Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSTARSS23: An Audio-Visual Dataset of Spatial Recordings of Real Scenes with Spatiotemporal Annotations of Sound Events
While direction of arrival (DOA) of sound events is generally estimated from multichannel audio data recorded in a microphone array, sound events usually derive from visually perceptible source objects, e.g., sounds of footsteps come from the feet of a walker. This paper proposes an audio-visual sound event localization and detection (SELD) task, which uses multichannel audio and video information to estimate the temporal activation and DOA of target sound events. Audio-visual SELD systems can detect and localize sound events using signals from a microphone array and audio-visual correspondence. We also introduce an audio-visual dataset, Sony-TAu Realistic Spatial Soundscapes 2023 (STARSS23), which consists of multichannel audio data recorded with a microphone array, video data, and spatiotemporal annotation of sound events. Sound scenes in STARSS23 are recorded with instructions, which guide recording participants to ensure adequate activity and occurrences of sound events. STARSS23 also serves human-annotated temporal activation labels and human-confirmed DOA labels, which are based on tracking results of a motion capture system. Our benchmark results demonstrate the benefits of using visual object positions in audio-visual SELD tasks. The data is available at https://zenodo.org/record/7880637.
A Unified Audio-Visual Learning Framework for Localization, Separation, and Recognition
The ability to accurately recognize, localize and separate sound sources is fundamental to any audio-visual perception task. Historically, these abilities were tackled separately, with several methods developed independently for each task. However, given the interconnected nature of source localization, separation, and recognition, independent models are likely to yield suboptimal performance as they fail to capture the interdependence between these tasks. To address this problem, we propose a unified audio-visual learning framework (dubbed OneAVM) that integrates audio and visual cues for joint localization, separation, and recognition. OneAVM comprises a shared audio-visual encoder and task-specific decoders trained with three objectives. The first objective aligns audio and visual representations through a localized audio-visual correspondence loss. The second tackles visual source separation using a traditional mix-and-separate framework. Finally, the third objective reinforces visual feature separation and localization by mixing images in pixel space and aligning their representations with those of all corresponding sound sources. Extensive experiments on MUSIC, VGG-Instruments, VGG-Music, and VGGSound datasets demonstrate the effectiveness of OneAVM for all three tasks, audio-visual source localization, separation, and nearest neighbor recognition, and empirically demonstrate a strong positive transfer between them.
VGGSound: A Large-scale Audio-Visual Dataset
Our goal is to collect a large-scale audio-visual dataset with low label noise from videos in the wild using computer vision techniques. The resulting dataset can be used for training and evaluating audio recognition models. We make three contributions. First, we propose a scalable pipeline based on computer vision techniques to create an audio dataset from open-source media. Our pipeline involves obtaining videos from YouTube; using image classification algorithms to localize audio-visual correspondence; and filtering out ambient noise using audio verification. Second, we use this pipeline to curate the VGGSound dataset consisting of more than 210k videos for 310 audio classes. Third, we investigate various Convolutional Neural Network~(CNN) architectures and aggregation approaches to establish audio recognition baselines for our new dataset. Compared to existing audio datasets, VGGSound ensures audio-visual correspondence and is collected under unconstrained conditions. Code and the dataset are available at http://www.robots.ox.ac.uk/~vgg/data/vggsound/
Dual Mean-Teacher: An Unbiased Semi-Supervised Framework for Audio-Visual Source Localization
Audio-Visual Source Localization (AVSL) aims to locate sounding objects within video frames given the paired audio clips. Existing methods predominantly rely on self-supervised contrastive learning of audio-visual correspondence. Without any bounding-box annotations, they struggle to achieve precise localization, especially for small objects, and suffer from blurry boundaries and false positives. Moreover, the naive semi-supervised method is poor in fully leveraging the information of abundant unlabeled data. In this paper, we propose a novel semi-supervised learning framework for AVSL, namely Dual Mean-Teacher (DMT), comprising two teacher-student structures to circumvent the confirmation bias issue. Specifically, two teachers, pre-trained on limited labeled data, are employed to filter out noisy samples via the consensus between their predictions, and then generate high-quality pseudo-labels by intersecting their confidence maps. The sufficient utilization of both labeled and unlabeled data and the proposed unbiased framework enable DMT to outperform current state-of-the-art methods by a large margin, with CIoU of 90.4% and 48.8% on Flickr-SoundNet and VGG-Sound Source, obtaining 8.9%, 9.6% and 4.6%, 6.4% improvements over self- and semi-supervised methods respectively, given only 3% positional-annotations. We also extend our framework to some existing AVSL methods and consistently boost their performance.
FoleyBench: A Benchmark For Video-to-Audio Models
Video-to-audio generation (V2A) is of increasing importance in domains such as film post-production, AR/VR, and sound design, particularly for the creation of Foley sound effects synchronized with on-screen actions. Foley requires generating audio that is both semantically aligned with visible events and temporally aligned with their timing. Yet, there is a mismatch between evaluation and downstream applications due to the absence of a benchmark tailored to Foley-style scenarios. We find that 74% of videos from past evaluation datasets have poor audio-visual correspondence. Moreover, they are dominated by speech and music, domains that lie outside the use case for Foley. To address this gap, we introduce FoleyBench, the first large-scale benchmark explicitly designed for Foley-style V2A evaluation. FoleyBench contains 5,000 (video, ground-truth audio, text caption) triplets, each featuring visible sound sources with audio causally tied to on-screen events. The dataset is built using an automated, scalable pipeline applied to in-the-wild internet videos from YouTube-based and Vimeo-based sources. Compared to past datasets, we show that videos from FoleyBench have stronger coverage of sound categories from a taxonomy specifically designed for Foley sound. Each clip is further labeled with metadata capturing source complexity, UCS/AudioSet category, and video length, enabling fine-grained analysis of model performance and failure modes. We benchmark several state-of-the-art V2A models, evaluating them on audio quality, audio-video alignment, temporal synchronization, and audio-text consistency. Samples are available at: https://gclef-cmu.org/foleybench
CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained Language-Vision Models
Recent work has studied text-to-audio synthesis using large amounts of paired text-audio data. However, audio recordings with high-quality text annotations can be difficult to acquire. In this work, we approach text-to-audio synthesis using unlabeled videos and pretrained language-vision models. We propose to learn the desired text-audio correspondence by leveraging the visual modality as a bridge. We train a conditional diffusion model to generate the audio track of a video, given a video frame encoded by a pretrained contrastive language-image pretraining (CLIP) model. At test time, we first explore performing a zero-shot modality transfer and condition the diffusion model with a CLIP-encoded text query. However, we observe a noticeable performance drop with respect to image queries. To close this gap, we further adopt a pretrained diffusion prior model to generate a CLIP image embedding given a CLIP text embedding. Our results show the effectiveness of the proposed method, and that the pretrained diffusion prior can reduce the modality transfer gap. While we focus on text-to-audio synthesis, the proposed model can also generate audio from image queries, and it shows competitive performance against a state-of-the-art image-to-audio synthesis model in a subjective listening test. This study offers a new direction of approaching text-to-audio synthesis that leverages the naturally-occurring audio-visual correspondence in videos and the power of pretrained language-vision models.
SyncFlow: Toward Temporally Aligned Joint Audio-Video Generation from Text
Video and audio are closely correlated modalities that humans naturally perceive together. While recent advancements have enabled the generation of audio or video from text, producing both modalities simultaneously still typically relies on either a cascaded process or multi-modal contrastive encoders. These approaches, however, often lead to suboptimal results due to inherent information losses during inference and conditioning. In this paper, we introduce SyncFlow, a system that is capable of simultaneously generating temporally synchronized audio and video from text. The core of SyncFlow is the proposed dual-diffusion-transformer (d-DiT) architecture, which enables joint video and audio modelling with proper information fusion. To efficiently manage the computational cost of joint audio and video modelling, SyncFlow utilizes a multi-stage training strategy that separates video and audio learning before joint fine-tuning. Our empirical evaluations demonstrate that SyncFlow produces audio and video outputs that are more correlated than baseline methods with significantly enhanced audio quality and audio-visual correspondence. Moreover, we demonstrate strong zero-shot capabilities of SyncFlow, including zero-shot video-to-audio generation and adaptation to novel video resolutions without further training.
Look, Listen and Learn
We consider the question: what can be learnt by looking at and listening to a large number of unlabelled videos? There is a valuable, but so far untapped, source of information contained in the video itself -- the correspondence between the visual and the audio streams, and we introduce a novel "Audio-Visual Correspondence" learning task that makes use of this. Training visual and audio networks from scratch, without any additional supervision other than the raw unconstrained videos themselves, is shown to successfully solve this task, and, more interestingly, result in good visual and audio representations. These features set the new state-of-the-art on two sound classification benchmarks, and perform on par with the state-of-the-art self-supervised approaches on ImageNet classification. We also demonstrate that the network is able to localize objects in both modalities, as well as perform fine-grained recognition tasks.
Objects that Sound
In this paper our objectives are, first, networks that can embed audio and visual inputs into a common space that is suitable for cross-modal retrieval; and second, a network that can localize the object that sounds in an image, given the audio signal. We achieve both these objectives by training from unlabelled video using only audio-visual correspondence (AVC) as the objective function. This is a form of cross-modal self-supervision from video. To this end, we design new network architectures that can be trained for cross-modal retrieval and localizing the sound source in an image, by using the AVC task. We make the following contributions: (i) show that audio and visual embeddings can be learnt that enable both within-mode (e.g. audio-to-audio) and between-mode retrieval; (ii) explore various architectures for the AVC task, including those for the visual stream that ingest a single image, or multiple images, or a single image and multi-frame optical flow; (iii) show that the semantic object that sounds within an image can be localized (using only the sound, no motion or flow information); and (iv) give a cautionary tale on how to avoid undesirable shortcuts in the data preparation.
Can CLIP Help Sound Source Localization?
Large-scale pre-trained image-text models demonstrate remarkable versatility across diverse tasks, benefiting from their robust representational capabilities and effective multimodal alignment. We extend the application of these models, specifically CLIP, to the domain of sound source localization. Unlike conventional approaches, we employ the pre-trained CLIP model without explicit text input, relying solely on the audio-visual correspondence. To this end, we introduce a framework that translates audio signals into tokens compatible with CLIP's text encoder, yielding audio-driven embeddings. By directly using these embeddings, our method generates audio-grounded masks for the provided audio, extracts audio-grounded image features from the highlighted regions, and aligns them with the audio-driven embeddings using the audio-visual correspondence objective. Our findings suggest that utilizing pre-trained image-text models enable our model to generate more complete and compact localization maps for the sounding objects. Extensive experiments show that our method outperforms state-of-the-art approaches by a significant margin.
Discovering Sounding Objects by Audio Queries for Audio Visual Segmentation
Audio visual segmentation (AVS) aims to segment the sounding objects for each frame of a given video. To distinguish the sounding objects from silent ones, both audio-visual semantic correspondence and temporal interaction are required. The previous method applies multi-frame cross-modal attention to conduct pixel-level interactions between audio features and visual features of multiple frames simultaneously, which is both redundant and implicit. In this paper, we propose an Audio-Queried Transformer architecture, AQFormer, where we define a set of object queries conditioned on audio information and associate each of them to particular sounding objects. Explicit object-level semantic correspondence between audio and visual modalities is established by gathering object information from visual features with predefined audio queries. Besides, an Audio-Bridged Temporal Interaction module is proposed to exchange sounding object-relevant information among multiple frames with the bridge of audio features. Extensive experiments are conducted on two AVS benchmarks to show that our method achieves state-of-the-art performances, especially 7.1% M_J and 7.6% M_F gains on the MS3 setting.
Can Sound Replace Vision in LLaVA With Token Substitution?
What happens when we push audio-visual alignment to its absolute limits? To systematically investigate this question, we needed datasets with granular alignment quality annotations, but existing datasets treat alignment as binary, either synchronized or not. To address this limitation, we developed a comprehensive dataset featuring detailed alignment scores that reveal the hidden spectrum of audio-visual perceptual correspondence. Using these precise scores, we create "superaligned" representations by training exclusively on the most perfectly matched audio-visual pairs, then conduct our systematic investigation into how this extreme alignment transforms perceptual model behavior across retrieval and generation tasks. The encoders under study fall into two main groups consisting of image-centric encoders that were pretrained using visual modalities as intermediary hubs for connecting modalities, and text-centric encoders that were pretrained with direct audio-language alignment. We first measure the baseline performance of these encoders on two key tasks, namely cross-modal retrieval and text description generation in vision-language models. Subsequently, we realign all encoders with the CLIP space using highly coherent audio-visual data and observe the performance changes. Our findings reveal that the initial architectural type of the encoder determines how it responds to the alignment process. Image-centric encoders, which are inherently designed for alignment, demonstrate exceptional performance in cross-modal retrieval, but this intensive alignment causes compression of unique linguistic information and reduces the quality of their text description generation in vision-language models. In contrast, text-centric encoders, which possess stronger linguistic authenticity, are able to maintain a better balance between the two objectives.
