new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 28

Space-time tradeoffs of lenses and optics via higher category theory

Optics and lenses are abstract categorical gadgets that model systems with bidirectional data flow. In this paper we observe that the denotational definition of optics - identifying two optics as equivalent by observing their behaviour from the outside - is not suitable for operational, software oriented approaches where optics are not merely observed, but built with their internal setups in mind. We identify operational differences between denotationally isomorphic categories of cartesian optics and lenses: their different composition rule and corresponding space-time tradeoffs, positioning them at two opposite ends of a spectrum. With these motivations we lift the existing categorical constructions and their relationships to the 2-categorical level, showing that the relevant operational concerns become visible. We define the 2-category 2-Optic(C) whose 2-cells explicitly track optics' internal configuration. We show that the 1-category Optic(C) arises by locally quotienting out the connected components of this 2-category. We show that the embedding of lenses into cartesian optics gets weakened from a functor to an oplax functor whose oplaxator now detects the different composition rule. We determine the difficulties in showing this functor forms a part of an adjunction in any of the standard 2-categories. We establish a conjecture that the well-known isomorphism between cartesian lenses and optics arises out of the lax 2-adjunction between their double-categorical counterparts. In addition to presenting new research, this paper is also meant to be an accessible introduction to the topic.

  • 1 authors
·
Sep 19, 2022

Dual Prompt Learning for Adapting Vision-Language Models to Downstream Image-Text Retrieval

Recently, prompt learning has demonstrated remarkable success in adapting pre-trained Vision-Language Models (VLMs) to various downstream tasks such as image classification. However, its application to the downstream Image-Text Retrieval (ITR) task is more challenging. We find that the challenge lies in discriminating both fine-grained attributes and similar subcategories of the downstream data. To address this challenge, we propose Dual prompt Learning with Joint Category-Attribute Reweighting (DCAR), a novel dual-prompt learning framework to achieve precise image-text matching. The framework dynamically adjusts prompt vectors from both semantic and visual dimensions to improve the performance of CLIP on the downstream ITR task. Based on the prompt paradigm, DCAR jointly optimizes attribute and class features to enhance fine-grained representation learning. Specifically, (1) at the attribute level, it dynamically updates the weights of attribute descriptions based on text-image mutual information correlation; (2) at the category level, it introduces negative samples from multiple perspectives with category-matching weighting to learn subcategory distinctions. To validate our method, we construct the Fine-class Described Retrieval Dataset (FDRD), which serves as a challenging benchmark for ITR in downstream data domains. It covers over 1,500 downstream fine categories and 230,000 image-caption pairs with detailed attribute annotations. Extensive experiments on FDRD demonstrate that DCAR achieves state-of-the-art performance over existing baselines.

  • 8 authors
·
Aug 5

RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control

We study how vision-language models trained on Internet-scale data can be incorporated directly into end-to-end robotic control to boost generalization and enable emergent semantic reasoning. Our goal is to enable a single end-to-end trained model to both learn to map robot observations to actions and enjoy the benefits of large-scale pretraining on language and vision-language data from the web. To this end, we propose to co-fine-tune state-of-the-art vision-language models on both robotic trajectory data and Internet-scale vision-language tasks, such as visual question answering. In contrast to other approaches, we propose a simple, general recipe to achieve this goal: in order to fit both natural language responses and robotic actions into the same format, we express the actions as text tokens and incorporate them directly into the training set of the model in the same way as natural language tokens. We refer to such category of models as vision-language-action models (VLA) and instantiate an example of such a model, which we call RT-2. Our extensive evaluation (6k evaluation trials) shows that our approach leads to performant robotic policies and enables RT-2 to obtain a range of emergent capabilities from Internet-scale training. This includes significantly improved generalization to novel objects, the ability to interpret commands not present in the robot training data (such as placing an object onto a particular number or icon), and the ability to perform rudimentary reasoning in response to user commands (such as picking up the smallest or largest object, or the one closest to another object). We further show that incorporating chain of thought reasoning allows RT-2 to perform multi-stage semantic reasoning, for example figuring out which object to pick up for use as an improvised hammer (a rock), or which type of drink is best suited for someone who is tired (an energy drink).

  • 54 authors
·
Jul 28, 2023 3

MegaHan97K: A Large-Scale Dataset for Mega-Category Chinese Character Recognition with over 97K Categories

Foundational to the Chinese language and culture, Chinese characters encompass extraordinarily extensive and ever-expanding categories, with the latest Chinese GB18030-2022 standard containing 87,887 categories. The accurate recognition of this vast number of characters, termed mega-category recognition, presents a formidable yet crucial challenge for cultural heritage preservation and digital applications. Despite significant advances in Optical Character Recognition (OCR), mega-category recognition remains unexplored due to the absence of comprehensive datasets, with the largest existing dataset containing merely 16,151 categories. To bridge this critical gap, we introduce MegaHan97K, a mega-category, large-scale dataset covering an unprecedented 97,455 categories of Chinese characters. Our work offers three major contributions: (1) MegaHan97K is the first dataset to fully support the latest GB18030-2022 standard, providing at least six times more categories than existing datasets; (2) It effectively addresses the long-tail distribution problem by providing balanced samples across all categories through its three distinct subsets: handwritten, historical and synthetic subsets; (3) Comprehensive benchmarking experiments reveal new challenges in mega-category scenarios, including increased storage demands, morphologically similar character recognition, and zero-shot learning difficulties, while also unlocking substantial opportunities for future research. To the best of our knowledge, the MetaHan97K is likely the dataset with the largest classes not only in the field of OCR but may also in the broader domain of pattern recognition. The dataset is available at https://github.com/SCUT-DLVCLab/MegaHan97K.

  • 6 authors
·
Jun 5 2

Unveiling the Potential of Segment Anything Model 2 for RGB-Thermal Semantic Segmentation with Language Guidance

The perception capability of robotic systems relies on the richness of the dataset. Although Segment Anything Model 2 (SAM2), trained on large datasets, demonstrates strong perception potential in perception tasks, its inherent training paradigm prevents it from being suitable for RGB-T tasks. To address these challenges, we propose SHIFNet, a novel SAM2-driven Hybrid Interaction Paradigm that unlocks the potential of SAM2 with linguistic guidance for efficient RGB-Thermal perception. Our framework consists of two key components: (1) Semantic-Aware Cross-modal Fusion (SACF) module that dynamically balances modality contributions through text-guided affinity learning, overcoming SAM2's inherent RGB bias; (2) Heterogeneous Prompting Decoder (HPD) that enhances global semantic information through a semantic enhancement module and then combined with category embeddings to amplify cross-modal semantic consistency. With 32.27M trainable parameters, SHIFNet achieves state-of-the-art segmentation performance on public benchmarks, reaching 89.8% on PST900 and 67.8% on FMB, respectively. The framework facilitates the adaptation of pre-trained large models to RGB-T segmentation tasks, effectively mitigating the high costs associated with data collection while endowing robotic systems with comprehensive perception capabilities. The source code will be made publicly available at https://github.com/iAsakiT3T/SHIFNet.

  • 7 authors
·
Mar 4

Challenges and Barriers of Using Low Code Software for Machine Learning

As big data grows ubiquitous across many domains, more and more stakeholders seek to develop Machine Learning (ML) applications on their data. The success of an ML application usually depends on the close collaboration of ML experts and domain experts. However, the shortage of ML engineers remains a fundamental problem. Low-code Machine learning tools/platforms (aka, AutoML) aim to democratize ML development to domain experts by automating many repetitive tasks in the ML pipeline. This research presents an empirical study of around 14k posts (questions + accepted answers) from Stack Overflow (SO) that contained AutoML-related discussions. We examine how these topics are spread across the various Machine Learning Life Cycle (MLLC) phases and their popularity and difficulty. This study offers several interesting findings. First, we find 13 AutoML topics that we group into four categories. The MLOps topic category (43% questions) is the largest, followed by Model (28% questions), Data (27% questions), Documentation (2% questions). Second, Most questions are asked during Model training (29%) (i.e., implementation phase) and Data preparation (25%) MLLC phase. Third, AutoML practitioners find the MLOps topic category most challenging, especially topics related to model deployment & monitoring and Automated ML pipeline. These findings have implications for all three AutoML stakeholders: AutoML researchers, AutoML service vendors, and AutoML developers. Academia and Industry collaboration can improve different aspects of AutoML, such as better DevOps/deployment support and tutorial-based documentation.

  • 2 authors
·
Nov 8, 2022

Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing

Despite the noticeable progress in perceptual tasks like detection, instance segmentation and human parsing, computers still perform unsatisfactorily on visually understanding humans in crowded scenes, such as group behavior analysis, person re-identification and autonomous driving, etc. To this end, models need to comprehensively perceive the semantic information and the differences between instances in a multi-human image, which is recently defined as the multi-human parsing task. In this paper, we present a new large-scale database "Multi-Human Parsing (MHP)" for algorithm development and evaluation, and advances the state-of-the-art in understanding humans in crowded scenes. MHP contains 25,403 elaborately annotated images with 58 fine-grained semantic category labels, involving 2-26 persons per image and captured in real-world scenes from various viewpoints, poses, occlusion, interactions and background. We further propose a novel deep Nested Adversarial Network (NAN) model for multi-human parsing. NAN consists of three Generative Adversarial Network (GAN)-like sub-nets, respectively performing semantic saliency prediction, instance-agnostic parsing and instance-aware clustering. These sub-nets form a nested structure and are carefully designed to learn jointly in an end-to-end way. NAN consistently outperforms existing state-of-the-art solutions on our MHP and several other datasets, and serves as a strong baseline to drive the future research for multi-human parsing.

  • 7 authors
·
Apr 9, 2018

Thinking Like an Annotator: Generation of Dataset Labeling Instructions

Large-scale datasets are essential to modern day deep learning. Advocates argue that understanding these methods requires dataset transparency (e.g. "dataset curation, motivation, composition, collection process, etc..."). However, almost no one has suggested the release of the detailed definitions and visual category examples provided to annotators - information critical to understanding the structure of the annotations present in each dataset. These labels are at the heart of public datasets, yet few datasets include the instructions that were used to generate them. We introduce a new task, Labeling Instruction Generation, to address missing publicly available labeling instructions. In Labeling Instruction Generation, we take a reasonably annotated dataset and: 1) generate a set of examples that are visually representative of each category in the dataset; 2) provide a text label that corresponds to each of the examples. We introduce a framework that requires no model training to solve this task and includes a newly created rapid retrieval system that leverages a large, pre-trained vision and language model. This framework acts as a proxy to human annotators that can help to both generate a final labeling instruction set and evaluate its quality. Our framework generates multiple diverse visual and text representations of dataset categories. The optimized instruction set outperforms our strongest baseline across 5 folds by 7.06 mAP for NuImages and 12.9 mAP for COCO.

  • 5 authors
·
Jun 24, 2023 1

Mixture of Experts Guided by Gaussian Splatters Matters: A new Approach to Weakly-Supervised Video Anomaly Detection

Video Anomaly Detection (VAD) is a challenging task due to the variability of anomalous events and the limited availability of labeled data. Under the Weakly-Supervised VAD (WSVAD) paradigm, only video-level labels are provided during training, while predictions are made at the frame level. Although state-of-the-art models perform well on simple anomalies (e.g., explosions), they struggle with complex real-world events (e.g., shoplifting). This difficulty stems from two key issues: (1) the inability of current models to address the diversity of anomaly types, as they process all categories with a shared model, overlooking category-specific features; and (2) the weak supervision signal, which lacks precise temporal information, limiting the ability to capture nuanced anomalous patterns blended with normal events. To address these challenges, we propose Gaussian Splatting-guided Mixture of Experts (GS-MoE), a novel framework that employs a set of expert models, each specialized in capturing specific anomaly types. These experts are guided by a temporal Gaussian splatting loss, enabling the model to leverage temporal consistency and enhance weak supervision. The Gaussian splatting approach encourages a more precise and comprehensive representation of anomalies by focusing on temporal segments most likely to contain abnormal events. The predictions from these specialized experts are integrated through a mixture-of-experts mechanism to model complex relationships across diverse anomaly patterns. Our approach achieves state-of-the-art performance, with a 91.58% AUC on the UCF-Crime dataset, and demonstrates superior results on XD-Violence and MSAD datasets. By leveraging category-specific expertise and temporal guidance, GS-MoE sets a new benchmark for VAD under weak supervision.

  • 7 authors
·
Aug 8

URLBERT:A Contrastive and Adversarial Pre-trained Model for URL Classification

URLs play a crucial role in understanding and categorizing web content, particularly in tasks related to security control and online recommendations. While pre-trained models are currently dominating various fields, the domain of URL analysis still lacks specialized pre-trained models. To address this gap, this paper introduces URLBERT, the first pre-trained representation learning model applied to a variety of URL classification or detection tasks. We first train a URL tokenizer on a corpus of billions of URLs to address URL data tokenization. Additionally, we propose two novel pre-training tasks: (1) self-supervised contrastive learning tasks, which strengthen the model's understanding of URL structure and the capture of category differences by distinguishing different variants of the same URL; (2) virtual adversarial training, aimed at improving the model's robustness in extracting semantic features from URLs. Finally, our proposed methods are evaluated on tasks including phishing URL detection, web page classification, and ad filtering, achieving state-of-the-art performance. Importantly, we also explore multi-task learning with URLBERT, and experimental results demonstrate that multi-task learning model based on URLBERT exhibit equivalent effectiveness compared to independently fine-tuned models, showing the simplicity of URLBERT in handling complex task requirements. The code for our work is available at https://github.com/Davidup1/URLBERT.

  • 6 authors
·
Feb 18, 2024

Adaptive Data-Free Quantization

Data-free quantization (DFQ) recovers the performance of quantized network (Q) without the original data, but generates the fake sample via a generator (G) by learning from full-precision network (P), which, however, is totally independent of Q, overlooking the adaptability of the knowledge from generated samples, i.e., informative or not to the learning process of Q, resulting into the overflow of generalization error. Building on this, several critical questions -- how to measure the sample adaptability to Q under varied bit-width scenarios? whether the largest adaptability is the best? how to generate the samples with adaptive adaptability to improve Q's generalization? To answer the above questions, in this paper, we propose an Adaptive Data-Free Quantization (AdaDFQ) method, which revisits DFQ from a zero-sum game perspective upon the sample adaptability between two players -- a generator and a quantized network. Following this viewpoint, we further define the disagreement and agreement samples to form two boundaries, where the margin is optimized to adaptively regulate the adaptability of generated samples to Q, so as to address the over-and-under fitting issues. Our AdaDFQ reveals: 1) the largest adaptability is NOT the best for sample generation to benefit Q's generalization; 2) the knowledge of the generated sample should not be informative to Q only, but also related to the category and distribution information of the training data for P. The theoretical and empirical analysis validate the advantages of AdaDFQ over the state-of-the-arts. Our code is available at https://github.com/hfutqian/AdaDFQ.

  • 4 authors
·
Mar 13, 2023

FAIR1M: A Benchmark Dataset for Fine-grained Object Recognition in High-Resolution Remote Sensing Imagery

With the rapid development of deep learning, many deep learning-based approaches have made great achievements in object detection task. It is generally known that deep learning is a data-driven method. Data directly impact the performance of object detectors to some extent. Although existing datasets have included common objects in remote sensing images, they still have some limitations in terms of scale, categories, and images. Therefore, there is a strong requirement for establishing a large-scale benchmark on object detection in high-resolution remote sensing images. In this paper, we propose a novel benchmark dataset with more than 1 million instances and more than 15,000 images for Fine-grAined object recognItion in high-Resolution remote sensing imagery which is named as FAIR1M. All objects in the FAIR1M dataset are annotated with respect to 5 categories and 37 sub-categories by oriented bounding boxes. Compared with existing detection datasets dedicated to object detection, the FAIR1M dataset has 4 particular characteristics: (1) it is much larger than other existing object detection datasets both in terms of the quantity of instances and the quantity of images, (2) it provides more rich fine-grained category information for objects in remote sensing images, (3) it contains geographic information such as latitude, longitude and resolution, (4) it provides better image quality owing to a careful data cleaning procedure. To establish a baseline for fine-grained object recognition, we propose a novel evaluation method and benchmark fine-grained object detection tasks and a visual classification task using several State-Of-The-Art (SOTA) deep learning-based models on our FAIR1M dataset. Experimental results strongly indicate that the FAIR1M dataset is closer to practical application and it is considerably more challenging than existing datasets.

  • 14 authors
·
Mar 9, 2021

AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks

Click-through rate (CTR) prediction, which aims to predict the probability of a user clicking on an ad or an item, is critical to many online applications such as online advertising and recommender systems. The problem is very challenging since (1) the input features (e.g., the user id, user age, item id, item category) are usually sparse and high-dimensional, and (2) an effective prediction relies on high-order combinatorial features (a.k.a. cross features), which are very time-consuming to hand-craft by domain experts and are impossible to be enumerated. Therefore, there have been efforts in finding low-dimensional representations of the sparse and high-dimensional raw features and their meaningful combinations. In this paper, we propose an effective and efficient method called the AutoInt to automatically learn the high-order feature interactions of input features. Our proposed algorithm is very general, which can be applied to both numerical and categorical input features. Specifically, we map both the numerical and categorical features into the same low-dimensional space. Afterwards, a multi-head self-attentive neural network with residual connections is proposed to explicitly model the feature interactions in the low-dimensional space. With different layers of the multi-head self-attentive neural networks, different orders of feature combinations of input features can be modeled. The whole model can be efficiently fit on large-scale raw data in an end-to-end fashion. Experimental results on four real-world datasets show that our proposed approach not only outperforms existing state-of-the-art approaches for prediction but also offers good explainability. Code is available at: https://github.com/DeepGraphLearning/RecommenderSystems.

  • 7 authors
·
Oct 28, 2018

Disengagement Cause-and-Effect Relationships Extraction Using an NLP Pipeline

The advancement in machine learning and artificial intelligence is promoting the testing and deployment of autonomous vehicles (AVs) on public roads. The California Department of Motor Vehicles (CA DMV) has launched the Autonomous Vehicle Tester Program, which collects and releases reports related to Autonomous Vehicle Disengagement (AVD) from autonomous driving. Understanding the causes of AVD is critical to improving the safety and stability of the AV system and provide guidance for AV testing and deployment. In this work, a scalable end-to-end pipeline is constructed to collect, process, model, and analyze the disengagement reports released from 2014 to 2020 using natural language processing deep transfer learning. The analysis of disengagement data using taxonomy, visualization and statistical tests revealed the trends of AV testing, categorized cause frequency, and significant relationships between causes and effects of AVD. We found that (1) manufacturers tested AVs intensively during the Spring and/or Winter, (2) test drivers initiated more than 80% of the disengagement while more than 75% of the disengagement were led by errors in perception, localization & mapping, planning and control of the AV system itself, and (3) there was a significant relationship between the initiator of AVD and the cause category. This study serves as a successful practice of deep transfer learning using pre-trained models and generates a consolidated disengagement database allowing further investigation for other researchers.

  • 3 authors
·
Nov 5, 2021

Performance-aware Approximation of Global Channel Pruning for Multitask CNNs

Global channel pruning (GCP) aims to remove a subset of channels (filters) across different layers from a deep model without hurting the performance. Previous works focus on either single task model pruning or simply adapting it to multitask scenario, and still face the following problems when handling multitask pruning: 1) Due to the task mismatch, a well-pruned backbone for classification task focuses on preserving filters that can extract category-sensitive information, causing filters that may be useful for other tasks to be pruned during the backbone pruning stage; 2) For multitask predictions, different filters within or between layers are more closely related and interacted than that for single task prediction, making multitask pruning more difficult. Therefore, aiming at multitask model compression, we propose a Performance-Aware Global Channel Pruning (PAGCP) framework. We first theoretically present the objective for achieving superior GCP, by considering the joint saliency of filters from intra- and inter-layers. Then a sequentially greedy pruning strategy is proposed to optimize the objective, where a performance-aware oracle criterion is developed to evaluate sensitivity of filters to each task and preserve the globally most task-related filters. Experiments on several multitask datasets show that the proposed PAGCP can reduce the FLOPs and parameters by over 60% with minor performance drop, and achieves 1.2xsim3.3x acceleration on both cloud and mobile platforms.

  • 5 authors
·
Mar 21, 2023

Generative AI Beyond LLMs: System Implications of Multi-Modal Generation

As the development of large-scale Generative AI models evolve beyond text (1D) generation to include image (2D) and video (3D) generation, processing spatial and temporal information presents unique challenges to quality, performance, and efficiency. We present the first work towards understanding this new system design space for multi-modal text-to-image (TTI) and text-to-video (TTV) generation models. Current model architecture designs are bifurcated into 2 categories: Diffusion- and Transformer-based models. Our systematic performance characterization on a suite of eight representative TTI/TTV models shows that after state-of-the-art optimization techniques such as Flash Attention are applied, Convolution accounts for up to 44% of execution time for Diffusion-based TTI models, while Linear layers consume up to 49% of execution time for Transformer-based models. We additionally observe that Diffusion-based TTI models resemble the Prefill stage of LLM inference, and benefit from 1.1-2.5x greater speedup from Flash Attention than Transformer-based TTI models that resemble the Decode phase. Since optimizations designed for LLMs do not map directly onto TTI/TTV models, we must conduct a thorough characterization of these workloads to gain insights for new optimization opportunities. In doing so, we define sequence length in the context of TTI/TTV models and observe sequence length can vary up to 4x in Diffusion model inference. We additionally observe temporal aspects of TTV workloads pose unique system bottlenecks, with Temporal Attention accounting for over 60% of total Attention time. Overall, our in-depth system performance characterization is a critical first step towards designing efficient and deployable systems for emerging TTI/TTV workloads.

  • 11 authors
·
Dec 21, 2023 1

CityBench: Evaluating the Capabilities of Large Language Model as World Model

Large language models (LLMs) with powerful generalization ability has been widely used in many domains. A systematic and reliable evaluation of LLMs is a crucial step in their development and applications, especially for specific professional fields. In the urban domain, there have been some early explorations about the usability of LLMs, but a systematic and scalable evaluation benchmark is still lacking. The challenge in constructing a systematic evaluation benchmark for the urban domain lies in the diversity of data and scenarios, as well as the complex and dynamic nature of cities. In this paper, we propose CityBench, an interactive simulator based evaluation platform, as the first systematic evaluation benchmark for the capability of LLMs for urban domain. First, we build CitySim to integrate the multi-source data and simulate fine-grained urban dynamics. Based on CitySim, we design 7 tasks in 2 categories of perception-understanding and decision-making group to evaluate the capability of LLMs as city-scale world model for urban domain. Due to the flexibility and ease-of-use of CitySim, our evaluation platform CityBench can be easily extended to any city in the world. We evaluate 13 well-known LLMs including open source LLMs and commercial LLMs in 13 cities around the world. Extensive experiments demonstrate the scalability and effectiveness of proposed CityBench and shed lights for the future development of LLMs in urban domain. The dataset, benchmark and source codes are openly accessible to the research community via https://github.com/tsinghua-fib-lab/CityBench

  • 9 authors
·
Jun 19, 2024

Neural networks behave as hash encoders: An empirical study

The input space of a neural network with ReLU-like activations is partitioned into multiple linear regions, each corresponding to a specific activation pattern of the included ReLU-like activations. We demonstrate that this partition exhibits the following encoding properties across a variety of deep learning models: (1) {\it determinism}: almost every linear region contains at most one training example. We can therefore represent almost every training example by a unique activation pattern, which is parameterized by a {\it neural code}; and (2) {\it categorization}: according to the neural code, simple algorithms, such as K-Means, K-NN, and logistic regression, can achieve fairly good performance on both training and test data. These encoding properties surprisingly suggest that {\it normal neural networks well-trained for classification behave as hash encoders without any extra efforts.} In addition, the encoding properties exhibit variability in different scenarios. {Further experiments demonstrate that {\it model size}, {\it training time}, {\it training sample size}, {\it regularization}, and {\it label noise} contribute in shaping the encoding properties, while the impacts of the first three are dominant.} We then define an {\it activation hash phase chart} to represent the space expanded by {model size}, training time, training sample size, and the encoding properties, which is divided into three canonical regions: {\it under-expressive regime}, {\it critically-expressive regime}, and {\it sufficiently-expressive regime}. The source code package is available at https://github.com/LeavesLei/activation-code.

  • 4 authors
·
Jan 14, 2021

Can Models Learn Skill Composition from Examples?

As large language models (LLMs) become increasingly advanced, their ability to exhibit compositional generalization -- the capacity to combine learned skills in novel ways not encountered during training -- has garnered significant attention. This type of generalization, particularly in scenarios beyond training data, is also of great interest in the study of AI safety and alignment. A recent study introduced the SKILL-MIX evaluation, where models are tasked with composing a short paragraph demonstrating the use of a specified k-tuple of language skills. While small models struggled with composing even with k=3, larger models like GPT-4 performed reasonably well with k=5 and 6. In this paper, we employ a setup akin to SKILL-MIX to evaluate the capacity of smaller models to learn compositional generalization from examples. Utilizing a diverse set of language skills -- including rhetorical, literary, reasoning, theory of mind, and common sense -- GPT-4 was used to generate text samples that exhibit random subsets of k skills. Subsequent fine-tuning of 7B and 13B parameter models on these combined skill texts, for increasing values of k, revealed the following findings: (1) Training on combinations of k=2 and 3 skills results in noticeable improvements in the ability to compose texts with k=4 and 5 skills, despite models never having seen such examples during training. (2) When skill categories are split into training and held-out groups, models significantly improve at composing texts with held-out skills during testing despite having only seen training skills during fine-tuning, illustrating the efficacy of the training approach even with previously unseen skills. This study also suggests that incorporating skill-rich (potentially synthetic) text into training can substantially enhance the compositional capabilities of models.

  • 5 authors
·
Sep 29, 2024 2

HELMET: How to Evaluate Long-Context Language Models Effectively and Thoroughly

There have been many benchmarks for evaluating long-context language models (LCLMs), but developers often rely on synthetic tasks like needle-in-a-haystack (NIAH) or arbitrary subsets of tasks. It remains unclear whether they translate to the diverse downstream applications of LCLMs, and the inconsistency further complicates model comparison. We investigate the underlying reasons behind current practices and find that existing benchmarks often provide noisy signals due to low coverage of applications, insufficient lengths, unreliable metrics, and incompatibility with base models. In this work, we present HELMET (How to Evaluate Long-context Models Effectively and Thoroughly), a comprehensive benchmark encompassing seven diverse, application-centric categories. We also address many issues in previous benchmarks by adding controllable lengths up to 128k tokens, model-based evaluation for reliable metrics, and few-shot prompting for robustly evaluating base models. Consequently, we demonstrate that HELMET offers more reliable and consistent rankings of frontier LCLMs. Through a comprehensive study of 51 LCLMs, we find that (1) synthetic tasks like NIAH are not good predictors of downstream performance; (2) the diverse categories in HELMET exhibit distinct trends and low correlation with each other; and (3) while most LCLMs achieve perfect NIAH scores, open-source models significantly lag behind closed ones when the task requires full-context reasoning or following complex instructions -- the gap widens with increased lengths. Finally, we recommend using our RAG tasks for fast model development, as they are easy to run and more predictive of other downstream performance; ultimately, we advocate for a holistic evaluation across diverse tasks.

  • 8 authors
·
Oct 3, 2024

SEED-Bench-2-Plus: Benchmarking Multimodal Large Language Models with Text-Rich Visual Comprehension

Comprehending text-rich visual content is paramount for the practical application of Multimodal Large Language Models (MLLMs), since text-rich scenarios are ubiquitous in the real world, which are characterized by the presence of extensive texts embedded within images. Recently, the advent of MLLMs with impressive versatility has raised the bar for what we can expect from MLLMs. However, their proficiency in text-rich scenarios has yet to be comprehensively and objectively assessed, since current MLLM benchmarks primarily focus on evaluating general visual comprehension. In this work, we introduce SEED-Bench-2-Plus, a benchmark specifically designed for evaluating text-rich visual comprehension of MLLMs. Our benchmark comprises 2.3K multiple-choice questions with precise human annotations, spanning three broad categories: Charts, Maps, and Webs, each of which covers a wide spectrum of text-rich scenarios in the real world. These categories, due to their inherent complexity and diversity, effectively simulate real-world text-rich environments. We further conduct a thorough evaluation involving 34 prominent MLLMs (including GPT-4V, Gemini-Pro-Vision and Claude-3-Opus) and emphasize the current limitations of MLLMs in text-rich visual comprehension. We hope that our work can serve as a valuable addition to existing MLLM benchmarks, providing insightful observations and inspiring further research in the area of text-rich visual comprehension with MLLMs. The dataset and evaluation code can be accessed at https://github.com/AILab-CVC/SEED-Bench.

  • 6 authors
·
Apr 25, 2024 1

Hi-SLAM: Scaling-up Semantics in SLAM with a Hierarchically Categorical Gaussian Splatting

We propose Hi-SLAM, a semantic 3D Gaussian Splatting SLAM method featuring a novel hierarchical categorical representation, which enables accurate global 3D semantic mapping, scaling-up capability, and explicit semantic label prediction in the 3D world. The parameter usage in semantic SLAM systems increases significantly with the growing complexity of the environment, making it particularly challenging and costly for scene understanding. To address this problem, we introduce a novel hierarchical representation that encodes semantic information in a compact form into 3D Gaussian Splatting, leveraging the capabilities of large language models (LLMs). We further introduce a novel semantic loss designed to optimize hierarchical semantic information through both inter-level and cross-level optimization. Furthermore, we enhance the whole SLAM system, resulting in improved tracking and mapping performance. Our Hi-SLAM outperforms existing dense SLAM methods in both mapping and tracking accuracy, while achieving a 2x operation speed-up. Additionally, it exhibits competitive performance in rendering semantic segmentation in small synthetic scenes, with significantly reduced storage and training time requirements. Rendering FPS impressively reaches 2,000 with semantic information and 3,000 without it. Most notably, it showcases the capability of handling the complex real-world scene with more than 500 semantic classes, highlighting its valuable scaling-up capability.

  • 5 authors
·
Sep 19, 2024

SEED-Bench-2: Benchmarking Multimodal Large Language Models

Multimodal large language models (MLLMs), building upon the foundation of powerful large language models (LLMs), have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs (acting like a combination of GPT-4V and DALL-E 3). However, existing MLLM benchmarks remain limited to assessing only models' comprehension ability of single image-text inputs, failing to keep up with the strides made in MLLMs. A comprehensive benchmark is imperative for investigating the progress and uncovering the limitations of current MLLMs. In this work, we categorize the capabilities of MLLMs into hierarchical levels from L_0 to L_4 based on the modalities they can accept and generate, and propose SEED-Bench-2, a comprehensive benchmark that evaluates the hierarchical capabilities of MLLMs. Specifically, SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions, including the evaluation of both text and image generation. Multiple-choice questions with groundtruth options derived from human annotation enables an objective and efficient assessment of model performance, eliminating the need for human or GPT intervention during evaluation. We further evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations. By revealing the limitations of existing MLLMs through extensive evaluations, we aim for SEED-Bench-2 to provide insights that will motivate future research towards the goal of General Artificial Intelligence. Dataset and evaluation code are available at https://github.com/AILab-CVC/SEED-Bench

  • 7 authors
·
Nov 28, 2023

SimpleSpeech 2: Towards Simple and Efficient Text-to-Speech with Flow-based Scalar Latent Transformer Diffusion Models

Scaling Text-to-speech (TTS) to large-scale datasets has been demonstrated as an effective method for improving the diversity and naturalness of synthesized speech. At the high level, previous large-scale TTS models can be categorized into either Auto-regressive (AR) based (e.g., VALL-E) or Non-auto-regressive (NAR) based models (e.g., NaturalSpeech 2/3). Although these works demonstrate good performance, they still have potential weaknesses. For instance, AR-based models are plagued by unstable generation quality and slow generation speed; meanwhile, some NAR-based models need phoneme-level duration alignment information, thereby increasing the complexity of data pre-processing, model design, and loss design. In this work, we build upon our previous publication by implementing a simple and efficient non-autoregressive (NAR) TTS framework, termed SimpleSpeech 2. SimpleSpeech 2 effectively combines the strengths of both autoregressive (AR) and non-autoregressive (NAR) methods, offering the following key advantages: (1) simplified data preparation; (2) straightforward model and loss design; and (3) stable, high-quality generation performance with fast inference speed. Compared to our previous publication, we present ({\romannumeral1}) a detailed analysis of the influence of speech tokenizer and noisy label for TTS performance; ({\romannumeral2}) four distinct types of sentence duration predictors; ({\romannumeral3}) a novel flow-based scalar latent transformer diffusion model. With these improvement, we show a significant improvement in generation performance and generation speed compared to our previous work and other state-of-the-art (SOTA) large-scale TTS models. Furthermore, we show that SimpleSpeech 2 can be seamlessly extended to multilingual TTS by training it on multilingual speech datasets. Demos are available on: {https://dongchaoyang.top/SimpleSpeech2\_demo/}.

