Commit
·
1ba92de
1
Parent(s):
f5d256b
Update pipeline.py
Browse files- pipeline.py +19 -47
pipeline.py
CHANGED
|
@@ -2,59 +2,32 @@ import torch
|
|
| 2 |
import transformers
|
| 3 |
from accelerate import dispatch_model, infer_auto_device_map
|
| 4 |
from accelerate.utils import get_balanced_memory
|
|
|
|
| 5 |
from typing import Dict, List, Any
|
| 6 |
|
| 7 |
class PreTrainedPipeline():
|
| 8 |
def __init__(self, path=""):
|
| 9 |
path = "oleksandrfluxon/mpt-7b-instruct-evaluate"
|
| 10 |
print("===> path", path)
|
| 11 |
-
|
| 12 |
-
with torch.autocast('cuda'):
|
| 13 |
-
config = transformers.AutoConfig.from_pretrained(
|
| 14 |
-
path,
|
| 15 |
-
trust_remote_code=True
|
| 16 |
-
)
|
| 17 |
-
# config.attn_config['attn_impl'] = 'triton'
|
| 18 |
-
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
|
| 19 |
-
config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096
|
| 20 |
-
|
| 21 |
-
print("===> loading model")
|
| 22 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(
|
| 23 |
-
path,
|
| 24 |
-
config=config,
|
| 25 |
-
# torch_dtype=torch.bfloat16, # Load model weights in bfloat16
|
| 26 |
-
torch_dtype=torch.float16,
|
| 27 |
-
trust_remote_code=True,
|
| 28 |
-
device_map={"": 0},
|
| 29 |
-
load_in_8bit=True # Load model in the lowest 4-bit precision quantization
|
| 30 |
-
)
|
| 31 |
-
# model.to('cuda')
|
| 32 |
-
print("===> model loaded")
|
| 33 |
-
|
| 34 |
-
# removed device_map="auto"
|
| 35 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b', padding_side="left")
|
| 36 |
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
max_memory=max_memory,
|
| 49 |
-
no_split_module_classes=["MPTBlock"],
|
| 50 |
-
dtype='float16'
|
| 51 |
-
)
|
| 52 |
-
model = dispatch_model(model, device_map=device_map)
|
| 53 |
-
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
| 58 |
|
| 59 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 60 |
"""
|
|
@@ -71,8 +44,7 @@ class PreTrainedPipeline():
|
|
| 71 |
print("===> inputs", inputs)
|
| 72 |
print("===> parameters", parameters)
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
print("===> result", result)
|
| 77 |
|
| 78 |
return result
|
|
|
|
| 2 |
import transformers
|
| 3 |
from accelerate import dispatch_model, infer_auto_device_map
|
| 4 |
from accelerate.utils import get_balanced_memory
|
| 5 |
+
from transformers import BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
|
| 6 |
from typing import Dict, List, Any
|
| 7 |
|
| 8 |
class PreTrainedPipeline():
|
| 9 |
def __init__(self, path=""):
|
| 10 |
path = "oleksandrfluxon/mpt-7b-instruct-evaluate"
|
| 11 |
print("===> path", path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
| 14 |
+
print("===> device", device)
|
| 15 |
|
| 16 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
| 17 |
+
'oleksandrfluxon/mpt-7b-instruct-evaluate',
|
| 18 |
+
trust_remote_code=True,
|
| 19 |
+
load_in_8bit=True, # this requires the `bitsandbytes` library
|
| 20 |
+
max_seq_len=8192,
|
| 21 |
+
init_device=device
|
| 22 |
+
)
|
| 23 |
+
model.eval()
|
| 24 |
+
#model.to(device)
|
| 25 |
+
print(f"===> Model loaded on {device}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("mosaicml/mpt-7b")
|
| 28 |
+
|
| 29 |
+
self.pipeline = transformers.pipeline('text-generation', model=model, tokenizer=tokenizer)
|
| 30 |
+
print("===> init finished")
|
| 31 |
|
| 32 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 33 |
"""
|
|
|
|
| 44 |
print("===> inputs", inputs)
|
| 45 |
print("===> parameters", parameters)
|
| 46 |
|
| 47 |
+
result = self.pipeline(inputs, **parameters)
|
| 48 |
+
print("===> result", result)
|
|
|
|
| 49 |
|
| 50 |
return result
|