--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-detector-v2 results: [] --- # roberta-detector-v2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0271 - Accuracy: 0.9942 - Precision: 0.9943 - Recall: 0.9942 - F1: 0.9942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0226 | 1.0 | 5997 | 0.0339 | 0.9925 | 0.9925 | 0.9925 | 0.9925 | | 0.0208 | 2.0 | 11994 | 0.0271 | 0.9942 | 0.9943 | 0.9942 | 0.9942 | | 0.0097 | 3.0 | 17991 | 0.0392 | 0.9936 | 0.9937 | 0.9936 | 0.9936 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4