Towards Leveraging Sequential Structure in Animal Vocalizations
Abstract
Vector-quantized token sequences derived from HuBERT embeddings can capture and leverage temporal information in animal vocalizations, demonstrating potential as a feature representation for classification tasks.
Animal vocalizations contain sequential structures that carry important communicative information, yet most computational bioacoustics studies average the extracted frame-level features across the temporal axis, discarding the order of the sub-units within a vocalization. This paper investigates whether discrete acoustic token sequences, derived through vector quantization and gumbel-softmax vector quantization of extracted self-supervised speech model representations can effectively capture and leverage temporal information. To that end, pairwise distance analysis of token sequences generated from HuBERT embeddings shows that they can discriminate call-types and callers across four bioacoustics datasets. Sequence classification experiments using k-Nearest Neighbour with Levenshtein distance show that the vector-quantized token sequences yield reasonable call-type and caller classification performances, and hold promise as alternative feature representations towards leveraging sequential information in animal vocalizations.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper