- 94% on CIFAR-10 in 3.29 Seconds on a Single GPU CIFAR-10 is among the most widely used datasets in machine learning, facilitating thousands of research projects per year. To accelerate research and reduce the cost of experiments, we introduce training methods for CIFAR-10 which reach 94% accuracy in 3.29 seconds, 95% in 10.4 seconds, and 96% in 46.3 seconds, when run on a single NVIDIA A100 GPU. As one factor contributing to these training speeds, we propose a derandomized variant of horizontal flipping augmentation, which we show improves over the standard method in every case where flipping is beneficial over no flipping at all. Our code is released at https://github.com/KellerJordan/cifar10-airbench. 1 authors · Mar 30, 2024
1 CIFAR10 to Compare Visual Recognition Performance between Deep Neural Networks and Humans Visual object recognition plays an essential role in human daily life. This ability is so efficient that we can recognize a face or an object seemingly without effort, though they may vary in position, scale, pose, and illumination. In the field of computer vision, a large number of studies have been carried out to build a human-like object recognition system. Recently, deep neural networks have shown impressive progress in object classification performance, and have been reported to surpass humans. Yet there is still lack of thorough and fair comparison between humans and artificial recognition systems. While some studies consider artificially degraded images, human recognition performance on dataset widely used for deep neural networks has not been fully evaluated. The present paper carries out an extensive experiment to evaluate human classification accuracy on CIFAR10, a well-known dataset of natural images. This then allows for a fair comparison with the state-of-the-art deep neural networks. Our CIFAR10-based evaluations show very efficient object recognition of recent CNNs but, at the same time, prove that they are still far from human-level capability of generalization. Moreover, a detailed investigation using multiple levels of difficulty reveals that easy images for humans may not be easy for deep neural networks. Such images form a subset of CIFAR10 that can be employed to evaluate and improve future neural networks. 1 authors · Nov 17, 2018
- A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets The original ImageNet dataset is a popular large-scale benchmark for training Deep Neural Networks. Since the cost of performing experiments (e.g, algorithm design, architecture search, and hyperparameter tuning) on the original dataset might be prohibitive, we propose to consider a downsampled version of ImageNet. In contrast to the CIFAR datasets and earlier downsampled versions of ImageNet, our proposed ImageNet32times32 (and its variants ImageNet64times64 and ImageNet16times16) contains exactly the same number of classes and images as ImageNet, with the only difference that the images are downsampled to 32times32 pixels per image (64times64 and 16times16 pixels for the variants, respectively). Experiments on these downsampled variants are dramatically faster than on the original ImageNet and the characteristics of the downsampled datasets with respect to optimal hyperparameters appear to remain similar. The proposed datasets and scripts to reproduce our results are available at http://image-net.org/download-images and https://github.com/PatrykChrabaszcz/Imagenet32_Scripts 3 authors · Jul 27, 2017
- CINIC-10 is not ImageNet or CIFAR-10 In this brief technical report we introduce the CINIC-10 dataset as a plug-in extended alternative for CIFAR-10. It was compiled by combining CIFAR-10 with images selected and downsampled from the ImageNet database. We present the approach to compiling the dataset, illustrate the example images for different classes, give pixel distributions for each part of the repository, and give some standard benchmarks for well known models. Details for download, usage, and compilation can be found in the associated github repository. 4 authors · Oct 2, 2018
2 Safurai 001: New Qualitative Approach for Code LLM Evaluation This paper presents Safurai-001, a new Large Language Model (LLM) with significant potential in the domain of coding assistance. Driven by recent advancements in coding LLMs, Safurai-001 competes in performance with the latest models like WizardCoder [Xu et al., 2023], PanguCoder [Shen et al., 2023] and Phi-1 [Gunasekar et al., 2023] but aims to deliver a more conversational interaction. By capitalizing on the progress in data engineering (including latest techniques of data transformation and prompt engineering) and instruction tuning, this new model promises to stand toe-to-toe with recent closed and open source developments. Recognizing the need for an efficacious evaluation metric for coding LLMs, this paper also introduces GPT4-based MultiParameters, an evaluation benchmark that harnesses varied parameters to present a comprehensive insight into the models functioning and performance. Our assessment shows that Safurai-001 can outperform GPT-3.5 by 1.58% and WizardCoder by 18.78% in the Code Readability parameter and more. 3 authors · Sep 20, 2023
1 Safurai-Csharp: Harnessing Synthetic Data to improve language-specific Code LLM This paper introduces Safurai-Csharp, an open-source model designed to specialize in the generation, completion, and debugging of C# code. Safurai-Csharp is built upon the novel CodeLlama 34B model and leverages the EvolInstruct technique, creating a refined and expanded dataset for its fine-tuning process. The results of its performance, a notable score of 56.33% on the Manual MultiPL-E benchmark (Zero-Shot, Pass@1), signal its high capacity to streamline developers' workflows and aid code learning. It shows promise in setting new stakes in the landscape of open-source C# LLMs and hopes to inspire more inclusive and wide-ranging development in the field of language-specific LLMs. 4 authors · Nov 6, 2023
1 A new method for structural diagnostics with muon tomography and deep learning This work investigates the production of high-resolution images of typical support elements in concrete structures by means of the muon tomography (muography). By exploiting detailed Monte Carlo radiation-matter simulations, we demonstrate the feasibility of the reconstruction of 1 cm--thick iron tubes inside 30 cm--deep concrete blocks, regarded as an important testbed within the structural diagnostics community. In addition, we present a new method for integrating simulated data with advanced deep learning techniques in order to improve the muon imaging of concrete structures. Through deep learning enhancement techniques, this results into a dramatic improvement of the image quality, as well as into a significant reduction of the data acquisition time, which are two critical limitations within the usual practice of muography for civil engineering diagnostics. 9 authors · Feb 5
- AI for operational methane emitter monitoring from space Mitigating methane emissions is the fastest way to stop global warming in the short-term and buy humanity time to decarbonise. Despite the demonstrated ability of remote sensing instruments to detect methane plumes, no system has been available to routinely monitor and act on these events. We present MARS-S2L, an automated AI-driven methane emitter monitoring system for Sentinel-2 and Landsat satellite imagery deployed operationally at the United Nations Environment Programme's International Methane Emissions Observatory. We compile a global dataset of thousands of super-emission events for training and evaluation, demonstrating that MARS-S2L can skillfully monitor emissions in a diverse range of regions globally, providing a 216% improvement in mean average precision over a current state-of-the-art detection method. Running this system operationally for six months has yielded 457 near-real-time detections in 22 different countries of which 62 have already been used to provide formal notifications to governments and stakeholders. 11 authors · Aug 8, 2024