| No log | 6.0 | 300 | 0.2449 | 0.9298 | 0.9424 | 0.9361 | 0.9465 |
|
| 81 |
+
| No log | 8.0 | 400 | 0.1923 | 0.9472 | 0.9536 | 0.9504 | 0.9597 |
|
| 82 |
+
| 0.4328 | 10.0 | 500 | 0.1857 | 0.9591 | 0.9656 | 0.9623 | 0.9682 |
|
| 83 |
+
| 0.4328 | 12.0 | 600 | 0.2073 | 0.9597 | 0.9618 | 0.9607 | 0.9656 |
|
| 84 |
+
| 0.4328 | 14.0 | 700 | 0.1804 | 0.9634 | 0.9663 | 0.9649 | 0.9703 |
|
| 85 |
+
| 0.4328 | 16.0 | 800 | 0.1882 | 0.9634 | 0.9648 | 0.9641 | 0.9665 |
|
| 86 |
+
| 0.4328 | 18.0 | 900 | 0.1800 | 0.9619 | 0.9648 | 0.9634 | 0.9677 |
|
| 87 |
+
| 0.0318 | 20.0 | 1000 | 0.1845 | 0.9620 | 0.9656 | 0.9638 | 0.9682 |
|
| 88 |
|
| 89 |
|
| 90 |
### Framework versions
|