--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - timit_asr metrics: - wer model-index: - name: repo_name results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: timit_asr type: timit_asr config: clean split: None args: clean metrics: - type: wer value: 0.22107366825167116 name: Wer --- # repo_name This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the timit_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.5351 - Wer: 0.2211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:------:| | 3.5252 | 1.0040 | 500 | 1.6991 | 0.9701 | | 0.854 | 2.0080 | 1000 | 0.5187 | 0.4025 | | 0.4211 | 3.0120 | 1500 | 0.4289 | 0.3326 | | 0.2871 | 4.0161 | 2000 | 0.3947 | 0.2896 | | 0.2266 | 5.0201 | 2500 | 0.4034 | 0.2881 | | 0.1789 | 6.0241 | 3000 | 0.4833 | 0.2926 | | 0.1638 | 7.0281 | 3500 | 0.4342 | 0.2776 | | 0.15 | 8.0321 | 4000 | 0.4643 | 0.2750 | | 0.1251 | 9.0361 | 4500 | 0.4449 | 0.2642 | | 0.1064 | 10.0402 | 5000 | 0.4785 | 0.2578 | | 0.0986 | 11.0442 | 5500 | 0.4480 | 0.2627 | | 0.0883 | 12.0482 | 6000 | 0.4876 | 0.2603 | | 0.0784 | 13.0522 | 6500 | 0.5100 | 0.2519 | | 0.0721 | 14.0562 | 7000 | 0.4795 | 0.2536 | | 0.0696 | 15.0602 | 7500 | 0.4797 | 0.2456 | | 0.0598 | 16.0643 | 8000 | 0.5064 | 0.2410 | | 0.0575 | 17.0683 | 8500 | 0.5075 | 0.2362 | | 0.0508 | 18.0723 | 9000 | 0.5062 | 0.2420 | | 0.048 | 19.0763 | 9500 | 0.5078 | 0.2397 | | 0.0402 | 20.0803 | 10000 | 0.5511 | 0.2341 | | 0.0429 | 21.0843 | 10500 | 0.4835 | 0.2330 | | 0.0362 | 22.0884 | 11000 | 0.5800 | 0.2308 | | 0.0333 | 23.0924 | 11500 | 0.5250 | 0.2306 | | 0.0285 | 24.0964 | 12000 | 0.5242 | 0.2288 | | 0.0296 | 25.1004 | 12500 | 0.4995 | 0.2238 | | 0.0264 | 26.1044 | 13000 | 0.5296 | 0.2236 | | 0.0245 | 27.1084 | 13500 | 0.5530 | 0.2233 | | 0.0214 | 28.1124 | 14000 | 0.5376 | 0.2209 | | 0.0214 | 29.1165 | 14500 | 0.5351 | 0.2211 | ### Framework versions - Transformers 4.56.2 - Pytorch 2.8.0+cu126 - Datasets 2.21.0 - Tokenizers 0.22.1