|
|
from typing import List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
from torch import Tensor, nn |
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
from transformers.cache_utils import Cache, HybridCache |
|
|
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask |
|
|
from transformers.modeling_outputs import ( |
|
|
BaseModelOutputWithPast, |
|
|
SequenceClassifierOutputWithPast, |
|
|
) |
|
|
from transformers.models.llama.configuration_llama import LlamaConfig |
|
|
from transformers.models.llama.modeling_llama import ( |
|
|
LlamaForSequenceClassification, |
|
|
LlamaModel, |
|
|
LlamaPreTrainedModel, |
|
|
) |
|
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
def pool(last_hidden_states: Tensor, attention_mask: Tensor, pool_type: str) -> Tensor: |
|
|
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) |
|
|
|
|
|
if pool_type == "avg": |
|
|
emb = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] |
|
|
elif pool_type == "weighted_avg": |
|
|
emb = last_hidden.sum(dim=1) |
|
|
elif pool_type == "cls": |
|
|
emb = last_hidden[:, 0] |
|
|
elif pool_type == "last": |
|
|
left_padding = attention_mask[:, -1].sum() == attention_mask.shape[0] |
|
|
if left_padding: |
|
|
emb = last_hidden[:, -1] |
|
|
else: |
|
|
sequence_lengths = attention_mask.sum(dim=1) - 1 |
|
|
batch_size = last_hidden.shape[0] |
|
|
emb = last_hidden[ |
|
|
torch.arange(batch_size, device=last_hidden.device), sequence_lengths |
|
|
] |
|
|
else: |
|
|
raise ValueError(f"pool_type {pool_type} not supported") |
|
|
|
|
|
return emb |
|
|
|
|
|
|
|
|
class LlamaBidirectionalConfig(LlamaConfig): |
|
|
model_type = "llama_bidirec" |
|
|
|
|
|
def __init__( |
|
|
self, pooling="avg", temperature=1.0, **kwargs, |
|
|
): |
|
|
self.pooling = pooling |
|
|
self.temperature = temperature |
|
|
super().__init__(**kwargs,) |
|
|
|
|
|
|
|
|
class LlamaBidirectionalModel(LlamaModel): |
|
|
config_class = LlamaBidirectionalConfig |
|
|
|
|
|
def __init__(self, config: LlamaConfig): |
|
|
super().__init__(config) |
|
|
for layer in self.layers: |
|
|
layer.self_attn.is_causal = False |
|
|
self.config._attn_implementation = "eager" |
|
|
|
|
|
def _update_causal_mask( |
|
|
self, |
|
|
attention_mask: torch.Tensor, |
|
|
input_tensor: torch.Tensor, |
|
|
cache_position: torch.Tensor, |
|
|
past_key_values: Cache, |
|
|
output_attentions: bool, |
|
|
): |
|
|
|
|
|
causal_mask = _prepare_4d_attention_mask(attention_mask, input_tensor.dtype) |
|
|
return causal_mask |
|
|
|
|
|
|
|
|
class LlamaBidirectionalForSequenceClassification(LlamaForSequenceClassification): |
|
|
config_class = LlamaBidirectionalConfig |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
|
|
|
|
|
|
del self.model |
|
|
|
|
|
self.model = LlamaBidirectionalModel(config) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
|
r""" |
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
|
""" |
|
|
return_dict = ( |
|
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
|
) |
|
|
|
|
|
transformer_outputs = self.model( |
|
|
input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
) |
|
|
hidden_states = transformer_outputs[0] |
|
|
|
|
|
pooled_hidden_states = pool( |
|
|
last_hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
pool_type=self.config.pooling, |
|
|
) |
|
|
|
|
|
pooled_logits = self.score(pooled_hidden_states) |
|
|
pooled_logits = pooled_logits / self.config.temperature |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
labels = labels.to(logits.device) |
|
|
if self.config.problem_type is None: |
|
|
if self.num_labels == 1: |
|
|
self.config.problem_type = "regression" |
|
|
elif self.num_labels > 1 and ( |
|
|
labels.dtype == torch.long or labels.dtype == torch.int |
|
|
): |
|
|
self.config.problem_type = "single_label_classification" |
|
|
else: |
|
|
self.config.problem_type = "multi_label_classification" |
|
|
|
|
|
if self.config.problem_type == "regression": |
|
|
loss_fct = MSELoss() |
|
|
if self.num_labels == 1: |
|
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
|
else: |
|
|
loss = loss_fct(pooled_logits, labels) |
|
|
elif self.config.problem_type == "single_label_classification": |
|
|
loss_fct = CrossEntropyLoss() |
|
|
loss = loss_fct( |
|
|
pooled_logits.view(-1, self.num_labels), labels.view(-1) |
|
|
) |
|
|
elif self.config.problem_type == "multi_label_classification": |
|
|
loss_fct = BCEWithLogitsLoss() |
|
|
loss = loss_fct(pooled_logits, labels) |
|
|
if not return_dict: |
|
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
|
return ((loss,) + output) if loss is not None else output |
|
|
|
|
|
return SequenceClassifierOutputWithPast( |
|
|
loss=loss, |
|
|
logits=pooled_logits, |
|
|
past_key_values=transformer_outputs.past_key_values, |
|
|
hidden_states=transformer_outputs.hidden_states, |
|
|
attentions=transformer_outputs.attentions, |
|
|
) |
|
|
|