  • 8 authors
·
Aug 25, 2024

ZeroQuant(4+2): Redefining LLMs Quantization with a New FP6-Centric Strategy for Diverse Generative Tasks

This study examines 4-bit quantization methods like GPTQ in large language models (LLMs), highlighting GPTQ's overfitting and limited enhancement in Zero-Shot tasks. While prior works merely focusing on zero-shot measurement, we extend task scope to more generative categories such as code generation and abstractive summarization, in which we found that INT4 quantization can significantly underperform. However, simply shifting to higher precision formats like FP6 has been particularly challenging, thus overlooked, due to poor performance caused by the lack of sophisticated integration and system acceleration strategies on current AI hardware. Our results show that FP6, even with a coarse-grain quantization scheme, performs robustly across various algorithms and tasks, demonstrating its superiority in accuracy and versatility. Notably, with the FP6 quantization, \codestar-15B model performs comparably to its FP16 counterpart in code generation, and for smaller models like the 406M it closely matches their baselines in summarization. Neither can be achieved by INT4. To better accommodate various AI hardware and achieve the best system performance, we propose a novel 4+2 design for FP6 to achieve similar latency to the state-of-the-art INT4 fine-grain quantization. With our design, FP6 can become a promising solution to the current 4-bit quantization methods used in LLMs.

  • 11 authors
·
Dec 13, 2023 2

O1 Replication Journey -- Part 2: Surpassing O1-preview through Simple Distillation, Big Progress or Bitter Lesson?

This paper presents a critical examination of current approaches to replicating OpenAI's O1 model capabilities, with particular focus on the widespread but often undisclosed use of knowledge distillation techniques. While our previous work explored the fundamental technical path to O1 replication, this study reveals how simple distillation from O1's API, combined with supervised fine-tuning, can achieve superior performance on complex mathematical reasoning tasks. Through extensive experiments, we show that a base model fine-tuned on simply tens of thousands of samples O1-distilled long-thought chains outperforms O1-preview on the American Invitational Mathematics Examination (AIME) with minimal technical complexity. Moreover, our investigation extends beyond mathematical reasoning to explore the generalization capabilities of O1-distilled models across diverse tasks: hallucination, safety and open-domain QA. Notably, despite training only on mathematical problem-solving data, our models demonstrated strong generalization to open-ended QA tasks and became significantly less susceptible to sycophancy after fine-tuning. We deliberately make this finding public to promote transparency in AI research and to challenge the current trend of obscured technical claims in the field. Our work includes: (1) A detailed technical exposition of the distillation process and its effectiveness, (2) A comprehensive benchmark framework for evaluating and categorizing O1 replication attempts based on their technical transparency and reproducibility, (3) A critical discussion of the limitations and potential risks of over-relying on distillation approaches, our analysis culminates in a crucial bitter lesson: while the pursuit of more capable AI systems is important, the development of researchers grounded in first-principles thinking is paramount.

  • 10 authors
·
Nov 25, 2024 2

Automating Feedback Analysis in Surgical Training: Detection, Categorization, and Assessment

This work introduces the first framework for reconstructing surgical dialogue from unstructured real-world recordings, which is crucial for characterizing teaching tasks. In surgical training, the formative verbal feedback that trainers provide to trainees during live surgeries is crucial for ensuring safety, correcting behavior immediately, and facilitating long-term skill acquisition. However, analyzing and quantifying this feedback is challenging due to its unstructured and specialized nature. Automated systems are essential to manage these complexities at scale, allowing for the creation of structured datasets that enhance feedback analysis and improve surgical education. Our framework integrates voice activity detection, speaker diarization, and automated speech recaognition, with a novel enhancement that 1) removes hallucinations (non-existent utterances generated during speech recognition fueled by noise in the operating room) and 2) separates speech from trainers and trainees using few-shot voice samples. These aspects are vital for reconstructing accurate surgical dialogues and understanding the roles of operating room participants. Using data from 33 real-world surgeries, we demonstrated the system's capability to reconstruct surgical teaching dialogues and detect feedback instances effectively (F1 score of 0.79+/-0.07). Moreover, our hallucination removal step improves feedback detection performance by ~14%. Evaluation on downstream clinically relevant tasks of predicting Behavioral Adjustment of trainees and classifying Technical feedback, showed performances comparable to manual annotations with F1 scores of 0.82+/0.03 and 0.81+/0.03 respectively. These results highlight the effectiveness of our framework in supporting clinically relevant tasks and improving over manual methods.

  • 7 authors
·
Dec 1, 2024

V3Det Challenge 2024 on Vast Vocabulary and Open Vocabulary Object Detection: Methods and Results

Detecting objects in real-world scenes is a complex task due to various challenges, including the vast range of object categories, and potential encounters with previously unknown or unseen objects. The challenges necessitate the development of public benchmarks and challenges to advance the field of object detection. Inspired by the success of previous COCO and LVIS Challenges, we organize the V3Det Challenge 2024 in conjunction with the 4th Open World Vision Workshop: Visual Perception via Learning in an Open World (VPLOW) at CVPR 2024, Seattle, US. This challenge aims to push the boundaries of object detection research and encourage innovation in this field. The V3Det Challenge 2024 consists of two tracks: 1) Vast Vocabulary Object Detection: This track focuses on detecting objects from a large set of 13204 categories, testing the detection algorithm's ability to recognize and locate diverse objects. 2) Open Vocabulary Object Detection: This track goes a step further, requiring algorithms to detect objects from an open set of categories, including unknown objects. In the following sections, we will provide a comprehensive summary and analysis of the solutions submitted by participants. By analyzing the methods and solutions presented, we aim to inspire future research directions in vast vocabulary and open-vocabulary object detection, driving progress in this field. Challenge homepage: https://v3det.openxlab.org.cn/challenge

  • 34 authors
·
Jun 17, 2024

Memory-Guided Multi-View Multi-Domain Fake News Detection

The wide spread of fake news is increasingly threatening both individuals and society. Great efforts have been made for automatic fake news detection on a single domain (e.g., politics). However, correlations exist commonly across multiple news domains, and thus it is promising to simultaneously detect fake news of multiple domains. Based on our analysis, we pose two challenges in multi-domain fake news detection: 1) domain shift, caused by the discrepancy among domains in terms of words, emotions, styles, etc. 2) domain labeling incompleteness, stemming from the real-world categorization that only outputs one single domain label, regardless of topic diversity of a news piece. In this paper, we propose a Memory-guided Multi-view Multi-domain Fake News Detection Framework (M^3FEND) to address these two challenges. We model news pieces from a multi-view perspective, including semantics, emotion, and style. Specifically, we propose a Domain Memory Bank to enrich domain information which could discover potential domain labels based on seen news pieces and model domain characteristics. Then, with enriched domain information as input, a Domain Adapter could adaptively aggregate discriminative information from multiple views for news in various domains. Extensive offline experiments on English and Chinese datasets demonstrate the effectiveness of M^3FEND, and online tests verify its superiority in practice. Our code is available at https://github.com/ICTMCG/M3FEND.

  • 8 authors
·
Jun 26, 2022

Low-Precision Training of Large Language Models: Methods, Challenges, and Opportunities

Large language models (LLMs) have achieved impressive performance across various domains. However, the substantial hardware resources required for their training present a significant barrier to efficiency and scalability. To mitigate this challenge, low-precision training techniques have been widely adopted, leading to notable advancements in training efficiency. Despite these gains, low-precision training involves several componentsx2013such as weights, activations, and gradientsx2013each of which can be represented in different numerical formats. The resulting diversity has created a fragmented landscape in low-precision training research, making it difficult for researchers to gain a unified overview of the field. This survey provides a comprehensive review of existing low-precision training methods. To systematically organize these approaches, we categorize them into three primary groups based on their underlying numerical formats, which is a key factor influencing hardware compatibility, computational efficiency, and ease of reference for readers. The categories are: (1) fixed-point and integer-based methods, (2) floating-point-based methods, and (3) customized format-based methods. Additionally, we discuss quantization-aware training approaches, which share key similarities with low-precision training during forward propagation. Finally, we highlight several promising research directions to advance this field. A collection of papers discussed in this survey is provided in https://github.com/Hao840/Awesome-Low-Precision-Training.

  • 9 authors
·
May 2 3

Video-SafetyBench: A Benchmark for Safety Evaluation of Video LVLMs

The increasing deployment of Large Vision-Language Models (LVLMs) raises safety concerns under potential malicious inputs. However, existing multimodal safety evaluations primarily focus on model vulnerabilities exposed by static image inputs, ignoring the temporal dynamics of video that may induce distinct safety risks. To bridge this gap, we introduce Video-SafetyBench, the first comprehensive benchmark designed to evaluate the safety of LVLMs under video-text attacks. It comprises 2,264 video-text pairs spanning 48 fine-grained unsafe categories, each pairing a synthesized video with either a harmful query, which contains explicit malice, or a benign query, which appears harmless but triggers harmful behavior when interpreted alongside the video. To generate semantically accurate videos for safety evaluation, we design a controllable pipeline that decomposes video semantics into subject images (what is shown) and motion text (how it moves), which jointly guide the synthesis of query-relevant videos. To effectively evaluate uncertain or borderline harmful outputs, we propose RJScore, a novel LLM-based metric that incorporates the confidence of judge models and human-aligned decision threshold calibration. Extensive experiments show that benign-query video composition achieves average attack success rates of 67.2%, revealing consistent vulnerabilities to video-induced attacks. We believe Video-SafetyBench will catalyze future research into video-based safety evaluation and defense strategies.

  • 9 authors
·
May 17

MOSE: A New Dataset for Video Object Segmentation in Complex Scenes

Video object segmentation (VOS) aims at segmenting a particular object throughout the entire video clip sequence. The state-of-the-art VOS methods have achieved excellent performance (e.g., 90+% J&F) on existing datasets. However, since the target objects in these existing datasets are usually relatively salient, dominant, and isolated, VOS under complex scenes has rarely been studied. To revisit VOS and make it more applicable in the real world, we collect a new VOS dataset called coMplex video Object SEgmentation (MOSE) to study the tracking and segmenting objects in complex environments. MOSE contains 2,149 video clips and 5,200 objects from 36 categories, with 431,725 high-quality object segmentation masks. The most notable feature of MOSE dataset is complex scenes with crowded and occluded objects. The target objects in the videos are commonly occluded by others and disappear in some frames. To analyze the proposed MOSE dataset, we benchmark 18 existing VOS methods under 4 different settings on the proposed MOSE dataset and conduct comprehensive comparisons. The experiments show that current VOS algorithms cannot well perceive objects in complex scenes. For example, under the semi-supervised VOS setting, the highest J&F by existing state-of-the-art VOS methods is only 59.4% on MOSE, much lower than their ~90% J&F performance on DAVIS. The results reveal that although excellent performance has been achieved on existing benchmarks, there are unresolved challenges under complex scenes and more efforts are desired to explore these challenges in the future. The proposed MOSE dataset has been released at https://henghuiding.github.io/MOSE.

  • 6 authors
·
Feb 3, 2023

Multi-Dimensional Insights: Benchmarking Real-World Personalization in Large Multimodal Models

The rapidly developing field of large multimodal models (LMMs) has led to the emergence of diverse models with remarkable capabilities. However, existing benchmarks fail to comprehensively, objectively and accurately evaluate whether LMMs align with the diverse needs of humans in real-world scenarios. To bridge this gap, we propose the Multi-Dimensional Insights (MDI) benchmark, which includes over 500 images covering six common scenarios of human life. Notably, the MDI-Benchmark offers two significant advantages over existing evaluations: (1) Each image is accompanied by two types of questions: simple questions to assess the model's understanding of the image, and complex questions to evaluate the model's ability to analyze and reason beyond basic content. (2) Recognizing that people of different age groups have varying needs and perspectives when faced with the same scenario, our benchmark stratifies questions into three age categories: young people, middle-aged people, and older people. This design allows for a detailed assessment of LMMs' capabilities in meeting the preferences and needs of different age groups. With MDI-Benchmark, the strong model like GPT-4o achieve 79% accuracy on age-related tasks, indicating that existing LMMs still have considerable room for improvement in addressing real-world applications. Looking ahead, we anticipate that the MDI-Benchmark will open new pathways for aligning real-world personalization in LMMs. The MDI-Benchmark data and evaluation code are available at https://mdi-benchmark.github.io/

  • 13 authors
·
Dec 17, 2024 3

From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents

Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns. Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies. In this paper, we conduct a comprehensive survey of this field, illustrating the recent progress in simulation driven by LLM-empowered agents. We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Society Simulation, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics. These simulations follow a progression, ranging from detailed individual modeling to large-scale societal phenomena. We provide a detailed discussion of each simulation type, including the architecture or key components of the simulation, the classification of objectives or scenarios and the evaluation method. Afterward, we summarize commonly used datasets and benchmarks. Finally, we discuss the trends across these three types of simulation. A repository for the related sources is at {https://github.com/FudanDISC/SocialAgent}.

  • 11 authors
·
Dec 4, 2024

From Persona to Personalization: A Survey on Role-Playing Language Agents

Recent advancements in large language models (LLMs) have significantly boosted the rise of Role-Playing Language Agents (RPLAs), i.e., specialized AI systems designed to simulate assigned personas. By harnessing multiple advanced abilities of LLMs, including in-context learning, instruction following, and social intelligence, RPLAs achieve a remarkable sense of human likeness and vivid role-playing performance. RPLAs can mimic a wide range of personas, ranging from historical figures and fictional characters to real-life individuals. Consequently, they have catalyzed numerous AI applications, such as emotional companions, interactive video games, personalized assistants and copilots, and digital clones. In this paper, we conduct a comprehensive survey of this field, illustrating the evolution and recent progress in RPLAs integrating with cutting-edge LLM technologies. We categorize personas into three types: 1) Demographic Persona, which leverages statistical stereotypes; 2) Character Persona, focused on well-established figures; and 3) Individualized Persona, customized through ongoing user interactions for personalized services. We begin by presenting a comprehensive overview of current methodologies for RPLAs, followed by the details for each persona type, covering corresponding data sourcing, agent construction, and evaluation. Afterward, we discuss the fundamental risks, existing limitations, and future prospects of RPLAs. Additionally, we provide a brief review of RPLAs in AI applications, which reflects practical user demands that shape and drive RPLA research. Through this work, we aim to establish a clear taxonomy of RPLA research and applications, and facilitate future research in this critical and ever-evolving field, and pave the way for a future where humans and RPLAs coexist in harmony.

  • 18 authors
·
Apr 28, 2024

MMKE-Bench: A Multimodal Editing Benchmark for Diverse Visual Knowledge

Knowledge editing techniques have emerged as essential tools for updating the factual knowledge of large language models (LLMs) and multimodal models (LMMs), allowing them to correct outdated or inaccurate information without retraining from scratch. However, existing benchmarks for multimodal knowledge editing primarily focus on entity-level knowledge represented as simple triplets, which fail to capture the complexity of real-world multimodal information. To address this issue, we introduce MMKE-Bench, a comprehensive MultiModal Knowledge Editing Benchmark, designed to evaluate the ability of LMMs to edit diverse visual knowledge in real-world scenarios. MMKE-Bench addresses these limitations by incorporating three types of editing tasks: visual entity editing, visual semantic editing, and user-specific editing. Besides, MMKE-Bench uses free-form natural language to represent and edit knowledge, offering a more flexible and effective format. The benchmark consists of 2,940 pieces of knowledge and 8,363 images across 33 broad categories, with evaluation questions automatically generated and human-verified. We assess five state-of-the-art knowledge editing methods on three prominent LMMs, revealing that no method excels across all criteria, and that visual and user-specific edits are particularly challenging. MMKE-Bench sets a new standard for evaluating the robustness of multimodal knowledge editing techniques, driving progress in this rapidly evolving field.

