Abstract
The ViDiC task and ViDiC-1K dataset evaluate Multimodal Large Language Models' ability to describe differences between video pairs, addressing limitations in capturing motion continuity and event evolution.
Understanding visual differences between dynamic scenes requires the comparative perception of compositional, spatial, and temporal changes--a capability that remains underexplored in existing vision-language systems. While prior work on Image Difference Captioning (IDC) has enabled models to describe semantic changes between static images, these approaches fail to capture motion continuity, event evolution, or editing consistency over time. We introduce the ViDiC (Video Difference Captioning) task and its corresponding ViDiC-1K dataset, designed to evaluate the ability of Multimodal Large Language Models (MLLMs) to provide fine-grained descriptions of similarities and differences between video pairs. ViDiC-1K comprises 1,000 curated video pairs annotated with over 4,000 comparative checklist items, covering seven categories: subject, style, background, cinematography, motion, location, and playback techniques. To ensure reliable evaluation, we propose a dual-checklist framework that measures the accuracy of similarity and difference separately, based on the LLM-as-a-Judge protocol. Experiments on nineteen representative multimodal models reveal a significant performance gap in their comparative description and difference perception abilities. We hope ViDiC-1K can be a challenging benchmark that lays a solid foundation for advancing video understanding, edit awareness, and comparative reasoning in multimodal intelligence.
Community
Understanding visual differences between dynamic scenes requires the comparative perception of compositional, spatial, and temporal changes--a capability that remains underexplored in existing vision-language systems. While prior work on Image Difference Captioning (IDC) has enabled models to describe semantic changes between static images, these approaches fail to capture motion continuity, event evolution, or editing consistency over time. We introduce the ViDiC (Video Difference Captioning) task and its corresponding ViDiC-1K dataset, designed to evaluate the ability of Multimodal Large Language Models (MLLMs) to provide fine-grained descriptions of similarities and differences between video pairs. ViDiC-1K comprises 1,000 curated video pairs annotated with over 4,000 comparative checklist items, covering seven categories: subject, style, background, cinematography, motion, location, and playback techniques. To ensure reliable evaluation, we propose a dual-checklist framework that measures the accuracy of similarity and difference separately, based on the LLM-as-a-Judge protocol. Experiments on nineteen representative multimodal models reveal a significant performance gap in their comparative description and difference perception abilities. We hope ViDiC-1K can be a challenging benchmark that lays a solid foundation for advancing video understanding, edit awareness, and comparative reasoning in multimodal intelligence.
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- VC4VG: Optimizing Video Captions for Text-to-Video Generation (2025)
- AVoCaDO: An Audiovisual Video Captioner Driven by Temporal Orchestration (2025)
- Towards Fine-Grained Human Motion Video Captioning (2025)
- Factuality Matters: When Image Generation and Editing Meet Structured Visuals (2025)
- Vidi2: Large Multimodal Models for Video Understanding and Creation (2025)
- R-AVST: Empowering Video-LLMs with Fine-Grained Spatio-Temporal Reasoning in Complex Audio-Visual Scenarios (2025)
- ViMix-14M: A Curated Multi-Source Video-Text Dataset with Long-Form, High-Quality Captions and Crawl-Free Access (2025)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper