- Emotion-Aware Contrastive Adaptation Network for Source-Free Cross-Corpus Speech Emotion Recognition Cross-corpus speech emotion recognition (SER) aims to transfer emotional knowledge from a labeled source corpus to an unlabeled corpus. However, prior methods require access to source data during adaptation, which is unattainable in real-life scenarios due to data privacy protection concerns. This paper tackles a more practical task, namely source-free cross-corpus SER, where a pre-trained source model is adapted to the target domain without access to source data. To address the problem, we propose a novel method called emotion-aware contrastive adaptation network (ECAN). The core idea is to capture local neighborhood information between samples while considering the global class-level adaptation. Specifically, we propose a nearest neighbor contrastive learning to promote local emotion consistency among features of highly similar samples. Furthermore, relying solely on nearest neighborhoods may lead to ambiguous boundaries between clusters. Thus, we incorporate supervised contrastive learning to encourage greater separation between clusters representing different emotions, thereby facilitating improved class-level adaptation. Extensive experiments indicate that our proposed ECAN significantly outperforms state-of-the-art methods under the source-free cross-corpus SER setting on several speech emotion corpora. 7 authors · Jan 23, 2024
- MetaSID: Singer Identification with Domain Adaptation for Metaverse Metaverse has stretched the real world into unlimited space. There will be more live concerts in Metaverse. The task of singer identification is to identify the song belongs to which singer. However, there has been a tough problem in singer identification, which is the different live effects. The studio version is different from the live version, the data distribution of the training set and the test set are different, and the performance of the classifier decreases. This paper proposes the use of the domain adaptation method to solve the live effect in singer identification. Three methods of domain adaptation combined with Convolutional Recurrent Neural Network (CRNN) are designed, which are Maximum Mean Discrepancy (MMD), gradient reversal (Revgrad), and Contrastive Adaptation Network (CAN). MMD is a distance-based method, which adds domain loss. Revgrad is based on the idea that learned features can represent different domain samples. CAN is based on class adaptation, it takes into account the correspondence between the categories of the source domain and target domain. Experimental results on the public dataset of Artist20 show that CRNN-MMD leads to an improvement over the baseline CRNN by 0.14. The CRNN-RevGrad outperforms the baseline by 0.21. The CRNN-CAN achieved state of the art with the F1 measure value of 0.83 on album split. 4 authors · May 24, 2022
- Unsupervised Domain Adaptation for Training Event-Based Networks Using Contrastive Learning and Uncorrelated Conditioning Event-based cameras offer reliable measurements for preforming computer vision tasks in high-dynamic range environments and during fast motion maneuvers. However, adopting deep learning in event-based vision faces the challenge of annotated data scarcity due to recency of event cameras. Transferring the knowledge that can be obtained from conventional camera annotated data offers a practical solution to this challenge. We develop an unsupervised domain adaptation algorithm for training a deep network for event-based data image classification using contrastive learning and uncorrelated conditioning of data. Our solution outperforms the existing algorithms for this purpose. 2 authors · Mar 22, 2023
- Boosting Novel Category Discovery Over Domains with Soft Contrastive Learning and All-in-One Classifier Unsupervised domain adaptation (UDA) has proven to be highly effective in transferring knowledge from a label-rich source domain to a label-scarce target domain. However, the presence of additional novel categories in the target domain has led to the development of open-set domain adaptation (ODA) and universal domain adaptation (UNDA). Existing ODA and UNDA methods treat all novel categories as a single, unified unknown class and attempt to detect it during training. However, we found that domain variance can lead to more significant view-noise in unsupervised data augmentation, which affects the effectiveness of contrastive learning (CL) and causes the model to be overconfident in novel category discovery. To address these issues, a framework named Soft-contrastive All-in-one Network (SAN) is proposed for ODA and UNDA tasks. SAN includes a novel data-augmentation-based soft contrastive learning (SCL) loss to fine-tune the backbone for feature transfer and a more human-intuitive classifier to improve new class discovery capability. The SCL loss weakens the adverse effects of the data augmentation view-noise problem which is amplified in domain transfer tasks. The All-in-One (AIO) classifier overcomes the overconfidence problem of current mainstream closed-set and open-set classifiers. Visualization and ablation experiments demonstrate the effectiveness of the proposed innovations. Furthermore, extensive experiment results on ODA and UNDA show that SAN outperforms existing state-of-the-art methods. 7 authors · Nov 21, 2022