from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.cache_utils import Cache, HybridCache from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask from transformers.modeling_outputs import ( BaseModelOutputWithPast, SequenceClassifierOutputWithPast, ) from transformers.models.llama.configuration_llama import LlamaConfig from transformers.models.llama.modeling_llama import ( LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel, ) from transformers.utils import logging logger = logging.get_logger(__name__) def pool(last_hidden_states: Tensor, attention_mask: Tensor, pool_type: str) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) if pool_type == "avg": emb = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] elif pool_type == "weighted_avg": emb = last_hidden.sum(dim=1) elif pool_type == "cls": emb = last_hidden[:, 0] elif pool_type == "last": left_padding = attention_mask[:, -1].sum() == attention_mask.shape[0] if left_padding: emb = last_hidden[:, -1] else: sequence_lengths = attention_mask.sum(dim=1) - 1 batch_size = last_hidden.shape[0] emb = last_hidden[ torch.arange(batch_size, device=last_hidden.device), sequence_lengths ] else: raise ValueError(f"pool_type {pool_type} not supported") return emb class LlamaBidirectionalConfig(LlamaConfig): model_type = "llama_bidirec" def __init__( self, pooling="avg", temperature=1.0, **kwargs, ): self.pooling = pooling self.temperature = temperature super().__init__(**kwargs,) class LlamaBidirectionalModel(LlamaModel): config_class = LlamaBidirectionalConfig def __init__(self, config: LlamaConfig): super().__init__(config) for layer in self.layers: layer.self_attn.is_causal = False self.config._attn_implementation = "eager" def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): # Generates bi-directional attention. causal_mask = _prepare_4d_attention_mask(attention_mask, input_tensor.dtype) return causal_mask class LlamaBidirectionalForSequenceClassification(LlamaForSequenceClassification): config_class = LlamaBidirectionalConfig def __init__(self, config): super().__init__(config) # Releasing the parameters of LlamaModel # created by parent LlamaForSequenceClassification del self.model self.model = LlamaBidirectionalModel(config) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] pooled_hidden_states = pool( last_hidden_states=hidden_states, attention_mask=attention_mask, pool_type=self.config.pooling, ) pooled_logits = self.score(pooled_hidden_states) pooled_logits = pooled_logits / self.config.temperature loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and ( labels.dtype == torch.long or labels.dtype == torch.int ): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct( pooled_logits.view(-1, self.num_labels), labels.view(-1) ) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )