- From SALAMANDRA to SALAMANDRATA: BSC Submission for WMT25 General Machine Translation Shared Task In this paper, we present the SALAMANDRATA family of models, an improved iteration of SALAMANDRA LLMs (Gonzalez-Agirre et al., 2025) specifically trained to achieve strong performance in translation-related tasks for 38 European languages. SALAMANDRATA comes in two scales: 2B and 7B parameters. For both versions, we applied the same training recipe with a first step of continual pre-training on parallel data, and a second step of supervised fine-tuning on high-quality instructions. The BSC submission to the WMT25 General Machine Translation shared task is based on the 7B variant of SALAMANDRATA. We first adapted the model vocabulary to support the additional non-European languages included in the task. This was followed by a second phase of continual pre-training and supervised fine-tuning, carefully designed to optimize performance across all translation directions for this year's shared task. For decoding, we employed two quality-aware strategies: Minimum Bayes Risk Decoding and Tuned Re-ranking using COMET and COMET-KIWI respectively. We publicly release both the 2B and 7B versions of SALAMANDRATA, along with the newer SALAMANDRATA-V2 model, on Hugging Face1 11 authors · Aug 18
1 The Berkeley Single Cell Computational Microscopy (BSCCM) Dataset Computational microscopy, in which hardware and algorithms of an imaging system are jointly designed, shows promise for making imaging systems that cost less, perform more robustly, and collect new types of information. Often, the performance of computational imaging systems, especially those that incorporate machine learning, is sample-dependent. Thus, standardized datasets are an essential tool for comparing the performance of different approaches. Here, we introduce the Berkeley Single Cell Computational Microscopy (BSCCM) dataset, which contains over ~12,000,000 images of 400,000 of individual white blood cells. The dataset contains images captured with multiple illumination patterns on an LED array microscope and fluorescent measurements of the abundance of surface proteins that mark different cell types. We hope this dataset will provide a valuable resource for the development and testing of new algorithms in computational microscopy and computer vision with practical biomedical applications. 5 authors · Feb 9, 2024