--- license: apache-2.0 base_model: DavidAU/Qwen3-ST-The-Next-Generation-II-E32-v1-256k-ctx-6B datasets: - progs2002/star-trek-tng-scripts language: - en pipeline_tag: text-generation tags: - programming - code generation - code - coding - coder - chat - brainstorm - qwen - qwen3 - qwencoder - brainstorm 20x - creative - all uses cases - Jan-V1 - float32 - horror - science fiction - fantasy - Star Trek - finetune - thinking - reasoning - mlx library_name: mlx --- # Qwen3-ST-The-Next-Generation-II-E32-v1-256k-ctx-6B-qx86-hi-mlx This model [Qwen3-ST-The-Next-Generation-II-E32-v1-256k-ctx-6B-qx86-hi-mlx](https://huggingface.co/Qwen3-ST-The-Next-Generation-II-E32-v1-256k-ctx-6B-qx86-hi-mlx) was converted to MLX format from [DavidAU/Qwen3-ST-The-Next-Generation-II-E32-v1-256k-ctx-6B](https://huggingface.co/DavidAU/Qwen3-ST-The-Next-Generation-II-E32-v1-256k-ctx-6B) using mlx-lm version **0.27.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Qwen3-ST-The-Next-Generation-II-E32-v1-256k-ctx-6B-qx86-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```