new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 29

Unlocking the Hidden Potential of CLIP in Generalizable Deepfake Detection

This paper tackles the challenge of detecting partially manipulated facial deepfakes, which involve subtle alterations to specific facial features while retaining the overall context, posing a greater detection difficulty than fully synthetic faces. We leverage the Contrastive Language-Image Pre-training (CLIP) model, specifically its ViT-L/14 visual encoder, to develop a generalizable detection method that performs robustly across diverse datasets and unknown forgery techniques with minimal modifications to the original model. The proposed approach utilizes parameter-efficient fine-tuning (PEFT) techniques, such as LN-tuning, to adjust a small subset of the model's parameters, preserving CLIP's pre-trained knowledge and reducing overfitting. A tailored preprocessing pipeline optimizes the method for facial images, while regularization strategies, including L2 normalization and metric learning on a hyperspherical manifold, enhance generalization. Trained on the FaceForensics++ dataset and evaluated in a cross-dataset fashion on Celeb-DF-v2, DFDC, FFIW, and others, the proposed method achieves competitive detection accuracy comparable to or outperforming much more complex state-of-the-art techniques. This work highlights the efficacy of CLIP's visual encoder in facial deepfake detection and establishes a simple, powerful baseline for future research, advancing the field of generalizable deepfake detection. The code is available at: https://github.com/yermandy/deepfake-detection

  • 3 authors
·
Mar 25

GenConViT: Deepfake Video Detection Using Generative Convolutional Vision Transformer

Deepfakes have raised significant concerns due to their potential to spread false information and compromise digital media integrity. Current deepfake detection models often struggle to generalize across a diverse range of deepfake generation techniques and video content. In this work, we propose a Generative Convolutional Vision Transformer (GenConViT) for deepfake video detection. Our model combines ConvNeXt and Swin Transformer models for feature extraction, and it utilizes Autoencoder and Variational Autoencoder to learn from the latent data distribution. By learning from the visual artifacts and latent data distribution, GenConViT achieves improved performance in detecting a wide range of deepfake videos. The model is trained and evaluated on DFDC, FF++, TM, DeepfakeTIMIT, and Celeb-DF (v2) datasets. The proposed GenConViT model demonstrates strong performance in deepfake video detection, achieving high accuracy across the tested datasets. While our model shows promising results in deepfake video detection by leveraging visual and latent features, we demonstrate that further work is needed to improve its generalizability, i.e., when encountering out-of-distribution data. Our model provides an effective solution for identifying a wide range of fake videos while preserving media integrity. The open-source code for GenConViT is available at https://github.com/erprogs/GenConViT.

  • 6 authors
·
Jul 13, 2023

The Open Catalyst 2020 (OC20) Dataset and Community Challenges

Catalyst discovery and optimization is key to solving many societal and energy challenges including solar fuels synthesis, long-term energy storage, and renewable fertilizer production. Despite considerable effort by the catalysis community to apply machine learning models to the computational catalyst discovery process, it remains an open challenge to build models that can generalize across both elemental compositions of surfaces and adsorbate identity/configurations, perhaps because datasets have been smaller in catalysis than related fields. To address this we developed the OC20 dataset, consisting of 1,281,040 Density Functional Theory (DFT) relaxations (~264,890,000 single point evaluations) across a wide swath of materials, surfaces, and adsorbates (nitrogen, carbon, and oxygen chemistries). We supplemented this dataset with randomly perturbed structures, short timescale molecular dynamics, and electronic structure analyses. The dataset comprises three central tasks indicative of day-to-day catalyst modeling and comes with pre-defined train/validation/test splits to facilitate direct comparisons with future model development efforts. We applied three state-of-the-art graph neural network models (CGCNN, SchNet, Dimenet++) to each of these tasks as baseline demonstrations for the community to build on. In almost every task, no upper limit on model size was identified, suggesting that even larger models are likely to improve on initial results. The dataset and baseline models are both provided as open resources, as well as a public leader board to encourage community contributions to solve these important tasks.

  • 17 authors
·
Oct 19, 2020

AWARE-NET: Adaptive Weighted Averaging for Robust Ensemble Network in Deepfake Detection

Deepfake detection has become increasingly important due to the rise of synthetic media, which poses significant risks to digital identity and cyber presence for security and trust. While multiple approaches have improved detection accuracy, challenges remain in achieving consistent performance across diverse datasets and manipulation types. In response, we propose a novel two-tier ensemble framework for deepfake detection based on deep learning that hierarchically combines multiple instances of three state-of-the-art architectures: Xception, Res2Net101, and EfficientNet-B7. Our framework employs a unique approach where each architecture is instantiated three times with different initializations to enhance model diversity, followed by a learnable weighting mechanism that dynamically combines their predictions. Unlike traditional fixed-weight ensembles, our first-tier averages predictions within each architecture family to reduce model variance, while the second tier learns optimal contribution weights through backpropagation, automatically adjusting each architecture's influence based on their detection reliability. Our experiments achieved state-of-the-art intra-dataset performance with AUC scores of 99.22% (FF++) and 100.00% (CelebDF-v2), and F1 scores of 98.06% (FF++) and 99.94% (CelebDF-v2) without augmentation. With augmentation, we achieve AUC scores of 99.47% (FF++) and 100.00% (CelebDF-v2), and F1 scores of 98.43% (FF++) and 99.95% (CelebDF-v2). The framework demonstrates robust cross-dataset generalization, achieving AUC scores of 88.20% and 72.52%, and F1 scores of 93.16% and 80.62% in cross-dataset evaluations.

  • 6 authors
·
May 1