File size: 7,422 Bytes
a0bfa52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
library_name: transformers
license: mit
base_model:
- Qwen/Qwen2.5-VL-8B-Instruct
pipeline_tag: image-text-to-text
---

<p align="center">
    <a href="https://nuextract.ai/">
        <img src="logo_nuextract.svg" width="200"/>
    </a>
</p>
<p align="center">
        🖥️ <a href="https://nuextract.ai/">API / Platform</a>&nbsp&nbsp | &nbsp&nbsp📑 <a href="https://numind.ai/blog">Blog</a>&nbsp&nbsp | &nbsp&nbsp🗣️ <a href="https://discord.gg/3tsEtJNCDe">Discord</a>&nbsp&nbsp | &nbsp&nbsp🔗 <a href="https://github.com/numindai/nuextract">GitHub</a>
</p>

# NuExtract 2.0 2B GGUF by NuMind 🔥

NuExtract 2.0 is a family of models trained specifically for structured information extraction tasks. It supports both multimodal inputs and is multilingual.

We provide several versions of different sizes, all based on pre-trained models from the QwenVL family.
| Model Size | Model Name | Base Model | License | Huggingface Link |
|------------|------------|------------|---------|------------------|
| 2B | NuExtract-2.0-2B | [Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) | MIT | 🤗 [NuExtract-2.0-2B](https://huggingface.co/numind/NuExtract-2.0-2B) |
| 2B | NuExtract-2.0-2B-GGUF | [Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) | MIT | 🤗 [NuExtract-2.0-2B-GGUF](https://huggingface.co/numind/NuExtract-2.0-2B-GGUF) |
| 4B | NuExtract-2.0-4B | [Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) | Qwen Research License | 🤗 [NuExtract-2.0-4B](https://huggingface.co/numind/NuExtract-2.0-4B) |
| 4B | NuExtract-2.0-4B-GGUF | [Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) | Qwen Research License | 🤗 [NuExtract-2.0-4B-GGUF](https://huggingface.co/numind/NuExtract-2.0-4B-GGUF) |
| 8B | NuExtract-2.0-8B | [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) | MIT | 🤗 [NuExtract-2.0-8B](https://huggingface.co/numind/NuExtract-2.0-8B) |
| 8B | NuExtract-2.0-8B-GGUF | [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) | MIT | 🤗 [NuExtract-2.0-8B-GGUF](https://huggingface.co/numind/NuExtract-2.0-8B-GGUF) |

❗️Note: `NuExtract-2.0-2B` is based on Qwen2-VL rather than Qwen2.5-VL because the smallest Qwen2.5-VL model (3B) has a more restrictive, non-commercial license. We therefore include `NuExtract-2.0-2B` as a small model option that can be used commercially.

## Benchmark
Performance on collection of ~1,000 diverse extraction examples containing both text and image inputs.
<a href="https://nuextract.ai/">
    <img src="nuextract2_bench.png" width="500"/>
</a>

## Overview

To use the model, provide an input text/image and a JSON template describing the information you need to extract. The template should be a JSON object, specifying field names and their expected type.

Support types include:
* `verbatim-string` - instructs the model to extract text that is present verbatim in the input.
* `string` - a generic string field that can incorporate paraphrasing/abstraction.
* `integer` - a whole number.
* `number` - a whole or decimal number.
* `date-time` - ISO formatted date.
* Array of any of the above types (e.g. `["string"]`)
* `enum` - a choice from set of possible answers (represented in template as an array of options, e.g. `["yes", "no", "maybe"]`).
* `multi-label` - an enum that can have multiple possible answers (represented in template as a double-wrapped array, e.g. `[["A", "B", "C"]]`).

If the model does not identify relevant information for a field, it will return `null` or `[]` (for arrays and multi-labels).

The following is an example template:
```json
{
  "first_name": "verbatim-string",
  "last_name": "verbatim-string",
  "description": "string",
  "age": "integer",
  "gpa": "number",
  "birth_date": "date-time",
  "nationality": ["France", "England", "Japan", "USA", "China"],
  "languages_spoken": [["English", "French", "Japanese", "Mandarin", "Spanish"]]
}
```
An example output:
```json
{
  "first_name": "Susan",
  "last_name": "Smith",
  "description": "A student studying computer science.",
  "age": 20,
  "gpa": 3.7,
  "birth_date": "2005-03-01",
  "nationality": "England",
  "languages_spoken": ["English", "French"]
}
```

⚠️ We recommend using NuExtract with a temperature at or very close to 0. Some inference frameworks, such as Ollama, use a default of 0.7 which is not well suited to many extraction tasks.

## Using NuExtract with llama.cpp

### Download the model

```bash
mkdir models
hf download numind/NuExtract-2.0-2B-GGUF --local-dir ./models
```

### Start the llama.cpp server
```bash
docker run --gpus all -it -p 8000:8080 -v ./models:/models --entrypoint /app/llama-server ghcr.io/ggml-org/llama.cpp:full-cuda -m /models/NuExtract-2.0-2B-Q8_0.gguf --mmproj /models/mmproj-BF16.gguf --host 0.0.0.0
```

## Text Extraction
The `docker run` command above maps the port 8080 of the llama.cpp container to the port 8000 of the host.
```python
import openai
import json

client = openai.OpenAI(
    api_key="EMPTY",
    base_url="http://localhost:8000",
)
```
llama.cpp is not compatible with vllm's `chat_template_kwargs`. Thus, the template has to be applied manually
## Text extraction
```python
flight_text = """Date: Tuesday March 25th 2025
User info: Male, 32 yo

Book me a flight this Saturday morning to go to Marrakesh and come back on April 5th. I want it to be business class. Air France if possible."""
flight_template = """{
    "Destination": "verbatim-string",
    "Departure date range": {
        "beginning": "date-time",
        "end": "date-time"
    },
    "Return date range": {
        "beginning": "date-time",
        "end": "date-time"
    },
    "Requested Class": [
        "1st",
        "business",
        "economy"
    ],
    "Preferred airlines": [
        "string"
    ]
}"""

response = client.chat.completions.create(
    model="NuExtract",
    temperature=0.0,
    messages=[
        {
            "role": "user",
            "content": [
                {
                    "type": "text", 
                    "text": f"# Template:\n{json.dumps(json.loads(flight_template), indent=4)}\n{flight_text}",
                },
            ],
        },
    ],
)
```

## Image Extraction

```python
identity_template = """{
    "Last name": "verbatim-string",
    "First names": [
        "verbatim-string"
    ],
    "Document number": "verbatim-string",
    "Date of birth": "date-time",
    "Gender": [
        "Male",
        "Female",
        "Other"
    ],
    "Expiration date": "date-time",
    "Country ISO code": "string"
}"""

response = client.chat.completions.create(
    model="NuExtract",
    temperature=0.0,
    messages=[
        {
            "role": "user",
            "content": [
                {
                    "type": "text", 
                    "text": f"# Template:\n{json.dumps(json.loads(identity_template), indent=4)}\n<image>",
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": f"https://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Carte_identit%C3%A9_%C3%A9lectronique_fran%C3%A7aise_%282021%2C_recto%29.png/2880px-Carte_identit%C3%A9_%C3%A9lectronique_fran%C3%A7aise_%282021%2C_recto%29.png"
                    },
                },
            ],
        },
    ],
)
```