File size: 2,009 Bytes
3c82d59
1392407
 
 
 
 
 
 
 
3c82d59
 
1392407
 
3c82d59
1392407
3c82d59
1392407
 
0784938
3c82d59
1392407
3c82d59
1392407
3c82d59
1392407
3c82d59
1392407
3c82d59
1392407
3c82d59
1392407
3c82d59
1392407
3c82d59
1392407
3c82d59
1392407
 
 
 
 
 
 
 
 
 
 
 
3c82d59
1392407
3c82d59
1392407
 
0784938
 
 
 
 
 
 
 
 
 
3c82d59
 
1392407
3c82d59
1392407
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
model-index:
- name: robotics_finetuned_text_perception
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# robotics_finetuned_text_perception

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1330

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1284        | 0.98  | 11   | 0.7789          |
| 0.6556        | 1.96  | 22   | 0.5358          |
| 0.4906        | 2.93  | 33   | 0.4536          |
| 0.3796        | 4.0   | 45   | 0.3670          |
| 0.3298        | 4.98  | 56   | 0.2929          |
| 0.2565        | 5.96  | 67   | 0.2295          |
| 0.2017        | 6.93  | 78   | 0.1827          |
| 0.1484        | 8.0   | 90   | 0.1500          |
| 0.138         | 8.98  | 101  | 0.1367          |
| 0.1226        | 9.78  | 110  | 0.1330          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.39.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2