V2Meow: Meowing to the Visual Beat via Music Generation
Generating high quality music that complements the visual content of a video is a challenging task. Most existing visual conditioned music generation systems generate symbolic music data, such as MIDI files, instead of raw audio waveform. Given the limited availability of symbolic music data, such methods can only generate music for a few instruments or for specific types of visual input. In this paper, we propose a novel approach called V2Meow that can generate high-quality music audio that aligns well with the visual semantics of a diverse range of video input types. Specifically, the proposed music generation system is a multi-stage autoregressive model which is trained with a number of O(100K) music audio clips paired with video frames, which are mined from in-the-wild music videos, and no parallel symbolic music data is involved. V2Meow is able to synthesize high-fidelity music audio waveform solely conditioned on pre-trained visual features extracted from an arbitrary silent video clip, and it also allows high-level control over the music style of generation examples via supporting text prompts in addition to the video frames conditioning. Through both qualitative and quantitative evaluations, we demonstrate that our model outperforms several existing music generation systems in terms of both visual-audio correspondence and audio quality.
Temporal and cross-modal attention for audio-visual zero-shot learning
Audio-visual generalised zero-shot learning for video classification requires understanding the relations between the audio and visual information in order to be able to recognise samples from novel, previously unseen classes at test time. The natural semantic and temporal alignment between audio and visual data in video data can be exploited to learn powerful representations that generalise to unseen classes at test time. We propose a multi-modal and Temporal Cross-attention Framework (\modelName) for audio-visual generalised zero-shot learning. Its inputs are temporally aligned audio and visual features that are obtained from pre-trained networks. Encouraging the framework to focus on cross-modal correspondence across time instead of self-attention within the modalities boosts the performance significantly. We show that our proposed framework that ingests temporal features yields state-of-the-art performance on the \ucf, \vgg, and \activity benchmarks for (generalised) zero-shot learning. Code for reproducing all results is available at https://github.com/ExplainableML/TCAF-GZSL.
CoAVT: A Cognition-Inspired Unified Audio-Visual-Text Pre-Training Model for Multimodal Processing
There has been a long-standing quest for a unified audio-visual-text model to enable various multimodal understanding tasks, which mimics the listening, seeing and reading process of human beings. Humans tends to represent knowledge using two separate systems: one for representing verbal (textual) information and one for representing non-verbal (visual and auditory) information. These two systems can operate independently but can also interact with each other. Motivated by this understanding of human cognition, in this paper, we introduce CoAVT -- a novel cognition-inspired Correlated Audio-Visual-Text pre-training model to connect the three modalities. It contains a joint audio-visual encoder that learns to encode audio-visual synchronization information together with the audio and visual content for non-verbal information, and a text encoder to handle textual input for verbal information. To bridge the gap between modalities, CoAVT employs a query encoder, which contains a set of learnable query embeddings, and extracts the most informative audiovisual features of the corresponding text. Additionally, to leverage the correspondences between audio and vision with language respectively, we also establish the audio-text and visual-text bi-modal alignments upon the foundational audiovisual-text tri-modal alignment to enhance the multimodal representation learning. Finally, we jointly optimize CoAVT model with three multimodal objectives: contrastive loss, matching loss and language modeling loss. Extensive experiments show that CoAVT can learn strong multimodal correlations and be generalized to various downstream tasks. CoAVT establishes new state-of-the-art performance on text-video retrieval task on AudioCaps for both zero-shot and fine-tuning settings, audio-visual event classification and audio-visual retrieval tasks on AudioSet and VGGSound.
Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding
We present Video-LLaMA, a multi-modal framework that empowers Large Language Models (LLMs) with the capability of understanding both visual and auditory content in the video. Video-LLaMA bootstraps cross-modal training from the frozen pre-trained visual \& audio encoders and the frozen LLMs. Unlike previous vision- LLMs that focus on static image comprehensions such as MiniGPT-4~zhu2023minigpt and LLaVA~liu2023visualit, Video-LLaMA tackles two challenges in video understanding: (1) capturing the temporal changes in visual scenes, (2) integrating audio-visual signals. For the first challenge, we propose Video Q-former to extend the pre-trained image encoder to a video encoder and introduce a video-to-text generation task to learn video-language correspondence. For the second challenge, we leverage ImageBind~girdhar2023imagebind as the pre-trained audio encoder which performs exceptionally well in aligning different modalities to a common embedding space. And then introduce an Audio Q-former to learn auditory query tokens. To align the output of both visual \& audio encoder with LLM's embedding space, we train Video-LLaMA on a large-scale vision caption dataset and a hign-quantity vision-instruction-tuning dataset. We found Video-LLaMA showcases the ability to perceive and comprehend video content, generating meaningful responses that are grounded in the visual and auditory information present in the videos. This highlights the potential of Video-LLaMA as a promising prototype for audio-visual AI assistants. Our code, pre-trained model, and demo are available at https://github.com/DAMO-NLP-SG/Video-LLaMA.
