--- datasets: - agentica-org/DeepScaleR-Preview-Dataset language: - en metrics: - accuracy base_model: - deepseek-ai/DeepSeek-R1-Distill-Qwen-7B --- # Model Overview
DLER-R1-7B
🚀 The leading efficient reasoning model for cutting-edge research and development 🌟
[![Paper](https://img.shields.io/badge/ArXiv-Paper-brown)](https://www.arxiv.org/abs/2510.15110) [![Code](https://img.shields.io/badge/GitHub-Link-blue)](https://github.com/NVlabs/DLER) [![Model](https://img.shields.io/badge/HuggingFace-Model-yellow)](https://huggingface.co/collections/nvidia/reasoning-efficiency-research) [![Website](https://img.shields.io/badge/Web-Page-orange)](https://nvlabs.github.io/DLER/) ![Comparison between DeepSeek-R1-7B and DLER-R1-7B](./asset/latency_7b.png) ### Description: DLER-Qwen-R1-7B is an ultra-efficient 7B open-weight reasoning model designed for challenging tasks such as mathematics, programming, and scientific problem-solving. It is trained with the DLER algorithm on agentica-org/DeepScaleR-Preview-Dataset. Compared to DeepSeek’s 7B model, DLER-Qwen-R1-7B achieves substantial efficiency gains, reducing the average response length by nearly 80% across diverse mathematical benchmarks with better accuracy. This model is for research and development only. ### Evaluation Results: | Model | MATH | Length | AIME | Length | AMC | Length | Minerva |Length | Olympiad |Length | Total Avg Length | |------------------|----------|------------|--------------------|------------------|--------------------|------------------|--------------------|------------------|--------------------|------------------|-----------------| | Deepseek-R1-7B | 93.60 | 3999 | 55.40 | 13241 | 82.90 | 7461 | 49.79 | 5199 | 58.21 | 8837 | 7747 | | **DLER-R1-7B** | **94.21 (+0.61%)** | **1634 (-60%)** | **55.62 (+0.22%)** | **3230 (-76%)** | **84.41 (+1.51%)** | **2512 (-0.67%)** | **53.88 (+4.09%)** | **2058 (-61%)** | **60.48 (+2.27%)** | **2592 (-71%)** | **2405 (-69%)** | ### Environment Setup ``` pip install transformers==4.51.3 ``` # Inference: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModelForCausalLM.from_pretrained('nvidia/DLER-R1-7B-Research').to(device) tokenizer = AutoTokenizer.from_pretrained('nvidia/DLER-R1-7B-Research') messages = [ {"role": "user", "content": "Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer in the form $(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2 \\pi.$"+" Let's think step by step and output the final answer within \\boxed{}."}, ] tokenized_chat = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( tokenized_chat, max_new_tokens=10000, eos_token_id=tokenizer.eos_token_id ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### License/Terms of Use NSCLv1 ## Citation If you find our model helpful, please cite the following [paper](): ``` @article{liu2025dler, title={DLER: Doing Length pEnalty Right-Incentivizing More Intelligence per Token via Reinforcement Learning}, author={Liu, Shih-Yang and Dong, Xin and Lu, Ximing and Diao, Shizhe and Liu, Mingjie and Chen, Min-Hung and Yin, Hongxu and Wang, Yu-Chiang Frank and Cheng, Kwang-Ting and Choi, Yejin and others}, journal={arXiv preprint arXiv:2510.15110}, year={2025} } ```