  • 7 authors
·
Feb 27 2

EVADE: Multimodal Benchmark for Evasive Content Detection in E-Commerce Applications

E-commerce platforms increasingly rely on Large Language Models (LLMs) and Vision-Language Models (VLMs) to detect illicit or misleading product content. However, these models remain vulnerable to evasive content: inputs (text or images) that superficially comply with platform policies while covertly conveying prohibited claims. Unlike traditional adversarial attacks that induce overt failures, evasive content exploits ambiguity and context, making it far harder to detect. Existing robustness benchmarks provide little guidance for this demanding, real-world challenge. We introduce EVADE, the first expert-curated, Chinese, multimodal benchmark specifically designed to evaluate foundation models on evasive content detection in e-commerce. The dataset contains 2,833 annotated text samples and 13,961 images spanning six demanding product categories, including body shaping, height growth, and health supplements. Two complementary tasks assess distinct capabilities: Single-Violation, which probes fine-grained reasoning under short prompts, and All-in-One, which tests long-context reasoning by merging overlapping policy rules into unified instructions. Notably, the All-in-One setting significantly narrows the performance gap between partial and full-match accuracy, suggesting that clearer rule definitions improve alignment between human and model judgment. We benchmark 26 mainstream LLMs and VLMs and observe substantial performance gaps: even state-of-the-art models frequently misclassify evasive samples. By releasing EVADE and strong baselines, we provide the first rigorous standard for evaluating evasive-content detection, expose fundamental limitations in current multimodal reasoning, and lay the groundwork for safer and more transparent content moderation systems in e-commerce. The dataset is publicly available at https://huggingface.co/datasets/koenshen/EVADE-Bench.

  • 12 authors
·
May 23

BhasaAnuvaad: A Speech Translation Dataset for 14 Indian Languages

Automatic Speech Translation (AST) datasets for Indian languages remain critically scarce, with public resources covering fewer than 10 of the 22 official languages. This scarcity has resulted in AST systems for Indian languages lagging far behind those available for high-resource languages like English. In this paper, we first evaluate the performance of widely-used AST systems on Indian languages, identifying notable performance gaps and challenges. Our findings show that while these systems perform adequately on read speech, they struggle significantly with spontaneous speech, including disfluencies like pauses and hesitations. Additionally, there is a striking absence of systems capable of accurately translating colloquial and informal language, a key aspect of everyday communication. To this end, we introduce BhasaAnuvaad, the largest publicly available dataset for AST involving 14 scheduled Indian languages spanning over 44,400 hours and 17M text segments. BhasaAnuvaad contains data for English speech to Indic text, as well as Indic speech to English text. This dataset comprises three key categories: (1) Curated datasets from existing resources, (2) Large-scale web mining, and (3) Synthetic data generation. By offering this diverse and expansive dataset, we aim to bridge the resource gap and promote advancements in AST for low-resource Indian languages, especially in handling spontaneous and informal speech patterns.

  • 9 authors
·
Nov 7, 2024

Thinking with Video: Video Generation as a Promising Multimodal Reasoning Paradigm

"Thinking with Text" and "Thinking with Images" paradigm significantly improve the reasoning ability of large language models (LLMs) and Vision Language Models (VLMs). However, these paradigms have inherent limitations. (1) Images capture only single moments and fail to represent dynamic processes or continuous changes, and (2) The separation of text and vision as distinct modalities, hindering unified multimodal understanding and generation. To overcome these limitations, we introduce "Thinking with Video", a new paradigm that leverages video generation models, such as Sora-2, to bridge visual and textual reasoning in a unified temporal framework. To support this exploration, we developed the Video Thinking Benchmark (VideoThinkBench). VideoThinkBench encompasses two task categories: (1) vision-centric tasks (e.g., Eyeballing Puzzles), and (2) text-centric tasks (e.g., subsets of GSM8K, MMMU). Our evaluation establishes Sora-2 as a capable reasoner. On vision-centric tasks, Sora-2 is generally comparable to state-of-the-art (SOTA) VLMs, and even surpasses VLMs on several tasks, such as Eyeballing Games. On text-centric tasks, Sora-2 achieves 92% accuracy on MATH, and 75.53% accuracy on MMMU. Furthermore, we systematically analyse the source of these abilities. We also find that self-consistency and in-context learning can improve Sora-2's performance. In summary, our findings demonstrate that the video generation model is the potential unified multimodal understanding and generation model, positions "thinking with video" as a unified multimodal reasoning paradigm.

OpenMOSS-Team OpenMOSS
·
Nov 6 4

Graph Mamba: Towards Learning on Graphs with State Space Models

Graph Neural Networks (GNNs) have shown promising potential in graph representation learning. The majority of GNNs define a local message-passing mechanism, propagating information over the graph by stacking multiple layers. These methods, however, are known to suffer from two major limitations: over-squashing and poor capturing of long-range dependencies. Recently, Graph Transformers (GTs) emerged as a powerful alternative to Message-Passing Neural Networks (MPNNs). GTs, however, have quadratic computational cost, lack inductive biases on graph structures, and rely on complex Positional/Structural Encodings (SE/PE). In this paper, we show that while Transformers, complex message-passing, and SE/PE are sufficient for good performance in practice, neither is necessary. Motivated by the recent success of State Space Models (SSMs), such as Mamba, we present Graph Mamba Networks (GMNs), a general framework for a new class of GNNs based on selective SSMs. We discuss and categorize the new challenges when adopting SSMs to graph-structured data, and present four required and one optional steps to design GMNs, where we choose (1) Neighborhood Tokenization, (2) Token Ordering, (3) Architecture of Bidirectional Selective SSM Encoder, (4) Local Encoding, and dispensable (5) PE and SE. We further provide theoretical justification for the power of GMNs. Experiments demonstrate that despite much less computational cost, GMNs attain an outstanding performance in long-range, small-scale, large-scale, and heterophilic benchmark datasets.

  • 2 authors
·
Feb 13, 2024 1

Agent-SafetyBench: Evaluating the Safety of LLM Agents

As large language models (LLMs) are increasingly deployed as agents, their integration into interactive environments and tool use introduce new safety challenges beyond those associated with the models themselves. However, the absence of comprehensive benchmarks for evaluating agent safety presents a significant barrier to effective assessment and further improvement. In this paper, we introduce Agent-SafetyBench, a comprehensive benchmark designed to evaluate the safety of LLM agents. Agent-SafetyBench encompasses 349 interaction environments and 2,000 test cases, evaluating 8 categories of safety risks and covering 10 common failure modes frequently encountered in unsafe interactions. Our evaluation of 16 popular LLM agents reveals a concerning result: none of the agents achieves a safety score above 60%. This highlights significant safety challenges in LLM agents and underscores the considerable need for improvement. Through quantitative analysis, we identify critical failure modes and summarize two fundamental safety detects in current LLM agents: lack of robustness and lack of risk awareness. Furthermore, our findings suggest that reliance on defense prompts alone is insufficient to address these safety issues, emphasizing the need for more advanced and robust strategies. We release Agent-SafetyBench at https://github.com/thu-coai/Agent-SafetyBench to facilitate further research and innovation in agent safety evaluation and improvement.

  • 7 authors
·
Dec 18, 2024 2

ALLVB: All-in-One Long Video Understanding Benchmark

From image to video understanding, the capabilities of Multi-modal LLMs (MLLMs) are increasingly powerful. However, most existing video understanding benchmarks are relatively short, which makes them inadequate for effectively evaluating the long-sequence modeling capabilities of MLLMs. This highlights the urgent need for a comprehensive and integrated long video understanding benchmark to assess the ability of MLLMs thoroughly. To this end, we propose ALLVB (ALL-in-One Long Video Understanding Benchmark). ALLVB's main contributions include: 1) It integrates 9 major video understanding tasks. These tasks are converted into video QA formats, allowing a single benchmark to evaluate 9 different video understanding capabilities of MLLMs, highlighting the versatility, comprehensiveness, and challenging nature of ALLVB. 2) A fully automated annotation pipeline using GPT-4o is designed, requiring only human quality control, which facilitates the maintenance and expansion of the benchmark. 3) It contains 1,376 videos across 16 categories, averaging nearly 2 hours each, with a total of 252k QAs. To the best of our knowledge, it is the largest long video understanding benchmark in terms of the number of videos, average duration, and number of QAs. We have tested various mainstream MLLMs on ALLVB, and the results indicate that even the most advanced commercial models have significant room for improvement. This reflects the benchmark's challenging nature and demonstrates the substantial potential for development in long video understanding.

  • 5 authors
·
Mar 10

Spatial Dual-Modality Graph Reasoning for Key Information Extraction

Key information extraction from document images is of paramount importance in office automation. Conventional template matching based approaches fail to generalize well to document images of unseen templates, and are not robust against text recognition errors. In this paper, we propose an end-to-end Spatial Dual-Modality Graph Reasoning method (SDMG-R) to extract key information from unstructured document images. We model document images as dual-modality graphs, nodes of which encode both the visual and textual features of detected text regions, and edges of which represent the spatial relations between neighboring text regions. The key information extraction is solved by iteratively propagating messages along graph edges and reasoning the categories of graph nodes. In order to roundly evaluate our proposed method as well as boost the future research, we release a new dataset named WildReceipt, which is collected and annotated tailored for the evaluation of key information extraction from document images of unseen templates in the wild. It contains 25 key information categories, a total of about 69000 text boxes, and is about 2 times larger than the existing public datasets. Extensive experiments validate that all information including visual features, textual features and spatial relations can benefit key information extraction. It has been shown that SDMG-R can effectively extract key information from document images of unseen templates, and obtain new state-of-the-art results on the recent popular benchmark SROIE and our WildReceipt. Our code and dataset will be publicly released.

  • 5 authors
·
Mar 26, 2021

Enigmata: Scaling Logical Reasoning in Large Language Models with Synthetic Verifiable Puzzles

Large Language Models (LLMs), such as OpenAI's o1 and DeepSeek's R1, excel at advanced reasoning tasks like math and coding via Reinforcement Learning with Verifiable Rewards (RLVR), but still struggle with puzzles solvable by humans without domain knowledge. We introduce Enigmata, the first comprehensive suite tailored for improving LLMs with puzzle reasoning skills. It includes 36 tasks across seven categories, each with 1) a generator that produces unlimited examples with controllable difficulty and 2) a rule-based verifier for automatic evaluation. This generator-verifier design supports scalable, multi-task RL training, fine-grained analysis, and seamless RLVR integration. We further propose Enigmata-Eval, a rigorous benchmark, and develop optimized multi-task RLVR strategies. Our trained model, Qwen2.5-32B-Enigmata, consistently surpasses o3-mini-high and o1 on the puzzle reasoning benchmarks like Enigmata-Eval, ARC-AGI (32.8%), and ARC-AGI 2 (0.6%). It also generalizes well to out-of-domain puzzle benchmarks and mathematical reasoning, with little multi-tasking trade-off. When trained on larger models like Seed1.5-Thinking (20B activated parameters and 200B total parameters), puzzle data from Enigmata further boosts SoTA performance on advanced math and STEM reasoning tasks such as AIME (2024-2025), BeyondAIME and GPQA (Diamond), showing nice generalization benefits of Enigmata. This work offers a unified, controllable framework for advancing logical reasoning in LLMs. Resources of this work can be found at https://seed-enigmata.github.io.

  • 12 authors
·
May 26 1

Navigating the Digital World as Humans Do: Universal Visual Grounding for GUI Agents

Multimodal large language models (MLLMs) are transforming the capabilities of graphical user interface (GUI) agents, facilitating their transition from controlled simulations to complex, real-world applications across various platforms. However, the effectiveness of these agents hinges on the robustness of their grounding capability. Current GUI agents predominantly utilize text-based representations such as HTML or accessibility trees, which, despite their utility, often introduce noise, incompleteness, and increased computational overhead. In this paper, we advocate a human-like embodiment for GUI agents that perceive the environment entirely visually and directly take pixel-level operations on the GUI. The key is visual grounding models that can accurately map diverse referring expressions of GUI elements to their coordinates on the GUI across different platforms. We show that a simple recipe, which includes web-based synthetic data and slight adaptation of the LLaVA architecture, is surprisingly effective for training such visual grounding models. We collect the largest dataset for GUI visual grounding so far, containing 10M GUI elements and their referring expressions over 1.3M screenshots, and use it to train UGround, a strong universal visual grounding model for GUI agents. Empirical results on six benchmarks spanning three categories (grounding, offline agent, and online agent) show that 1) UGround substantially outperforms existing visual grounding models for GUI agents, by up to 20% absolute, and 2) agents with UGround outperform state-of-the-art agents, despite the fact that existing agents use additional text-based input while ours only uses visual perception. These results provide strong support for the feasibility and promises of GUI agents that navigate the digital world as humans do.

  • 8 authors
·
Oct 7, 2024 2

SAM2S: Segment Anything in Surgical Videos via Semantic Long-term Tracking

Surgical video segmentation is crucial for computer-assisted surgery, enabling precise localization and tracking of instruments and tissues. Interactive Video Object Segmentation (iVOS) models such as Segment Anything Model 2 (SAM2) provide prompt-based flexibility beyond methods with predefined categories, but face challenges in surgical scenarios due to the domain gap and limited long-term tracking. To address these limitations, we construct SA-SV, the largest surgical iVOS benchmark with instance-level spatio-temporal annotations (masklets) spanning eight procedure types (61k frames, 1.6k masklets), enabling comprehensive development and evaluation for long-term tracking and zero-shot generalization. Building on SA-SV, we propose SAM2S, a foundation model enhancing SAM2 for Surgical iVOS through: (1) DiveMem, a trainable diverse memory mechanism for robust long-term tracking; (2) temporal semantic learning for instrument understanding; and (3) ambiguity-resilient learning to mitigate annotation inconsistencies across multi-source datasets. Extensive experiments demonstrate that fine-tuning on SA-SV enables substantial performance gains, with SAM2 improving by 12.99 average J\&F over vanilla SAM2. SAM2S further advances performance to 80.42 average J\&F, surpassing vanilla and fine-tuned SAM2 by 17.10 and 4.11 points respectively, while maintaining 68 FPS real-time inference and strong zero-shot generalization. Code and dataset will be released at https://jinlab-imvr.github.io/SAM2S.

Exploiting Contextual Target Attributes for Target Sentiment Classification

Existing PTLM-based models for TSC can be categorized into two groups: 1) fine-tuning-based models that adopt PTLM as the context encoder; 2) prompting-based models that transfer the classification task to the text/word generation task. In this paper, we present a new perspective of leveraging PTLM for TSC: simultaneously leveraging the merits of both language modeling and explicit target-context interactions via contextual target attributes. Specifically, we design the domain- and target-constrained cloze test, which can leverage the PTLMs' strong language modeling ability to generate the given target's attributes pertaining to the review context. The attributes contain the background and property information of the target, which can help to enrich the semantics of the review context and the target. To exploit the attributes for tackling TSC, we first construct a heterogeneous information graph by treating the attributes as nodes and combining them with (1) the syntax graph automatically produced by the off-the-shelf dependency parser and (2) the semantics graph of the review context, which is derived from the self-attention mechanism. Then we propose a heterogeneous information gated graph convolutional network to model the interactions among the attribute information, the syntactic information, and the contextual information. The experimental results on three benchmark datasets demonstrate the superiority of our model, which achieves new state-of-the-art performance.