GaussianSpeech: Audio-Driven Gaussian Avatars
We introduce GaussianSpeech, a novel approach that synthesizes high-fidelity animation sequences of photo-realistic, personalized 3D human head avatars from spoken audio. To capture the expressive, detailed nature of human heads, including skin furrowing and finer-scale facial movements, we propose to couple speech signal with 3D Gaussian splatting to create realistic, temporally coherent motion sequences. We propose a compact and efficient 3DGS-based avatar representation that generates expression-dependent color and leverages wrinkle- and perceptually-based losses to synthesize facial details, including wrinkles that occur with different expressions. To enable sequence modeling of 3D Gaussian splats with audio, we devise an audio-conditioned transformer model capable of extracting lip and expression features directly from audio input. Due to the absence of high-quality datasets of talking humans in correspondence with audio, we captured a new large-scale multi-view dataset of audio-visual sequences of talking humans with native English accents and diverse facial geometry. GaussianSpeech consistently achieves state-of-the-art performance with visually natural motion at real time rendering rates, while encompassing diverse facial expressions and styles.
Identity-Preserving Video Dubbing Using Motion Warping
Video dubbing aims to synthesize realistic, lip-synced videos from a reference video and a driving audio signal. Although existing methods can accurately generate mouth shapes driven by audio, they often fail to preserve identity-specific features, largely because they do not effectively capture the nuanced interplay between audio cues and the visual attributes of reference identity . As a result, the generated outputs frequently lack fidelity in reproducing the unique textural and structural details of the reference identity. To address these limitations, we propose IPTalker, a novel and robust framework for video dubbing that achieves seamless alignment between driving audio and reference identity while ensuring both lip-sync accuracy and high-fidelity identity preservation. At the core of IPTalker is a transformer-based alignment mechanism designed to dynamically capture and model the correspondence between audio features and reference images, thereby enabling precise, identity-aware audio-visual integration. Building on this alignment, a motion warping strategy further refines the results by spatially deforming reference images to match the target audio-driven configuration. A dedicated refinement process then mitigates occlusion artifacts and enhances the preservation of fine-grained textures, such as mouth details and skin features. Extensive qualitative and quantitative evaluations demonstrate that IPTalker consistently outperforms existing approaches in terms of realism, lip synchronization, and identity retention, establishing a new state of the art for high-quality, identity-consistent video dubbing.
CLIPSep: Learning Text-queried Sound Separation with Noisy Unlabeled Videos
Recent years have seen progress beyond domain-specific sound separation for speech or music towards universal sound separation for arbitrary sounds. Prior work on universal sound separation has investigated separating a target sound out of an audio mixture given a text query. Such text-queried sound separation systems provide a natural and scalable interface for specifying arbitrary target sounds. However, supervised text-queried sound separation systems require costly labeled audio-text pairs for training. Moreover, the audio provided in existing datasets is often recorded in a controlled environment, causing a considerable generalization gap to noisy audio in the wild. In this work, we aim to approach text-queried universal sound separation by using only unlabeled data. We propose to leverage the visual modality as a bridge to learn the desired audio-textual correspondence. The proposed CLIPSep model first encodes the input query into a query vector using the contrastive language-image pretraining (CLIP) model, and the query vector is then used to condition an audio separation model to separate out the target sound. While the model is trained on image-audio pairs extracted from unlabeled videos, at test time we can instead query the model with text inputs in a zero-shot setting, thanks to the joint language-image embedding learned by the CLIP model. Further, videos in the wild often contain off-screen sounds and background noise that may hinder the model from learning the desired audio-textual correspondence. To address this problem, we further propose an approach called noise invariant training for training a query-based sound separation model on noisy data. Experimental results show that the proposed models successfully learn text-queried universal sound separation using only noisy unlabeled videos, even achieving competitive performance against a supervised model in some settings.
