Simulate Any Radar: Attribute-Controllable Radar Simulation via Waveform Parameter Embedding
Abstract
SA-Radar is a radar simulation framework that combines generative and physics-based approaches to efficiently generate realistic radar data conditioned on customizable attributes, improving performance in tasks like object detection and semantic segmentation.
We present SA-Radar (Simulate Any Radar), a radar simulation approach that enables controllable and efficient generation of radar cubes conditioned on customizable radar attributes. Unlike prior generative or physics-based simulators, SA-Radar integrates both paradigms through a waveform-parameterized attribute embedding. We design ICFAR-Net, a 3D U-Net conditioned on radar attributes encoded via waveform parameters, which captures signal variations induced by different radar configurations. This formulation bypasses the need for detailed radar hardware specifications and allows efficient simulation of range-azimuth-Doppler (RAD) tensors across diverse sensor settings. We further construct a mixed real-simulated dataset with attribute annotations to robustly train the network. Extensive evaluations on multiple downstream tasks-including 2D/3D object detection and radar semantic segmentation-demonstrate that SA-Radar's simulated data is both realistic and effective, consistently improving model performance when used standalone or in combination with real data. Our framework also supports simulation in novel sensor viewpoints and edited scenes, showcasing its potential as a general-purpose radar data engine for autonomous driving applications. Code and additional materials are available at https://zhuxing0.github.io/projects/SA-Radar.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper