readme update
Browse files
README.md
CHANGED
|
@@ -183,9 +183,44 @@ img {
|
|
| 183 |
It is an XXL version of FastConformer CTC [1] (around 1.1B parameters) model.
|
| 184 |
See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) for complete architecture details.
|
| 185 |
|
| 186 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
-
|
| 189 |
|
| 190 |
```bash
|
| 191 |
pip install git+https://github.com/huggingface/transformers
|
|
@@ -254,33 +289,7 @@ outputs.loss.backward()
|
|
| 254 |
```
|
| 255 |
</details>
|
| 256 |
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version.
|
| 260 |
-
```
|
| 261 |
-
pip install nemo_toolkit['all']
|
| 262 |
-
```
|
| 263 |
-
|
| 264 |
-
## How to Use this Model
|
| 265 |
-
|
| 266 |
-
The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
|
| 267 |
-
|
| 268 |
-
### Automatically instantiate the model
|
| 269 |
-
|
| 270 |
-
```python
|
| 271 |
-
import nemo.collections.asr as nemo_asr
|
| 272 |
-
asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained(model_name="nvidia/parakeet-ctc-1.1b")
|
| 273 |
-
```
|
| 274 |
-
|
| 275 |
-
### Transcribing using Python
|
| 276 |
-
First, let's get a sample
|
| 277 |
-
```
|
| 278 |
-
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
|
| 279 |
-
```
|
| 280 |
-
Then simply do:
|
| 281 |
-
```
|
| 282 |
-
asr_model.transcribe(['2086-149220-0033.wav'])
|
| 283 |
-
```
|
| 284 |
|
| 285 |
### Transcribing many audio files
|
| 286 |
|
|
|
|
| 183 |
It is an XXL version of FastConformer CTC [1] (around 1.1B parameters) model.
|
| 184 |
See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) for complete architecture details.
|
| 185 |
|
| 186 |
+
## NVIDIA NeMo: Training
|
| 187 |
+
|
| 188 |
+
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version.
|
| 189 |
+
```
|
| 190 |
+
pip install nemo_toolkit['all']
|
| 191 |
+
```
|
| 192 |
+
|
| 193 |
+
## How to Use this Model
|
| 194 |
+
|
| 195 |
+
The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Moreover, you can now run Parakeet CTC natively with [Transformers](https://github.com/huggingface/transformers) 🤗.
|
| 196 |
+
|
| 197 |
+
### Automatically instantiate the model
|
| 198 |
+
|
| 199 |
+
Using [NVIDIA NeMo](https://github.com/NVIDIA/NeMo):
|
| 200 |
+
```python
|
| 201 |
+
import nemo.collections.asr as nemo_asr
|
| 202 |
+
asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained(model_name="nvidia/parakeet-ctc-0.6b")
|
| 203 |
+
```
|
| 204 |
+
|
| 205 |
+
Using [Transformers](https://github.com/huggingface/transformers) 🤗
|
| 206 |
+
```python
|
| 207 |
+
from transformers import AutoModelForCTC
|
| 208 |
+
model = AutoModelForCTC.from_pretrained("nvidia/parakeet-ctc-0.6b")
|
| 209 |
+
```
|
| 210 |
+
|
| 211 |
+
### Transcribing using NeMo
|
| 212 |
+
First, let's get a sample
|
| 213 |
+
```
|
| 214 |
+
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
|
| 215 |
+
```
|
| 216 |
+
Then simply do:
|
| 217 |
+
```
|
| 218 |
+
asr_model.transcribe(['2086-149220-0033.wav'])
|
| 219 |
+
```
|
| 220 |
+
|
| 221 |
+
### Transcribing using [Transformers](https://github.com/huggingface/transformers) 🤗
|
| 222 |
|
| 223 |
+
Make sure to install `transformers` from source.
|
| 224 |
|
| 225 |
```bash
|
| 226 |
pip install git+https://github.com/huggingface/transformers
|
|
|
|
| 289 |
```
|
| 290 |
</details>
|
| 291 |
|
| 292 |
+
For more details about usage, the refer to [Transformers' documentation](https://huggingface.co/docs/transformers/en/index).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
### Transcribing many audio files
|
| 295 |
|