Papers
arxiv:2510.22118

GRAID: Enhancing Spatial Reasoning of VLMs Through High-Fidelity Data Generation

Published on Oct 25
Authors:
,
,
,
,
,

Abstract

GRAID generates high-quality VQA datasets using 2D bounding boxes, improving spatial reasoning in vision-language models.

AI-generated summary

Vision Language Models (VLMs) achieve strong performance on many vision-language tasks but often struggle with spatial reasoningx2014a prerequisite for many applications. Empirically, we find that a dataset produced by a current training data generation pipeline has a 57.6% human validation rate. These rates stem from current limitations: single-image 3D reconstruction introduces cascading modeling errors and requires wide answer tolerances, while caption-based methods require hyper-detailed annotations and suffer from generative hallucinations. We present GRAID, built on the key insight that qualitative spatial relationships can be reliably determined from 2D geometric primitives alone. By operating exclusively on 2D bounding boxes from standard object detectors, GRAID avoids both 3D reconstruction errors and generative hallucinations, resulting in datasets that are of higher quality than existing tools that produce similar datasets as validated by human evaluations. We apply our framework to the BDD100k, NuImages, and Waymo datasets, generating over 8.5 million high-quality VQA pairs creating questions spanning spatial relations, counting, ranking, and size comparisons. We evaluate one of the datasets and find it achieves 91.16% human-validated accuracyx2014compared to 57.6% on a dataset generated by recent work. Critically, we demonstrate that when trained on GRAID data, models learn spatial reasoning concepts that generalize: models fine-tuned on 6 question types improve on over 10 held-out types, with accuracy gains of 47.5% on BDD and 37.9% on NuImages for Llama 3.2B 11B, and when trained on all questions types, achieve improvements on several existing benchmarks such as BLINK. The GRAID framework, datasets, and additional information can be found this https URL{here}.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2510.22118 in a model README.md to link it from this page.

Datasets citing this paper 6

Browse 6 datasets citing this paper

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2510.22118 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.