  • 2 authors
·
Dec 21, 2023

ConES: Concept Embedding Search for Parameter Efficient Tuning Large Vision Language Models

Large pre-trained vision-language models have shown great prominence in transferring pre-acquired knowledge to various domains and downstream tasks with appropriate prompting or tuning. Existing prevalent tuning methods can be generally categorized into three genres: 1) prompt engineering by creating suitable prompt texts, which is time-consuming and requires domain expertise; 2) or simply fine-tuning the whole model, which is extremely inefficient; 3) prompt tuning through parameterized prompt embeddings with the text encoder. Nevertheless, all methods rely on the text encoder for bridging the modality gap between vision and language. In this work, we question the necessity of the cumbersome text encoder for a more lightweight and efficient tuning paradigm as well as more representative prompt embeddings closer to the image representations. To achieve this, we propose a Concept Embedding Search (ConES) approach by optimizing prompt embeddings -- without the need of the text encoder -- to capture the 'concept' of the image modality through a variety of task objectives. By dropping the text encoder, we are able to significantly speed up the learning process, \eg, from about an hour to just ten minutes in our experiments for personalized text-to-image generation without impairing the generation quality. Moreover, our proposed approach is orthogonal to current existing tuning methods since the searched concept embeddings can be further utilized in the next stage of fine-tuning the pre-trained large models for boosting performance. Extensive experiments show that our approach can beat the prompt tuning and textual inversion methods in a variety of downstream tasks including objection detection, instance segmentation, and image generation. Our approach also shows better generalization capability for unseen concepts in specialized domains, such as the medical domain.

  • 8 authors
·
May 30, 2023

Memorize, Factorize, or be Naïve: Learning Optimal Feature Interaction Methods for CTR Prediction

Click-through rate prediction is one of the core tasks in commercial recommender systems. It aims to predict the probability of a user clicking a particular item given user and item features. As feature interactions bring in non-linearity, they are widely adopted to improve the performance of CTR prediction models. Therefore, effectively modelling feature interactions has attracted much attention in both the research and industry field. The current approaches can generally be categorized into three classes: (1) na\"ive methods, which do not model feature interactions and only use original features; (2) memorized methods, which memorize feature interactions by explicitly viewing them as new features and assigning trainable embeddings; (3) factorized methods, which learn latent vectors for original features and implicitly model feature interactions through factorization functions. Studies have shown that modelling feature interactions by one of these methods alone are suboptimal due to the unique characteristics of different feature interactions. To address this issue, we first propose a general framework called OptInter which finds the most suitable modelling method for each feature interaction. Different state-of-the-art deep CTR models can be viewed as instances of OptInter. To realize the functionality of OptInter, we also introduce a learning algorithm that automatically searches for the optimal modelling method. We conduct extensive experiments on four large datasets. Our experiments show that OptInter improves the best performed state-of-the-art baseline deep CTR models by up to 2.21%. Compared to the memorized method, which also outperforms baselines, we reduce up to 91% parameters. In addition, we conduct several ablation studies to investigate the influence of different components of OptInter. Finally, we provide interpretable discussions on the results of OptInter.

  • 7 authors
·
Aug 2, 2021

Exploring the Inquiry-Diagnosis Relationship with Advanced Patient Simulators

Online medical consultation (OMC) restricts doctors to gathering patient information solely through inquiries, making the already complex sequential decision-making process of diagnosis even more challenging. Recently, the rapid advancement of large language models has demonstrated a significant potential to transform OMC. However, most studies have primarily focused on improving diagnostic accuracy under conditions of relatively sufficient information, while paying limited attention to the "inquiry" phase of the consultation process. This lack of focus has left the relationship between "inquiry" and "diagnosis" insufficiently explored. In this paper, we first extract real patient interaction strategies from authentic doctor-patient conversations and use these strategies to guide the training of a patient simulator that closely mirrors real-world behavior. By inputting medical records into our patient simulator to simulate patient responses, we conduct extensive experiments to explore the relationship between "inquiry" and "diagnosis" in the consultation process. Experimental results demonstrate that inquiry and diagnosis adhere to the Liebig's law: poor inquiry quality limits the effectiveness of diagnosis, regardless of diagnostic capability, and vice versa. Furthermore, the experiments reveal significant differences in the inquiry performance of various models. To investigate this phenomenon, we categorize the inquiry process into four types: (1) chief complaint inquiry; (2) specification of known symptoms; (3) inquiry about accompanying symptoms; and (4) gathering family or medical history. We analyze the distribution of inquiries across the four types for different models to explore the reasons behind their significant performance differences. We plan to open-source the weights and related code of our patient simulator at https://github.com/LIO-H-ZEN/PatientSimulator.

Authorship Attribution in the Era of LLMs: Problems, Methodologies, and Challenges

Accurate attribution of authorship is crucial for maintaining the integrity of digital content, improving forensic investigations, and mitigating the risks of misinformation and plagiarism. Addressing the imperative need for proper authorship attribution is essential to uphold the credibility and accountability of authentic authorship. The rapid advancements of Large Language Models (LLMs) have blurred the lines between human and machine authorship, posing significant challenges for traditional methods. We presents a comprehensive literature review that examines the latest research on authorship attribution in the era of LLMs. This survey systematically explores the landscape of this field by categorizing four representative problems: (1) Human-written Text Attribution; (2) LLM-generated Text Detection; (3) LLM-generated Text Attribution; and (4) Human-LLM Co-authored Text Attribution. We also discuss the challenges related to ensuring the generalization and explainability of authorship attribution methods. Generalization requires the ability to generalize across various domains, while explainability emphasizes providing transparent and understandable insights into the decisions made by these models. By evaluating the strengths and limitations of existing methods and benchmarks, we identify key open problems and future research directions in this field. This literature review serves a roadmap for researchers and practitioners interested in understanding the state of the art in this rapidly evolving field. Additional resources and a curated list of papers are available and regularly updated at https://llm-authorship.github.io

  • 3 authors
·
Aug 16, 2024 2

When Text Embedding Meets Large Language Model: A Comprehensive Survey

Text embedding has become a foundational technology in natural language processing (NLP) during the deep learning era, driving advancements across a wide array of downstream tasks. While many natural language understanding challenges can now be modeled using generative paradigms and leverage the robust generative and comprehension capabilities of large language models (LLMs), numerous practical applications, such as semantic matching, clustering, and information retrieval, continue to rely on text embeddings for their efficiency and effectiveness. In this survey, we categorize the interplay between LLMs and text embeddings into three overarching themes: (1) LLM-augmented text embedding, enhancing traditional embedding methods with LLMs; (2) LLMs as text embedders, utilizing their innate capabilities for embedding generation; and (3) Text embedding understanding with LLMs, leveraging LLMs to analyze and interpret embeddings. By organizing these efforts based on interaction patterns rather than specific downstream applications, we offer a novel and systematic overview of contributions from various research and application domains in the era of LLMs. Furthermore, we highlight the unresolved challenges that persisted in the pre-LLM era with pre-trained language models (PLMs) and explore the emerging obstacles brought forth by LLMs. Building on this analysis, we outline prospective directions for the evolution of text embedding, addressing both theoretical and practical opportunities in the rapidly advancing landscape of NLP.

  • 7 authors
·
Dec 12, 2024

semi-PD: Towards Efficient LLM Serving via Phase-Wise Disaggregated Computation and Unified Storage

Existing large language model (LLM) serving systems fall into two categories: 1) a unified system where prefill phase and decode phase are co-located on the same GPU, sharing the unified computational resource and storage, and 2) a disaggregated system where the two phases are disaggregated to different GPUs. The design of the disaggregated system addresses the latency interference and sophisticated scheduling issues in the unified system but leads to storage challenges including 1) replicated weights for both phases that prevent flexible deployment, 2) KV cache transfer overhead between the two phases, 3) storage imbalance that causes substantial wasted space of the GPU capacity, and 4) suboptimal resource adjustment arising from the difficulties in migrating KV cache. Such storage inefficiency delivers poor serving performance under high request rates. In this paper, we identify that the advantage of the disaggregated system lies in the disaggregated computation, i.e., partitioning the computational resource to enable the asynchronous computation of two phases. Thus, we propose a novel LLM serving system, semi-PD, characterized by disaggregated computation and unified storage. In semi-PD, we introduce a computation resource controller to achieve disaggregated computation at the streaming multi-processor (SM) level, and a unified memory manager to manage the asynchronous memory access from both phases. semi-PD has a low-overhead resource adjustment mechanism between the two phases, and a service-level objective (SLO) aware dynamic partitioning algorithm to optimize the SLO attainment. Compared to state-of-the-art systems, semi-PD maintains lower latency at higher request rates, reducing the average end-to-end latency per request by 1.27-2.58x on DeepSeek series models, and serves 1.55-1.72x more requests adhering to latency constraints on Llama series models.

  • 12 authors
·
Apr 28

A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems

Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making. With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems from conventional models that empower chatbots. In this survey, we categorize existing methods along two orthogonal dimensions: (1) Regimes, which define the stage at which reasoning is achieved (either at inference time or through dedicated training); and (2) Architectures, which determine the components involved in the reasoning process, distinguishing between standalone LLMs and agentic compound systems that incorporate external tools, and multi-agent collaborations. Within each dimension, we analyze two key perspectives: (1) Input level, which focuses on techniques that construct high-quality prompts that the LLM condition on; and (2) Output level, which methods that refine multiple sampled candidates to enhance reasoning quality. This categorization provides a systematic understanding of the evolving landscape of LLM reasoning, highlighting emerging trends such as the shift from inference-scaling to learning-to-reason (e.g., DeepSeek-R1), and the transition to agentic workflows (e.g., OpenAI Deep Research, Manus Agent). Additionally, we cover a broad spectrum of learning algorithms, from supervised fine-tuning to reinforcement learning such as PPO and GRPO, and the training of reasoners and verifiers. We also examine key designs of agentic workflows, from established patterns like generator-evaluator and LLM debate to recent innovations. ...

  • 12 authors
·
Apr 11

Towards Lifelong Learning of Large Language Models: A Survey

As the applications of large language models (LLMs) expand across diverse fields, the ability of these models to adapt to ongoing changes in data, tasks, and user preferences becomes crucial. Traditional training methods, relying on static datasets, are increasingly inadequate for coping with the dynamic nature of real-world information. Lifelong learning, also known as continual or incremental learning, addresses this challenge by enabling LLMs to learn continuously and adaptively over their operational lifetime, integrating new knowledge while retaining previously learned information and preventing catastrophic forgetting. This survey delves into the sophisticated landscape of lifelong learning, categorizing strategies into two primary groups: Internal Knowledge and External Knowledge. Internal Knowledge includes continual pretraining and continual finetuning, each enhancing the adaptability of LLMs in various scenarios. External Knowledge encompasses retrieval-based and tool-based lifelong learning, leveraging external data sources and computational tools to extend the model's capabilities without modifying core parameters. The key contributions of our survey are: (1) Introducing a novel taxonomy categorizing the extensive literature of lifelong learning into 12 scenarios; (2) Identifying common techniques across all lifelong learning scenarios and classifying existing literature into various technique groups within each scenario; (3) Highlighting emerging techniques such as model expansion and data selection, which were less explored in the pre-LLM era. Through a detailed examination of these groups and their respective categories, this survey aims to enhance the adaptability, reliability, and overall performance of LLMs in real-world applications.

  • 4 authors
·
Jun 10, 2024

Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark

Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.

  • 5 authors
·
Aug 31, 2019

Evaluating LLMs at Detecting Errors in LLM Responses

With Large Language Models (LLMs) being widely used across various tasks, detecting errors in their responses is increasingly crucial. However, little research has been conducted on error detection of LLM responses. Collecting error annotations on LLM responses is challenging due to the subjective nature of many NLP tasks, and thus previous research focuses on tasks of little practical value (e.g., word sorting) or limited error types (e.g., faithfulness in summarization). This work introduces ReaLMistake, the first error detection benchmark consisting of objective, realistic, and diverse errors made by LLMs. ReaLMistake contains three challenging and meaningful tasks that introduce objectively assessable errors in four categories (reasoning correctness, instruction-following, context-faithfulness, and parameterized knowledge), eliciting naturally observed and diverse errors in responses of GPT-4 and Llama 2 70B annotated by experts. We use ReaLMistake to evaluate error detectors based on 12 LLMs. Our findings show: 1) Top LLMs like GPT-4 and Claude 3 detect errors made by LLMs at very low recall, and all LLM-based error detectors perform much worse than humans. 2) Explanations by LLM-based error detectors lack reliability. 3) LLMs-based error detection is sensitive to small changes in prompts but remains challenging to improve. 4) Popular approaches to improving LLMs, including self-consistency and majority vote, do not improve the error detection performance. Our benchmark and code are provided at https://github.com/psunlpgroup/ReaLMistake.

  • 15 authors
·
Apr 4, 2024

Adversarial Diffusion Compression for Real-World Image Super-Resolution

Real-world image super-resolution (Real-ISR) aims to reconstruct high-resolution images from low-resolution inputs degraded by complex, unknown processes. While many Stable Diffusion (SD)-based Real-ISR methods have achieved remarkable success, their slow, multi-step inference hinders practical deployment. Recent SD-based one-step networks like OSEDiff and S3Diff alleviate this issue but still incur high computational costs due to their reliance on large pretrained SD models. This paper proposes a novel Real-ISR method, AdcSR, by distilling the one-step diffusion network OSEDiff into a streamlined diffusion-GAN model under our Adversarial Diffusion Compression (ADC) framework. We meticulously examine the modules of OSEDiff, categorizing them into two types: (1) Removable (VAE encoder, prompt extractor, text encoder, etc.) and (2) Prunable (denoising UNet and VAE decoder). Since direct removal and pruning can degrade the model's generation capability, we pretrain our pruned VAE decoder to restore its ability to decode images and employ adversarial distillation to compensate for performance loss. This ADC-based diffusion-GAN hybrid design effectively reduces complexity by 73% in inference time, 78% in computation, and 74% in parameters, while preserving the model's generation capability. Experiments manifest that our proposed AdcSR achieves competitive recovery quality on both synthetic and real-world datasets, offering up to 9.3times speedup over previous one-step diffusion-based methods. Code and models are available at https://github.com/Guaishou74851/AdcSR.

  • 7 authors
·
Nov 20, 2024

FGBench: A Dataset and Benchmark for Molecular Property Reasoning at Functional Group-Level in Large Language Models

Large language models (LLMs) have gained significant attention in chemistry. However, most existing datasets center on molecular-level property prediction and overlook the role of fine-grained functional group (FG) information. Incorporating FG-level data can provide valuable prior knowledge that links molecular structures with textual descriptions, which can be used to build more interpretable, structure-aware LLMs for reasoning on molecule-related tasks. Moreover, LLMs can learn from such fine-grained information to uncover hidden relationships between specific functional groups and molecular properties, thereby advancing molecular design and drug discovery. Here, we introduce FGBench, a dataset comprising 625K molecular property reasoning problems with functional group information. Functional groups are precisely annotated and localized within the molecule, which ensures the dataset's interoperability thereby facilitating further multimodal applications. FGBench includes both regression and classification tasks on 245 different functional groups across three categories for molecular property reasoning: (1) single functional group impacts, (2) multiple functional group interactions, and (3) direct molecular comparisons. In the benchmark of state-of-the-art LLMs on 7K curated data, the results indicate that current LLMs struggle with FG-level property reasoning, highlighting the need to enhance reasoning capabilities in LLMs for chemistry tasks. We anticipate that the methodology employed in FGBench to construct datasets with functional group-level information will serve as a foundational framework for generating new question-answer pairs, enabling LLMs to better understand fine-grained molecular structure-property relationships. The dataset and evaluation code are available at https://github.com/xuanliugit/FGBench.

  • 5 authors
·
Aug 1

DMoERM: Recipes of Mixture-of-Experts for Effective Reward Modeling

The performance of the reward model (RM) is a critical factor in improving the effectiveness of the large language model (LLM) during alignment fine-tuning. There remain two challenges in RM training: 1) training the same RM using various categories of data may cause its generalization performance to suffer from multi-task disturbance, and 2) the human annotation consistency rate is generally only 60% to 75%, causing training data to contain a lot of noise. To tackle these two challenges, we introduced the idea of Mixture-of-Experts (MoE) into the field of RM for the first time. We propose the Double-Layer MoE RM (DMoERM). The outer layer MoE is a sparse model. After classifying an input into task categories, we route it to the corresponding inner layer task-specific model. The inner layer MoE is a dense model. We decompose the specific task into multiple capability dimensions and individually fine-tune a LoRA expert on each one. Their outputs are then synthesized by an MLP to compute the final rewards. To minimize costs, we call a public LLM API to obtain the capability preference labels. The validation on manually labeled datasets confirms that our model attains superior consistency with human preference and outstrips advanced generative approaches. Meanwhile, through BoN sampling and RL experiments, we demonstrate that our model outperforms state-of-the-art ensemble methods of RM and mitigates the overoptimization problem. Our code and dataset are available at: https://github.com/quanshr/DMoERM-v1.

