- Machine Learning Framework for RF-Based Drone Detection and Identification System The emergence of drones has added new dimension to privacy and security issues. There are little or no strict regulations on the people that can purchase or own a drone. For this reason, people can take advantage of these aircraft to intrude into restricted or private areas. A Drone Detection and Identification (DDI) system is one of the ways of detecting and identifying the presence of a drone in an area. DDI systems can employ different sensing technique such radio frequency (RF) signals, video, sounds and thermal for detecting an intruding drone. In this work, we propose a machine learning RF-based DDI system that uses low band RF signals from drone-to-flight controller communication. We develop three machine learning models using the XGBoost algorithm to detect and identify the presence of a drone, the type of drones and the operational mode of drones. For these three XGBoost models, we evaluated the models using 10-fold cross validation and we achieve average accuracy of 99.96%, 90.73% and 70.09% respectively. 3 authors · Mar 1, 2020
1 Sheaf Neural Networks for Graph-based Recommender Systems Recent progress in Graph Neural Networks has resulted in wide adoption by many applications, including recommendation systems. The reason for Graph Neural Networks' superiority over other approaches is that many problems in recommendation systems can be naturally modeled as graphs, where nodes can be either users or items and edges represent preference relationships. In current Graph Neural Network approaches, nodes are represented with a static vector learned at training time. This static vector might only be suitable to capture some of the nuances of users or items they define. To overcome this limitation, we propose using a recently proposed model inspired by category theory: Sheaf Neural Networks. Sheaf Neural Networks, and its connected Laplacian, can address the previous problem by associating every node (and edge) with a vector space instead than a single vector. The vector space representation is richer and allows picking the proper representation at inference time. This approach can be generalized for different related tasks on graphs and achieves state-of-the-art performance in terms of F1-Score@N in collaborative filtering and Hits@20 in link prediction. For collaborative filtering, the approach is evaluated on the MovieLens 100K with a 5.1% improvement, on MovieLens 1M with a 5.4% improvement and on Book-Crossing with a 2.8% improvement, while for link prediction on the ogbl-ddi dataset with a 1.6% refinement with respect to the respective baselines. 4 authors · Apr 7, 2023