new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 27

Deep Reinforcement Learning at the Edge of the Statistical Precipice

Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing their relative performance on a large suite of tasks. Most published results on deep RL benchmarks compare point estimates of aggregate performance such as mean and median scores across tasks, ignoring the statistical uncertainty implied by the use of a finite number of training runs. Beginning with the Arcade Learning Environment (ALE), the shift towards computationally-demanding benchmarks has led to the practice of evaluating only a small number of runs per task, exacerbating the statistical uncertainty in point estimates. In this paper, we argue that reliable evaluation in the few run deep RL regime cannot ignore the uncertainty in results without running the risk of slowing down progress in the field. We illustrate this point using a case study on the Atari 100k benchmark, where we find substantial discrepancies between conclusions drawn from point estimates alone versus a more thorough statistical analysis. With the aim of increasing the field's confidence in reported results with a handful of runs, we advocate for reporting interval estimates of aggregate performance and propose performance profiles to account for the variability in results, as well as present more robust and efficient aggregate metrics, such as interquartile mean scores, to achieve small uncertainty in results. Using such statistical tools, we scrutinize performance evaluations of existing algorithms on other widely used RL benchmarks including the ALE, Procgen, and the DeepMind Control Suite, again revealing discrepancies in prior comparisons. Our findings call for a change in how we evaluate performance in deep RL, for which we present a more rigorous evaluation methodology, accompanied with an open-source library rliable, to prevent unreliable results from stagnating the field.

  • 5 authors
·
Aug 30, 2021

MuDreamer: Learning Predictive World Models without Reconstruction

The DreamerV3 agent recently demonstrated state-of-the-art performance in diverse domains, learning powerful world models in latent space using a pixel reconstruction loss. However, while the reconstruction loss is essential to Dreamer's performance, it also necessitates modeling unnecessary information. Consequently, Dreamer sometimes fails to perceive crucial elements which are necessary for task-solving when visual distractions are present in the observation, significantly limiting its potential. In this paper, we present MuDreamer, a robust reinforcement learning agent that builds upon the DreamerV3 algorithm by learning a predictive world model without the need for reconstructing input signals. Rather than relying on pixel reconstruction, hidden representations are instead learned by predicting the environment value function and previously selected actions. Similar to predictive self-supervised methods for images, we find that the use of batch normalization is crucial to prevent learning collapse. We also study the effect of KL balancing between model posterior and prior losses on convergence speed and learning stability. We evaluate MuDreamer on the commonly used DeepMind Visual Control Suite and demonstrate stronger robustness to visual distractions compared to DreamerV3 and other reconstruction-free approaches, replacing the environment background with task-irrelevant real-world videos. Our method also achieves comparable performance on the Atari100k benchmark while benefiting from faster training.

  • 2 authors
·
May 23, 2024

Drama: Mamba-Enabled Model-Based Reinforcement Learning Is Sample and Parameter Efficient

Model-based reinforcement learning (RL) offers a solution to the data inefficiency that plagues most model-free RL algorithms. However, learning a robust world model often requires complex and deep architectures, which are computationally expensive and challenging to train. Within the world model, sequence models play a critical role in accurate predictions, and various architectures have been explored, each with its own challenges. Currently, recurrent neural network (RNN)-based world models struggle with vanishing gradients and capturing long-term dependencies. Transformers, on the other hand, suffer from the quadratic memory and computational complexity of self-attention mechanisms, scaling as O(n^2), where n is the sequence length. To address these challenges, we propose a state space model (SSM)-based world model, Drama, specifically leveraging Mamba, that achieves O(n) memory and computational complexity while effectively capturing long-term dependencies and enabling efficient training with longer sequences. We also introduce a novel sampling method to mitigate the suboptimality caused by an incorrect world model in the early training stages. Combining these techniques, Drama achieves a normalised score on the Atari100k benchmark that is competitive with other state-of-the-art (SOTA) model-based RL algorithms, using only a 7 million-parameter world model. Drama is accessible and trainable on off-the-shelf hardware, such as a standard laptop. Our code is available at https://github.com/realwenlongwang/Drama.git.

  • 5 authors
·
Oct 11, 2024

STORI: A Benchmark and Taxonomy for Stochastic Environments

Reinforcement learning (RL) techniques have achieved impressive performance on simulated benchmarks such as Atari100k, yet recent advances remain largely confined to simulation and show limited transfer to real-world domains. A central obstacle is environmental stochasticity, as real systems involve noisy observations, unpredictable dynamics, and non-stationary conditions that undermine the stability of current methods. Existing benchmarks rarely capture these uncertainties and favor simplified settings where algorithms can be tuned to succeed. The absence of a well-defined taxonomy of stochasticity further complicates evaluation, as robustness to one type of stochastic perturbation, such as sticky actions, does not guarantee robustness to other forms of uncertainty. To address this critical gap, we introduce STORI (STOchastic-ataRI), a benchmark that systematically incorporates diverse stochastic effects and enables rigorous evaluation of RL techniques under different forms of uncertainty. We propose a comprehensive five-type taxonomy of environmental stochasticity and demonstrate systematic vulnerabilities in state-of-the-art model-based RL algorithms through targeted evaluation of DreamerV3 and STORM. Our findings reveal that world models dramatically underestimate environmental variance, struggle with action corruption, and exhibit unreliable dynamics under partial observability. We release the code and benchmark publicly at https://github.com/ARY2260/stori, providing a unified framework for developing more robust RL systems.

  • 3 authors
·
Sep 1