  • 1 authors
·
Mar 2, 2024

Sculptor: Empowering LLMs with Cognitive Agency via Active Context Management

Large Language Models (LLMs) suffer from significant performance degradation when processing long contexts due to proactive interference, where irrelevant information in earlier parts of the context disrupts reasoning and memory recall. While most research focuses on external memory systems to augment LLMs' capabilities, we propose a complementary approach: empowering LLMs with Active Context Management (ACM) tools to actively sculpt their internal working memory. We introduce Sculptor, a framework that equips LLMs with three categories of tools: (1) context fragmentation, (2) summary, hide, and restore, and (3) intelligent search. Our approach enables LLMs to proactively manage their attention and working memory, analogous to how humans selectively focus on relevant information while filtering out distractions. Experimental evaluation on information-sparse benchmarks-PI-LLM (proactive interference) and NeedleBench Multi-Needle Reasoning-demonstrates that Sculptor significantly improves performance even without specific training, leveraging LLMs' inherent tool calling generalization capabilities. By enabling Active Context Management, Sculptor not only mitigates proactive interference but also provides a cognitive foundation for more reliable reasoning across diverse long-context tasks-highlighting that explicit context-control strategies, rather than merely larger token windows, are key to robustness at scale.

  • 5 authors
·
Aug 6 2

Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models

Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks. Recent advancements in Large Reasoning Models (LRMs), such as OpenAI o1 and DeepSeek-R1, have further improved performance in System-2 reasoning domains like mathematics and programming by harnessing supervised fine-tuning (SFT) and reinforcement learning (RL) techniques to enhance the Chain-of-Thought (CoT) reasoning. However, while longer CoT reasoning sequences improve performance, they also introduce significant computational overhead due to verbose and redundant outputs, known as the "overthinking phenomenon". In this paper, we provide the first structured survey to systematically investigate and explore the current progress toward achieving efficient reasoning in LLMs. Overall, relying on the inherent mechanism of LLMs, we categorize existing works into several key directions: (1) model-based efficient reasoning, which considers optimizing full-length reasoning models into more concise reasoning models or directly training efficient reasoning models; (2) reasoning output-based efficient reasoning, which aims to dynamically reduce reasoning steps and length during inference; (3) input prompts-based efficient reasoning, which seeks to enhance reasoning efficiency based on input prompt properties such as difficulty or length control. Additionally, we introduce the use of efficient data for training reasoning models, explore the reasoning capabilities of small language models, and discuss evaluation methods and benchmarking.

  • 12 authors
·
Mar 20 2

OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain

As a typical and practical application of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) techniques have gained extensive attention, particularly in vertical domains where LLMs may lack domain-specific knowledge. In this paper, we introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain. Our benchmark is characterized by its multi-dimensional evaluation framework, including (1) a matrix-based RAG scenario evaluation system that categorizes queries into five task classes and 16 financial topics, leading to a structured assessment of diverse query scenarios; (2) a multi-dimensional evaluation data generation approach, which combines GPT-4-based automatic generation and human annotation, achieving an 87.47\% acceptance ratio in human evaluations on generated instances; (3) a multi-stage evaluation system that evaluates both retrieval and generation performance, result in a comprehensive evaluation on the RAG pipeline; and (4) robust evaluation metrics derived from rule-based and LLM-based ones, enhancing the reliability of assessments through manual annotations and supervised fine-tuning of an LLM evaluator. Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets and highlights the performance variations of RAG systems across diverse topics and tasks, revealing significant opportunities for RAG models to improve their capabilities in vertical domains. We open source the code of our benchmark in https://github.com/RUC-NLPIR/OmniEval{https://github.com/RUC-NLPIR/OmniEval}.

  • 4 authors
·
Dec 17, 2024 2

Don't Overthink It: A Survey of Efficient R1-style Large Reasoning Models

Recently, Large Reasoning Models (LRMs) have gradually become a research hotspot due to their outstanding performance in handling complex tasks. Among them, DeepSeek R1 has garnered significant attention for its exceptional performance and open-source nature, driving advancements in the research of R1-style LRMs. Unlike traditional Large Language Models (LLMs), these models enhance logical deduction and decision-making capabilities during reasoning by incorporating mechanisms such as long chain-of-thought and self-reflection through reinforcement learning. However, with the widespread application of these models, the problem of overthinking has gradually emerged. Specifically, when generating answers, these models often construct excessively long reasoning chains with redundant or repetitive steps, which leads to reduced reasoning efficiency and may affect the accuracy of the final answer. To this end, various efficient reasoning methods have been proposed, aiming to reduce the length of reasoning paths without compromising model performance and reasoning capability. By reviewing the current research advancements in the field of efficient reasoning methods systematically, we categorize existing works into two main directions based on the lens of single-model optimization versus model collaboration: (1) Efficient Reasoning with Single Model, which focuses on improving the reasoning efficiency of individual models; and (2) Efficient Reasoning with Model Collaboration, which explores optimizing reasoning paths through collaboration among multiple models. Besides, we maintain a public GitHub repository that tracks the latest progress in efficient reasoning methods.

Multimodal Safety Evaluation in Generative Agent Social Simulations

Can generative agents be trusted in multimodal environments? Despite advances in large language and vision-language models that enable agents to act autonomously and pursue goals in rich settings, their ability to reason about safety, coherence, and trust across modalities remains limited. We introduce a reproducible simulation framework for evaluating agents along three dimensions: (1) safety improvement over time, including iterative plan revisions in text-visual scenarios; (2) detection of unsafe activities across multiple categories of social situations; and (3) social dynamics, measured as interaction counts and acceptance ratios of social exchanges. Agents are equipped with layered memory, dynamic planning, multimodal perception, and are instrumented with SocialMetrics, a suite of behavioral and structural metrics that quantifies plan revisions, unsafe-to-safe conversions, and information diffusion across networks. Experiments show that while agents can detect direct multimodal contradictions, they often fail to align local revisions with global safety, reaching only a 55 percent success rate in correcting unsafe plans. Across eight simulation runs with three models - Claude, GPT-4o mini, and Qwen-VL - five agents achieved average unsafe-to-safe conversion rates of 75, 55, and 58 percent, respectively. Overall performance ranged from 20 percent in multi-risk scenarios with GPT-4o mini to 98 percent in localized contexts such as fire/heat with Claude. Notably, 45 percent of unsafe actions were accepted when paired with misleading visuals, showing a strong tendency to overtrust images. These findings expose critical limitations in current architectures and provide a reproducible platform for studying multimodal safety, coherence, and social dynamics.

  • 6 authors
·
Oct 8

PointArena: Probing Multimodal Grounding Through Language-Guided Pointing

Pointing serves as a fundamental and intuitive mechanism for grounding language within visual contexts, with applications spanning robotics, assistive technologies, and interactive AI systems. While recent multimodal models have started to support pointing capabilities, existing benchmarks typically focus only on referential object localization tasks. We introduce PointArena, a comprehensive platform for evaluating multimodal pointing across diverse reasoning scenarios. PointArena comprises three components: (1) Point-Bench, a curated dataset containing approximately 1,000 pointing tasks across five reasoning categories; (2) Point-Battle, an interactive, web-based arena facilitating blind, pairwise model comparisons, which has already gathered over 4,500 anonymized votes; and (3) Point-Act, a real-world robotic manipulation system allowing users to directly evaluate multimodal model pointing capabilities in practical settings. We conducted extensive evaluations of both state-of-the-art open-source and proprietary multimodal models. Results indicate that Molmo-72B consistently outperforms other models, though proprietary models increasingly demonstrate comparable performance. Additionally, we find that supervised training specifically targeting pointing tasks significantly enhances model performance. Across our multi-stage evaluation pipeline, we also observe strong correlations, underscoring the critical role of precise pointing capabilities in enabling multimodal models to effectively bridge abstract reasoning with concrete, real-world actions. Project page: https://pointarena.github.io/

Open-Vocabulary Audio-Visual Semantic Segmentation

Audio-visual semantic segmentation (AVSS) aims to segment and classify sounding objects in videos with acoustic cues. However, most approaches operate on the close-set assumption and only identify pre-defined categories from training data, lacking the generalization ability to detect novel categories in practical applications. In this paper, we introduce a new task: open-vocabulary audio-visual semantic segmentation, extending AVSS task to open-world scenarios beyond the annotated label space. This is a more challenging task that requires recognizing all categories, even those that have never been seen nor heard during training. Moreover, we propose the first open-vocabulary AVSS framework, OV-AVSS, which mainly consists of two parts: 1) a universal sound source localization module to perform audio-visual fusion and locate all potential sounding objects and 2) an open-vocabulary classification module to predict categories with the help of the prior knowledge from large-scale pre-trained vision-language models. To properly evaluate the open-vocabulary AVSS, we split zero-shot training and testing subsets based on the AVSBench-semantic benchmark, namely AVSBench-OV. Extensive experiments demonstrate the strong segmentation and zero-shot generalization ability of our model on all categories. On the AVSBench-OV dataset, OV-AVSS achieves 55.43% mIoU on base categories and 29.14% mIoU on novel categories, exceeding the state-of-the-art zero-shot method by 41.88%/20.61% and open-vocabulary method by 10.2%/11.6%. The code is available at https://github.com/ruohaoguo/ovavss.

  • 8 authors
·
Jul 31, 2024 2

DeMamba: AI-Generated Video Detection on Million-Scale GenVideo Benchmark

Recently, video generation techniques have advanced rapidly. Given the popularity of video content on social media platforms, these models intensify concerns about the spread of fake information. Therefore, there is a growing demand for detectors capable of distinguishing between fake AI-generated videos and mitigating the potential harm caused by fake information. However, the lack of large-scale datasets from the most advanced video generators poses a barrier to the development of such detectors. To address this gap, we introduce the first AI-generated video detection dataset, GenVideo. It features the following characteristics: (1) a large volume of videos, including over one million AI-generated and real videos collected; (2) a rich diversity of generated content and methodologies, covering a broad spectrum of video categories and generation techniques. We conducted extensive studies of the dataset and proposed two evaluation methods tailored for real-world-like scenarios to assess the detectors' performance: the cross-generator video classification task assesses the generalizability of trained detectors on generators; the degraded video classification task evaluates the robustness of detectors to handle videos that have degraded in quality during dissemination. Moreover, we introduced a plug-and-play module, named Detail Mamba (DeMamba), designed to enhance the detectors by identifying AI-generated videos through the analysis of inconsistencies in temporal and spatial dimensions. Our extensive experiments demonstrate DeMamba's superior generalizability and robustness on GenVideo compared to existing detectors. We believe that the GenVideo dataset and the DeMamba module will significantly advance the field of AI-generated video detection. Our code and dataset will be aviliable at https://github.com/chenhaoxing/DeMamba.

  • 11 authors
·
May 30, 2024

A Survey on Efficient Vision-Language-Action Models

Vision-Language-Action models (VLAs) represent a significant frontier in embodied intelligence, aiming to bridge digital knowledge with physical-world interaction. While these models have demonstrated remarkable generalist capabilities, their deployment is severely hampered by the substantial computational and data requirements inherent to their underlying large-scale foundation models. Motivated by the urgent need to address these challenges, this survey presents the first comprehensive review of Efficient Vision-Language-Action models (Efficient VLAs) across the entire data-model-training process. Specifically, we introduce a unified taxonomy to systematically organize the disparate efforts in this domain, categorizing current techniques into three core pillars: (1) Efficient Model Design, focusing on efficient architectures and model compression; (2) Efficient Training, which reduces computational burdens during model learning; and (3) Efficient Data Collection, which addresses the bottlenecks in acquiring and utilizing robotic data. Through a critical review of state-of-the-art methods within this framework, this survey not only establishes a foundational reference for the community but also summarizes representative applications, delineates key challenges, and charts a roadmap for future research. We maintain a continuously updated project page to track our latest developments: https://evla-survey.github.io/

Datasets for Large Language Models: A Comprehensive Survey

This paper embarks on an exploration into the Large Language Model (LLM) datasets, which play a crucial role in the remarkable advancements of LLMs. The datasets serve as the foundational infrastructure analogous to a root system that sustains and nurtures the development of LLMs. Consequently, examination of these datasets emerges as a critical topic in research. In order to address the current lack of a comprehensive overview and thorough analysis of LLM datasets, and to gain insights into their current status and future trends, this survey consolidates and categorizes the fundamental aspects of LLM datasets from five perspectives: (1) Pre-training Corpora; (2) Instruction Fine-tuning Datasets; (3) Preference Datasets; (4) Evaluation Datasets; (5) Traditional Natural Language Processing (NLP) Datasets. The survey sheds light on the prevailing challenges and points out potential avenues for future investigation. Additionally, a comprehensive review of the existing available dataset resources is also provided, including statistics from 444 datasets, covering 8 language categories and spanning 32 domains. Information from 20 dimensions is incorporated into the dataset statistics. The total data size surveyed surpasses 774.5 TB for pre-training corpora and 700M instances for other datasets. We aim to present the entire landscape of LLM text datasets, serving as a comprehensive reference for researchers in this field and contributing to future studies. Related resources are available at: https://github.com/lmmlzn/Awesome-LLMs-Datasets.

  • 5 authors
·
Feb 27, 2024 1

Making Large Language Models Better Reasoners with Alignment

Reasoning is a cognitive process of using evidence to reach a sound conclusion. The reasoning capability is essential for large language models (LLMs) to serve as the brain of the artificial general intelligence agent. Recent studies reveal that fine-tuning LLMs on data with the chain of thought (COT) reasoning process can significantly enhance their reasoning capabilities. However, we find that the fine-tuned LLMs suffer from an Assessment Misalignment problem, i.e., they frequently assign higher scores to subpar COTs, leading to potential limitations in their reasoning abilities. To address this problem, we introduce an Alignment Fine-Tuning (AFT) paradigm, which involves three steps: 1) fine-tuning LLMs with COT training data; 2) generating multiple COT responses for each question, and categorizing them into positive and negative ones based on whether they achieve the correct answer; 3) calibrating the scores of positive and negative responses given by LLMs with a novel constraint alignment loss. Specifically, the constraint alignment loss has two objectives: a) Alignment, which guarantees that positive scores surpass negative scores to encourage answers with high-quality COTs; b) Constraint, which keeps the negative scores confined to a reasonable range to prevent the model degradation. Beyond just the binary positive and negative feedback, the constraint alignment loss can be seamlessly adapted to the ranking situations when ranking feedback is accessible. Furthermore, we also delve deeply into recent ranking-based alignment methods, such as DPO, RRHF, and PRO, and discover that the constraint, which has been overlooked by these approaches, is also crucial for their performance. Extensive experiments on four reasoning benchmarks with both binary and ranking feedback demonstrate the effectiveness of AFT.

  • 8 authors
·
Sep 5, 2023

Text2Token: Unsupervised Text Representation Learning with Token Target Prediction

Unsupervised text representation learning (TRL) is a fundamental task in natural language processing, which is beneficial for improving search and recommendations with the web's unlabeled texts. A recent empirical study finds that the high-quality representation aligns with the key token of the input text, uncovering the potential connection between representation space and vocabulary space. Inspired by the findings, we revisit the generative tasks and develop an unsupervised generative framework for TRL, Text2Token. The framework is based on the token target prediction task, utilizing carefully constructed target token distribution as supervisory signals. To construct the high-quality target token distribution, we analyze the token-alignment properties with advanced embedders and identify two essential categories of key tokens: (1) the meaningful tokens in the text and (2) semantically derived tokens beyond the text. Based on these insights, we propose two methods -- data-driven and model-derived -- to construct synthetic token targets from data or the LLM backbone. Experiments on the MTEB v2 benchmark demonstrate that Text2Token achieves performance competitive with the state-of-the-art embedder with unsupervised contrastive learning, LLM2Vec. Our analysis further shows that vocabulary and representation spaces optimize together and toward the optimum solution during training, providing new ideas and insights for future work.

  • 6 authors
·
Oct 11

Bayesian Prompt Flow Learning for Zero-Shot Anomaly Detection

Recently, vision-language models (e.g. CLIP) have demonstrated remarkable performance in zero-shot anomaly detection (ZSAD). By leveraging auxiliary data during training, these models can directly perform cross-category anomaly detection on target datasets, such as detecting defects on industrial product surfaces or identifying tumors in organ tissues. Existing approaches typically construct text prompts through either manual design or the optimization of learnable prompt vectors. However, these methods face several challenges: 1) handcrafted prompts require extensive expert knowledge and trial-and-error; 2) single-form learnable prompts struggle to capture complex anomaly semantics; and 3) an unconstrained prompt space limits generalization to unseen categories. To address these issues, we propose Bayesian Prompt Flow Learning (Bayes-PFL), which models the prompt space as a learnable probability distribution from a Bayesian perspective. Specifically, a prompt flow module is designed to learn both image-specific and image-agnostic distributions, which are jointly utilized to regularize the text prompt space and improve the model's generalization on unseen categories. These learned distributions are then sampled to generate diverse text prompts, effectively covering the prompt space. Additionally, a residual cross-model attention (RCA) module is introduced to better align dynamic text embeddings with fine-grained image features. Extensive experiments on 15 industrial and medical datasets demonstrate our method's superior performance. The code is available at https://github.com/xiaozhen228/Bayes-PFL.

  • 8 authors
·
Mar 13

Hyperbolic Large Language Models

Large language models (LLMs) have achieved remarkable success and demonstrated superior performance across various tasks, including natural language processing (NLP), weather forecasting, biological protein folding, text generation, and solving mathematical problems. However, many real-world data exhibit highly non-Euclidean latent hierarchical anatomy, such as protein networks, transportation networks, financial networks, brain networks, and linguistic structures or syntactic trees in natural languages. Effectively learning intrinsic semantic entailment and hierarchical relationships from these raw, unstructured input data using LLMs remains an underexplored area. Due to its effectiveness in modeling tree-like hierarchical structures, hyperbolic geometry -- a non-Euclidean space -- has rapidly gained popularity as an expressive latent representation space for complex data modeling across domains such as graphs, images, languages, and multi-modal data. Here, we provide a comprehensive and contextual exposition of recent advancements in LLMs that leverage hyperbolic geometry as a representation space to enhance semantic representation learning and multi-scale reasoning. Specifically, the paper presents a taxonomy of the principal techniques of Hyperbolic LLMs (HypLLMs) in terms of four main categories: (1) hyperbolic LLMs through exp/log maps; (2) hyperbolic fine-tuned models; (3) fully hyperbolic LLMs, and (4) hyperbolic state-space models. We also explore crucial potential applications and outline future research directions. A repository of key papers, models, datasets, and code implementations is available at https://github.com/sarangp2402/Hyperbolic-LLM-Models/tree/main.

  • 5 authors
·
Sep 6

Step-by-Step Reasoning Attack: Revealing 'Erased' Knowledge in Large Language Models

Knowledge erasure in large language models (LLMs) is important for ensuring compliance with data and AI regulations, safeguarding user privacy, mitigating bias, and misinformation. Existing unlearning methods aim to make the process of knowledge erasure more efficient and effective by removing specific knowledge while preserving overall model performance, especially for retained information. However, it has been observed that the unlearning techniques tend to suppress and leave the knowledge beneath the surface, thus making it retrievable with the right prompts. In this work, we demonstrate that step-by-step reasoning can serve as a backdoor to recover this hidden information. We introduce a step-by-step reasoning-based black-box attack, Sleek, that systematically exposes unlearning failures. We employ a structured attack framework with three core components: (1) an adversarial prompt generation strategy leveraging step-by-step reasoning built from LLM-generated queries, (2) an attack mechanism that successfully recalls erased content, and exposes unfair suppression of knowledge intended for retention and (3) a categorization of prompts as direct, indirect, and implied, to identify which query types most effectively exploit unlearning weaknesses. Through extensive evaluations on four state-of-the-art unlearning techniques and two widely used LLMs, we show that existing approaches fail to ensure reliable knowledge removal. Of the generated adversarial prompts, 62.5% successfully retrieved forgotten Harry Potter facts from WHP-unlearned Llama, while 50% exposed unfair suppression of retained knowledge. Our work highlights the persistent risks of information leakage, emphasizing the need for more robust unlearning strategies for erasure.

  • 5 authors
·
Jun 14

Language Modeling on Tabular Data: A Survey of Foundations, Techniques and Evolution

Tabular data, a prevalent data type across various domains, presents unique challenges due to its heterogeneous nature and complex structural relationships. Achieving high predictive performance and robustness in tabular data analysis holds significant promise for numerous applications. Influenced by recent advancements in natural language processing, particularly transformer architectures, new methods for tabular data modeling have emerged. Early techniques concentrated on pre-training transformers from scratch, often encountering scalability issues. Subsequently, methods leveraging pre-trained language models like BERT have been developed, which require less data and yield enhanced performance. The recent advent of large language models, such as GPT and LLaMA, has further revolutionized the field, facilitating more advanced and diverse applications with minimal fine-tuning. Despite the growing interest, a comprehensive survey of language modeling techniques for tabular data remains absent. This paper fills this gap by providing a systematic review of the development of language modeling for tabular data, encompassing: (1) a categorization of different tabular data structures and data types; (2) a review of key datasets used in model training and tasks used for evaluation; (3) a summary of modeling techniques including widely-adopted data processing methods, popular architectures, and training objectives; (4) the evolution from adapting traditional Pre-training/Pre-trained language models to the utilization of large language models; (5) an identification of persistent challenges and potential future research directions in language modeling for tabular data analysis. GitHub page associated with this survey is available at: https://github.com/lanxiang1017/Language-Modeling-on-Tabular-Data-Survey.git.

  • 6 authors
·
Aug 20, 2024

Revisiting Referring Expression Comprehension Evaluation in the Era of Large Multimodal Models

Referring expression comprehension (REC) involves localizing a target instance based on a textual description. Recent advancements in REC have been driven by large multimodal models (LMMs) like CogVLM, which achieved 92.44% accuracy on RefCOCO. However, this study questions whether existing benchmarks such as RefCOCO, RefCOCO+, and RefCOCOg, capture LMMs' comprehensive capabilities. We begin with a manual examination of these benchmarks, revealing high labeling error rates: 14% in RefCOCO, 24% in RefCOCO+, and 5% in RefCOCOg, which undermines the authenticity of evaluations. We address this by excluding problematic instances and reevaluating several LMMs capable of handling the REC task, showing significant accuracy improvements, thus highlighting the impact of benchmark noise. In response, we introduce Ref-L4, a comprehensive REC benchmark, specifically designed to evaluate modern REC models. Ref-L4 is distinguished by four key features: 1) a substantial sample size with 45,341 annotations; 2) a diverse range of object categories with 365 distinct types and varying instance scales from 30 to 3,767; 3) lengthy referring expressions averaging 24.2 words; and 4) an extensive vocabulary comprising 22,813 unique words. We evaluate a total of 24 large models on Ref-L4 and provide valuable insights. The cleaned versions of RefCOCO, RefCOCO+, and RefCOCOg, as well as our Ref-L4 benchmark and evaluation code, are available at https://github.com/JierunChen/Ref-L4.

  • 8 authors
·
Jun 24, 2024

Pursuing Counterfactual Fairness via Sequential Autoencoder Across Domains

Recognizing the prevalence of domain shift as a common challenge in machine learning, various domain generalization (DG) techniques have been developed to enhance the performance of machine learning systems when dealing with out-of-distribution (OOD) data. Furthermore, in real-world scenarios, data distributions can gradually change across a sequence of sequential domains. While current methodologies primarily focus on improving model effectiveness within these new domains, they often overlook fairness issues throughout the learning process. In response, we introduce an innovative framework called Counterfactual Fairness-Aware Domain Generalization with Sequential Autoencoder (CDSAE). This approach effectively separates environmental information and sensitive attributes from the embedded representation of classification features. This concurrent separation not only greatly improves model generalization across diverse and unfamiliar domains but also effectively addresses challenges related to unfair classification. Our strategy is rooted in the principles of causal inference to tackle these dual issues. To examine the intricate relationship between semantic information, sensitive attributes, and environmental cues, we systematically categorize exogenous uncertainty factors into four latent variables: 1) semantic information influenced by sensitive attributes, 2) semantic information unaffected by sensitive attributes, 3) environmental cues influenced by sensitive attributes, and 4) environmental cues unaffected by sensitive attributes. By incorporating fairness regularization, we exclusively employ semantic information for classification purposes. Empirical validation on synthetic and real-world datasets substantiates the effectiveness of our approach, demonstrating improved accuracy levels while ensuring the preservation of fairness in the evolving landscape of continuous domains.

  • 6 authors
·
Sep 22, 2023

Natural Language Processing in Electronic Health Records in Relation to Healthcare Decision-making: A Systematic Review

Background: Natural Language Processing (NLP) is widely used to extract clinical insights from Electronic Health Records (EHRs). However, the lack of annotated data, automated tools, and other challenges hinder the full utilisation of NLP for EHRs. Various Machine Learning (ML), Deep Learning (DL) and NLP techniques are studied and compared to understand the limitations and opportunities in this space comprehensively. Methodology: After screening 261 articles from 11 databases, we included 127 papers for full-text review covering seven categories of articles: 1) medical note classification, 2) clinical entity recognition, 3) text summarisation, 4) deep learning (DL) and transfer learning architecture, 5) information extraction, 6) Medical language translation and 7) other NLP applications. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Result and Discussion: EHR was the most commonly used data type among the selected articles, and the datasets were primarily unstructured. Various ML and DL methods were used, with prediction or classification being the most common application of ML or DL. The most common use cases were: the International Classification of Diseases, Ninth Revision (ICD-9) classification, clinical note analysis, and named entity recognition (NER) for clinical descriptions and research on psychiatric disorders. Conclusion: We find that the adopted ML models were not adequately assessed. In addition, the data imbalance problem is quite important, yet we must find techniques to address this underlining problem. Future studies should address key limitations in studies, primarily identifying Lupus Nephritis, Suicide Attempts, perinatal self-harmed and ICD-9 classification.

  • 8 authors
·
Jun 22, 2023

Understanding Telecom Language Through Large Language Models

The recent progress of artificial intelligence (AI) opens up new frontiers in the possibility of automating many tasks involved in Telecom networks design, implementation, and deployment. This has been further pushed forward with the evolution of generative artificial intelligence (AI), including the emergence of large language models (LLMs), which is believed to be the cornerstone toward realizing self-governed, interactive AI agents. Motivated by this, in this paper, we aim to adapt the paradigm of LLMs to the Telecom domain. In particular, we fine-tune several LLMs including BERT, distilled BERT, RoBERTa and GPT-2, to the Telecom domain languages, and demonstrate a use case for identifying the 3rd Generation Partnership Project (3GPP) standard working groups. We consider training the selected models on 3GPP technical documents (Tdoc) pertinent to years 2009-2019 and predict the Tdoc categories in years 2020-2023. The results demonstrate that fine-tuning BERT and RoBERTa model achieves 84.6% accuracy, while GPT-2 model achieves 83% in identifying 3GPP working groups. The distilled BERT model with around 50% less parameters achieves similar performance as others. This corroborates that fine-tuning pretrained LLM can effectively identify the categories of Telecom language. The developed framework shows a stepping stone towards realizing intent-driven and self-evolving wireless networks from Telecom languages, and paves the way for the implementation of generative AI in the Telecom domain.

  • 6 authors
·
Jun 9, 2023

Advancing High-Resolution Video-Language Representation with Large-Scale Video Transcriptions

We study joint video and language (VL) pre-training to enable cross-modality learning and benefit plentiful downstream VL tasks. Existing works either extract low-quality video features or learn limited text embedding, while neglecting that high-resolution videos and diversified semantics can significantly improve cross-modality learning. In this paper, we propose a novel High-resolution and Diversified VIdeo-LAnguage pre-training model (HD-VILA) for many visual tasks. In particular, we collect a large dataset with two distinct properties: 1) the first high-resolution dataset including 371.5k hours of 720p videos, and 2) the most diversified dataset covering 15 popular YouTube categories. To enable VL pre-training, we jointly optimize the HD-VILA model by a hybrid Transformer that learns rich spatiotemporal features, and a multimodal Transformer that enforces interactions of the learned video features with diversified texts. Our pre-training model achieves new state-of-the-art results in 10 VL understanding tasks and 2 more novel text-to-visual generation tasks. For example, we outperform SOTA models with relative increases of 40.4% R@1 in zero-shot MSR-VTT text-to-video retrieval task and 55.4% in high-resolution dataset LSMDC. The learned VL embedding is also effective in generating visually pleasing and semantically relevant results in text-to-visual editing and super-resolution tasks.

  • 8 authors
·
Nov 19, 2021

When Tokens Talk Too Much: A Survey of Multimodal Long-Context Token Compression across Images, Videos, and Audios

Multimodal large language models (MLLMs) have made remarkable strides, largely driven by their ability to process increasingly long and complex contexts, such as high-resolution images, extended video sequences, and lengthy audio input. While this ability significantly enhances MLLM capabilities, it introduces substantial computational challenges, primarily due to the quadratic complexity of self-attention mechanisms with numerous input tokens. To mitigate these bottlenecks, token compression has emerged as an auspicious and critical approach, efficiently reducing the number of tokens during both training and inference. In this paper, we present the first systematic survey and synthesis of the burgeoning field of multimodal long context token compression. Recognizing that effective compression strategies are deeply tied to the unique characteristics and redundancies of each modality, we categorize existing approaches by their primary data focus, enabling researchers to quickly access and learn methods tailored to their specific area of interest: (1) image-centric compression, which addresses spatial redundancy in visual data; (2) video-centric compression, which tackles spatio-temporal redundancy in dynamic sequences; and (3) audio-centric compression, which handles temporal and spectral redundancy in acoustic signals. Beyond this modality-driven categorization, we further dissect methods based on their underlying mechanisms, including transformation-based, similarity-based, attention-based, and query-based approaches. By providing a comprehensive and structured overview, this survey aims to consolidate current progress, identify key challenges, and inspire future research directions in this rapidly evolving domain. We also maintain a public repository to continuously track and update the latest advances in this promising area.

One missing piece in Vision and Language: A Survey on Comics Understanding

Vision-language models have recently evolved into versatile systems capable of high performance across a range of tasks, such as document understanding, visual question answering, and grounding, often in zero-shot settings. Comics Understanding, a complex and multifaceted field, stands to greatly benefit from these advances. Comics, as a medium, combine rich visual and textual narratives, challenging AI models with tasks that span image classification, object detection, instance segmentation, and deeper narrative comprehension through sequential panels. However, the unique structure of comics -- characterized by creative variations in style, reading order, and non-linear storytelling -- presents a set of challenges distinct from those in other visual-language domains. In this survey, we present a comprehensive review of Comics Understanding from both dataset and task perspectives. Our contributions are fivefold: (1) We analyze the structure of the comics medium, detailing its distinctive compositional elements; (2) We survey the widely used datasets and tasks in comics research, emphasizing their role in advancing the field; (3) We introduce the Layer of Comics Understanding (LoCU) framework, a novel taxonomy that redefines vision-language tasks within comics and lays the foundation for future work; (4) We provide a detailed review and categorization of existing methods following the LoCU framework; (5) Finally, we highlight current research challenges and propose directions for future exploration, particularly in the context of vision-language models applied to comics. This survey is the first to propose a task-oriented framework for comics intelligence and aims to guide future research by addressing critical gaps in data availability and task definition. A project associated with this survey is available at https://github.com/emanuelevivoli/awesome-comics-understanding.

Adaptive Graph Pruning for Multi-Agent Communication

Large Language Model (LLM) based multi-agent systems have shown remarkable performance in various tasks, especially when enhanced through collaborative communication. However, current methods often rely on a fixed number of agents and static communication structures, limiting their ability to adapt to varying task complexities. In this paper, we propose Adaptive Graph Pruning (AGP), a novel task-adaptive multi-agent collaboration framework that jointly optimizes agent quantity (hard-pruning) and communication topology (soft-pruning). Specifically, our method employs a two-stage training strategy: firstly, independently training soft-pruning networks for different agent quantities to determine optimal agent-quantity-specific complete graphs and positional masks across specific tasks; and then jointly optimizing hard-pruning and soft-pruning within a maximum complete graph to dynamically configure the number of agents and their communication topologies per task. Extensive experiments demonstrate that our approach is: (1) High-performing, achieving state-of-the-art results across six benchmarks and consistently generalizes across multiple mainstream LLM architectures, with a increase in performance of 2.58%sim 9.84%; (2) Task-adaptive, dynamically constructing optimized communication topologies tailored to specific tasks, with an extremely high performance in all three task categories (general reasoning, mathematical reasoning, and code generation); (3) Token-economical, having fewer training steps and token consumption at the same time, with a decrease in token consumption of 90%+; and (4) Training-efficient, achieving high performance with very few training steps compared with other methods. The performance will surpass the existing baselines after about ten steps of training under six benchmarks.

  • 4 authors
·
Jun 3

AssistedDS: Benchmarking How External Domain Knowledge Assists LLMs in Automated Data Science

Large language models (LLMs) have advanced the automation of data science workflows. Yet it remains unclear whether they can critically leverage external domain knowledge as human data scientists do in practice. To answer this question, we introduce AssistedDS (Assisted Data Science), a benchmark designed to systematically evaluate how LLMs handle domain knowledge in tabular prediction tasks. AssistedDS features both synthetic datasets with explicitly known generative mechanisms and real-world Kaggle competitions, each accompanied by curated bundles of helpful and adversarial documents. These documents provide domain-specific insights into data cleaning, feature engineering, and model selection. We assess state-of-the-art LLMs on their ability to discern and apply beneficial versus harmful domain knowledge, evaluating submission validity, information recall, and predictive performance. Our results demonstrate three key findings: (1) LLMs frequently exhibit an uncritical adoption of provided information, significantly impairing their predictive performance when adversarial content is introduced, (2) helpful guidance is often insufficient to counteract the negative influence of adversarial information, and (3) in Kaggle datasets, LLMs often make errors in handling time-series data, applying consistent feature engineering across different folds, and interpreting categorical variables correctly. These findings highlight a substantial gap in current models' ability to critically evaluate and leverage expert knowledge, underscoring an essential research direction for developing more robust, knowledge-aware automated data science systems.

  • 15 authors
·
May 25

PoseX: AI Defeats Physics Approaches on Protein-Ligand Cross Docking

Recently, significant progress has been made in protein-ligand docking, especially in modern deep learning methods, and some benchmarks were proposed, e.g., PoseBench, Plinder. However, these benchmarks suffer from less practical evaluation setups (e.g., blind docking, self docking), or heavy framework that involves training, raising challenges to assess docking methods efficiently. To fill this gap, we proposed PoseX, an open-source benchmark focusing on self-docking and cross-docking, to evaluate the algorithmic advances practically and comprehensively. Specifically, first, we curate a new evaluation dataset with 718 entries for self docking and 1,312 for cross docking; second, we incorporate 22 docking methods across three methodological categories, including (1) traditional physics-based methods (e.g., Schr\"odinger Glide), (2) AI docking methods (e.g., DiffDock), (3) AI co-folding methods (e.g., AlphaFold3); third, we design a relaxation method as post-processing to minimize conformation energy and refine binding pose; fourth, we released a leaderboard to rank submitted models in real time. We draw some key insights via extensive experiments: (1) AI-based approaches have already surpassed traditional physics-based approaches in overall docking accuracy (RMSD). The longstanding generalization issues that have plagued AI molecular docking have been significantly alleviated in the latest models. (2) The stereochemical deficiencies of AI-based approaches can be greatly alleviated with post-processing relaxation. Combining AI docking methods with the enhanced relaxation method achieves the best performance to date. (3) AI co-folding methods commonly face ligand chirality issues, which cannot be resolved by relaxation. The code, curated dataset and leaderboard are released at https://github.com/CataAI/PoseX.

  • 16 authors
·
May 3

Vision-Language Models for Vision Tasks: A Survey

Most visual recognition studies rely heavily on crowd-labelled data in deep neural networks (DNNs) training, and they usually train a DNN for each single visual recognition task, leading to a laborious and time-consuming visual recognition paradigm. To address the two challenges, Vision-Language Models (VLMs) have been intensively investigated recently, which learns rich vision-language correlation from web-scale image-text pairs that are almost infinitely available on the Internet and enables zero-shot predictions on various visual recognition tasks with a single VLM. This paper provides a systematic review of visual language models for various visual recognition tasks, including: (1) the background that introduces the development of visual recognition paradigms; (2) the foundations of VLM that summarize the widely-adopted network architectures, pre-training objectives, and downstream tasks; (3) the widely-adopted datasets in VLM pre-training and evaluations; (4) the review and categorization of existing VLM pre-training methods, VLM transfer learning methods, and VLM knowledge distillation methods; (5) the benchmarking, analysis and discussion of the reviewed methods; (6) several research challenges and potential research directions that could be pursued in the future VLM studies for visual recognition. A project associated with this survey has been created at https://github.com/jingyi0000/VLM_survey.

  • 4 authors
·
Apr 2, 2023

Recon, Answer, Verify: Agents in Search of Truth

Automated fact checking with large language models (LLMs) offers a scalable alternative to manual verification. Evaluating fact checking is challenging as existing benchmark datasets often include post claim analysis and annotator cues, which are absent in real world scenarios where claims are fact checked immediately after being made. This limits the realism of current evaluations. We present Politi Fact Only (PFO), a 5 class benchmark dataset of 2,982 political claims from politifact.com, where all post claim analysis and annotator cues have been removed manually. This ensures that models are evaluated using only the information that would have been available prior to the claim's verification. Evaluating LLMs on PFO, we see an average performance drop of 22% in terms of macro f1 compared to PFO's unfiltered version. Based on the identified challenges of the existing LLM based fact checking system, we propose RAV (Recon Answer Verify), an agentic framework with three agents: question generator, answer generator, and label generator. Our pipeline iteratively generates and answers sub questions to verify different aspects of the claim before finally generating the label. RAV generalizes across domains and label granularities, and it outperforms state of the art approaches on well known baselines RAWFC (fact checking, 3 class) by 25.28%, and on HOVER (encyclopedia, 2 class) by 1.54% on 2 hop, 4.94% on 3 hop, and 1.78% on 4 hop, sub categories respectively. RAV shows the least performance drop compared to baselines of 16.3% in macro f1 when we compare PFO with its unfiltered version.

  • 3 authors
·
Jul 4

Relation-Rich Visual Document Generator for Visual Information Extraction

Despite advances in Large Language Models (LLMs) and Multimodal LLMs (MLLMs) for visual document understanding (VDU), visual information extraction (VIE) from relation-rich documents remains challenging due to the layout diversity and limited training data. While existing synthetic document generators attempt to address data scarcity, they either rely on manually designed layouts and templates, or adopt rule-based approaches that limit layout diversity. Besides, current layout generation methods focus solely on topological patterns without considering textual content, making them impractical for generating documents with complex associations between the contents and layouts. In this paper, we propose a Relation-rIch visual Document GEnerator (RIDGE) that addresses these limitations through a two-stage approach: (1) Content Generation, which leverages LLMs to generate document content using a carefully designed Hierarchical Structure Text format which captures entity categories and relationships, and (2) Content-driven Layout Generation, which learns to create diverse, plausible document layouts solely from easily available Optical Character Recognition (OCR) results, requiring no human labeling or annotations efforts. Experimental results have demonstrated that our method significantly enhances the performance of document understanding models on various VIE benchmarks. The code and model will be available at https://github.com/AI-Application-and-Integration-Lab/RIDGE .

  • 6 authors
·
Apr 14

Visual Instruction Tuning towards General-Purpose Multimodal Model: A Survey

Traditional computer vision generally solves each single task independently by a dedicated model with the task instruction implicitly designed in the model architecture, arising two limitations: (1) it leads to task-specific models, which require multiple models for different tasks and restrict the potential synergies from diverse tasks; (2) it leads to a pre-defined and fixed model interface that has limited interactivity and adaptability in following user' task instructions. To address them, Visual Instruction Tuning (VIT) has been intensively studied recently, which finetunes a large vision model with language as task instructions, aiming to learn from a wide range of vision tasks described by language instructions a general-purpose multimodal model that can follow arbitrary instructions and thus solve arbitrary tasks specified by the user. This work aims to provide a systematic review of visual instruction tuning, covering (1) the background that presents computer vision task paradigms and the development of VIT; (2) the foundations of VIT that introduce commonly used network architectures, visual instruction tuning frameworks and objectives, and evaluation setups and tasks; (3) the commonly used datasets in visual instruction tuning and evaluation; (4) the review of existing VIT methods that categorizes them with a taxonomy according to both the studied vision task and the method design and highlights the major contributions, strengths, and shortcomings of them; (5) the comparison and discussion of VIT methods over various instruction-following benchmarks; (6) several challenges, open directions and possible future works in visual instruction tuning research.

  • 5 authors
·
Dec 27, 2023

Bongard-OpenWorld: Few-Shot Reasoning for Free-form Visual Concepts in the Real World

We introduce Bongard-OpenWorld, a new benchmark for evaluating real-world few-shot reasoning for machine vision. It originates from the classical Bongard Problems (BPs): Given two sets of images (positive and negative), the model needs to identify the set that query images belong to by inducing the visual concepts, which is exclusively depicted by images from the positive set. Our benchmark inherits the few-shot concept induction of the original BPs while adding the two novel layers of challenge: 1) open-world free-form concepts, as the visual concepts in Bongard-OpenWorld are unique compositions of terms from an open vocabulary, ranging from object categories to abstract visual attributes and commonsense factual knowledge; 2) real-world images, as opposed to the synthetic diagrams used by many counterparts. In our exploration, Bongard-OpenWorld already imposes a significant challenge to current few-shot reasoning algorithms. We further investigate to which extent the recently introduced Large Language Models (LLMs) and Vision-Language Models (VLMs) can solve our task, by directly probing VLMs, and combining VLMs and LLMs in an interactive reasoning scheme. We even designed a neuro-symbolic reasoning approach that reconciles LLMs & VLMs with logical reasoning to emulate the human problem-solving process for Bongard Problems. However, none of these approaches manage to close the human-machine gap, as the best learner achieves 64% accuracy while human participants easily reach 91%. We hope Bongard-OpenWorld can help us better understand the limitations of current visual intelligence and facilitate future research on visual agents with stronger few-shot visual reasoning capabilities.

  • 7 authors
·
Oct 16, 2023

Research on the Impact of Executive Shareholding on New Investment in Enterprises Based on Multivariable Linear Regression Model

Based on principal-agent theory and optimal contract theory, companies use the method of increasing executives' shareholding to stimulate collaborative innovation. However, from the aspect of agency costs between management and shareholders (i.e. the first type) and between major shareholders and minority shareholders (i.e. the second type), the interests of management, shareholders and creditors will be unbalanced with the change of the marginal utility of executive equity incentives.In order to establish the correlation between the proportion of shares held by executives and investments in corporate innovation, we have chosen a range of publicly listed companies within China's A-share market as the focus of our study. Employing a multi-variable linear regression model, we aim to analyze this relationship thoroughly.The following models were developed: (1) the impact model of executive shareholding on corporate innovation investment; (2) the impact model of executive shareholding on two types of agency costs; (3)The model is employed to examine the mediating influence of the two categories of agency costs. Following both correlation and regression analyses, the findings confirm a meaningful and positive correlation between executives' shareholding and the augmentation of corporate innovation investments. Additionally, the results indicate that executive shareholding contributes to the reduction of the first type of agency cost, thereby fostering corporate innovation investment. However, simultaneously, it leads to an escalation in the second type of agency cost, thus impeding corporate innovation investment.

  • 10 authors
·
Sep 19, 2023

Introducing v0.5 of the AI Safety Benchmark from MLCommons

This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introduce a principled approach to specifying and constructing the benchmark, which for v0.5 covers only a single use case (an adult chatting to a general-purpose assistant in English), and a limited set of personas (i.e., typical users, malicious users, and vulnerable users). We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0.5 benchmark. We plan to release version 1.0 of the AI Safety Benchmark by the end of 2024. The v1.0 benchmark will provide meaningful insights into the safety of AI systems. However, the v0.5 benchmark should not be used to assess the safety of AI systems. We have sought to fully document the limitations, flaws, and challenges of v0.5. This release of v0.5 of the AI Safety Benchmark includes (1) a principled approach to specifying and constructing the benchmark, which comprises use cases, types of systems under test (SUTs), language and context, personas, tests, and test items; (2) a taxonomy of 13 hazard categories with definitions and subcategories; (3) tests for seven of the hazard categories, each comprising a unique set of test items, i.e., prompts. There are 43,090 test items in total, which we created with templates; (4) a grading system for AI systems against the benchmark; (5) an openly available platform, and downloadable tool, called ModelBench that can be used to evaluate the safety of AI systems on the benchmark; (6) an example evaluation report which benchmarks the performance of over a dozen openly available chat-tuned language models; (7) a test specification for the benchmark.

  • 97 authors
·
Apr 18, 2024 1

Copyright Protection for Large Language Models: A Survey of Methods, Challenges, and Trends

Copyright protection for large language models is of critical importance, given their substantial development costs, proprietary value, and potential for misuse. Existing surveys have predominantly focused on techniques for tracing LLM-generated content-namely, text watermarking-while a systematic exploration of methods for protecting the models themselves (i.e., model watermarking and model fingerprinting) remains absent. Moreover, the relationships and distinctions among text watermarking, model watermarking, and model fingerprinting have not been comprehensively clarified. This work presents a comprehensive survey of the current state of LLM copyright protection technologies, with a focus on model fingerprinting, covering the following aspects: (1) clarifying the conceptual connection from text watermarking to model watermarking and fingerprinting, and adopting a unified terminology that incorporates model watermarking into the broader fingerprinting framework; (2) providing an overview and comparison of diverse text watermarking techniques, highlighting cases where such methods can function as model fingerprinting; (3) systematically categorizing and comparing existing model fingerprinting approaches for LLM copyright protection; (4) presenting, for the first time, techniques for fingerprint transfer and fingerprint removal; (5) summarizing evaluation metrics for model fingerprints, including effectiveness, harmlessness, robustness, stealthiness, and reliability; and (6) discussing open challenges and future research directions. This survey aims to offer researchers a thorough understanding of both text watermarking and model fingerprinting technologies in the era of LLMs, thereby fostering further advances in protecting their intellectual property.

  • 11 authors
·
Aug 15 2

DriveQA: Passing the Driving Knowledge Test

If a Large Language Model (LLM) were to take a driving knowledge test today, would it pass? Beyond standard spatial and visual question-answering (QA) tasks on current autonomous driving benchmarks, driving knowledge tests require a complete understanding of all traffic rules, signage, and right-of-way principles. To pass this test, human drivers must discern various edge cases that rarely appear in real-world datasets. In this work, we present DriveQA, an extensive open-source text and vision-based benchmark that exhaustively covers traffic regulations and scenarios. Through our experiments using DriveQA, we show that (1) state-of-the-art LLMs and Multimodal LLMs (MLLMs) perform well on basic traffic rules but exhibit significant weaknesses in numerical reasoning and complex right-of-way scenarios, traffic sign variations, and spatial layouts, (2) fine-tuning on DriveQA improves accuracy across multiple categories, particularly in regulatory sign recognition and intersection decision-making, (3) controlled variations in DriveQA-V provide insights into model sensitivity to environmental factors such as lighting, perspective, distance, and weather conditions, and (4) pretraining on DriveQA enhances downstream driving task performance, leading to improved results on real-world datasets such as nuScenes and BDD, while also demonstrating that models can internalize text and synthetic traffic knowledge to generalize effectively across downstream QA tasks.

  • 3 authors
·
Aug 29