--- library_name: transformers license: mit base_model: thomas-sounack/BioClinical-ModernBERT-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: BioClinical-ModernBERT-base-Symptom2Disease_WITH-DROPOUT-1024 results: [] --- # BioClinical-ModernBERT-base-Symptom2Disease_WITH-DROPOUT-1024 This model is a fine-tuned version of [thomas-sounack/BioClinical-ModernBERT-base](https://huggingface.co/thomas-sounack/BioClinical-ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5515 - Accuracy: 0.9545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.359552467551551e-05 - train_batch_size: 128 - eval_batch_size: 16 - seed: 1024 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5945 | 1.0 | 3 | 1.2203 | 0.4091 | | 1.2782 | 2.0 | 6 | 0.8503 | 0.8409 | | 0.9045 | 3.0 | 9 | 0.6354 | 0.9091 | | 0.6434 | 4.0 | 12 | 0.5134 | 0.8864 | | 0.5588 | 5.0 | 15 | 0.5156 | 0.9773 | | 0.5302 | 6.0 | 18 | 0.5504 | 0.9545 | | 0.5345 | 7.0 | 21 | 0.5581 | 0.9318 | | 0.5304 | 8.0 | 24 | 0.5515 | 0.9545 | ### Framework versions - Transformers 4.56.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1