File size: 1,791 Bytes
6819572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ab8c23
 
 
 
 
 
32284fc
 
9ab8c23
 
 
6819572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
language:
- en
library_name: mlx
tags:
- qwen-coder
- MOE
- pruning
- compression
- mlx
license: apache-2.0
name: cerebras/Qwen3-Coder-REAP-25B-A3B
description: 'This model was obtained by uniformly pruning 20% of experts in Qwen3-Coder-30B-A3B-Instruct
  using the REAP method.

  '
readme: 'https://huggingface.co/cerebras/Qwen3-Coder-REAP-25B-A3B/main/README.md

  '
license_link: https://huggingface.co/cerebras/Qwen3-Coder-REAP-25B-A3B/blob/main/LICENSE
pipeline_tag: text-generation
base_model: cerebras/Qwen3-Coder-REAP-25B-A3B
---

# Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx

The regular Deckard(qx) formula uses embeddings at the same bit as the data stores, in this case 4 bit. 

The head and select attention paths are enhanced to 6 bit, and the model is quantized with group size 32(hi).

There is an updated model: [Qwen3-Coder-REAP-25B-A3B-qx65x-hi-mlx](https://huggingface.co/nightmedia/Qwen3-Coder-REAP-25B-A3B-qx65x-hi-mlx) that uses embeddings at 6 bit and a base of 5 bit, and should perform slightly better on long context.

Metrics coming soon.

-G

This model [Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx](https://huggingface.co/nightmedia/Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx) was
converted to MLX format from [cerebras/Qwen3-Coder-REAP-25B-A3B](https://huggingface.co/cerebras/Qwen3-Coder-REAP-25B-A3B)
using mlx-lm version **0.28.3**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```