Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGaussianBody: Clothed Human Reconstruction via 3d Gaussian Splatting
In this work, we propose a novel clothed human reconstruction method called GaussianBody, based on 3D Gaussian Splatting. Compared with the costly neural radiance based models, 3D Gaussian Splatting has recently demonstrated great performance in terms of training time and rendering quality. However, applying the static 3D Gaussian Splatting model to the dynamic human reconstruction problem is non-trivial due to complicated non-rigid deformations and rich cloth details. To address these challenges, our method considers explicit pose-guided deformation to associate dynamic Gaussians across the canonical space and the observation space, introducing a physically-based prior with regularized transformations helps mitigate ambiguity between the two spaces. During the training process, we further propose a pose refinement strategy to update the pose regression for compensating the inaccurate initial estimation and a split-with-scale mechanism to enhance the density of regressed point clouds. The experiments validate that our method can achieve state-of-the-art photorealistic novel-view rendering results with high-quality details for dynamic clothed human bodies, along with explicit geometry reconstruction.
HUGS: Human Gaussian Splats
Recent advances in neural rendering have improved both training and rendering times by orders of magnitude. While these methods demonstrate state-of-the-art quality and speed, they are designed for photogrammetry of static scenes and do not generalize well to freely moving humans in the environment. In this work, we introduce Human Gaussian Splats (HUGS) that represents an animatable human together with the scene using 3D Gaussian Splatting (3DGS). Our method takes only a monocular video with a small number of (50-100) frames, and it automatically learns to disentangle the static scene and a fully animatable human avatar within 30 minutes. We utilize the SMPL body model to initialize the human Gaussians. To capture details that are not modeled by SMPL (e.g. cloth, hairs), we allow the 3D Gaussians to deviate from the human body model. Utilizing 3D Gaussians for animated humans brings new challenges, including the artifacts created when articulating the Gaussians. We propose to jointly optimize the linear blend skinning weights to coordinate the movements of individual Gaussians during animation. Our approach enables novel-pose synthesis of human and novel view synthesis of both the human and the scene. We achieve state-of-the-art rendering quality with a rendering speed of 60 FPS while being ~100x faster to train over previous work. Our code will be announced here: https://github.com/apple/ml-hugs
Complete Gaussian Splats from a Single Image with Denoising Diffusion Models
Gaussian splatting typically requires dense observations of the scene and can fail to reconstruct occluded and unobserved areas. We propose a latent diffusion model to reconstruct a complete 3D scene with Gaussian splats, including the occluded parts, from only a single image during inference. Completing the unobserved surfaces of a scene is challenging due to the ambiguity of the plausible surfaces. Conventional methods use a regression-based formulation to predict a single "mode" for occluded and out-of-frustum surfaces, leading to blurriness, implausibility, and failure to capture multiple possible explanations. Thus, they often address this problem partially, focusing either on objects isolated from the background, reconstructing only visible surfaces, or failing to extrapolate far from the input views. In contrast, we propose a generative formulation to learn a distribution of 3D representations of Gaussian splats conditioned on a single input image. To address the lack of ground-truth training data, we propose a Variational AutoReconstructor to learn a latent space only from 2D images in a self-supervised manner, over which a diffusion model is trained. Our method generates faithful reconstructions and diverse samples with the ability to complete the occluded surfaces for high-quality 360-degree renderings.
PGC: Physics-Based Gaussian Cloth from a Single Pose
We introduce a novel approach to reconstruct simulation-ready garments with intricate appearance. Despite recent advancements, existing methods often struggle to balance the need for accurate garment reconstruction with the ability to generalize to new poses and body shapes or require large amounts of data to achieve this. In contrast, our method only requires a multi-view capture of a single static frame. We represent garments as hybrid mesh-embedded 3D Gaussian splats, where the Gaussians capture near-field shading and high-frequency details, while the mesh encodes far-field albedo and optimized reflectance parameters. We achieve novel pose generalization by exploiting the mesh from our hybrid approach, enabling physics-based simulation and surface rendering techniques, while also capturing fine details with Gaussians that accurately reconstruct garment details. Our optimized garments can be used for simulating garments on novel poses, and garment relighting. Project page: https://phys-gaussian-cloth.github.io .
Gaussian Head & Shoulders: High Fidelity Neural Upper Body Avatars with Anchor Gaussian Guided Texture Warping
By equipping the most recent 3D Gaussian Splatting representation with head 3D morphable models (3DMM), existing methods manage to create head avatars with high fidelity. However, most existing methods only reconstruct a head without the body, substantially limiting their application scenarios. We found that naively applying Gaussians to model the clothed chest and shoulders tends to result in blurry reconstruction and noisy floaters under novel poses. This is because of the fundamental limitation of Gaussians and point clouds -- each Gaussian or point can only have a single directional radiance without spatial variance, therefore an unnecessarily large number of them is required to represent complicated spatially varying texture, even for simple geometry. In contrast, we propose to model the body part with a neural texture that consists of coarse and pose-dependent fine colors. To properly render the body texture for each view and pose without accurate geometry nor UV mapping, we optimize another sparse set of Gaussians as anchors that constrain the neural warping field that maps image plane coordinates to the texture space. We demonstrate that Gaussian Head & Shoulders can fit the high-frequency details on the clothed upper body with high fidelity and potentially improve the accuracy and fidelity of the head region. We evaluate our method with casual phone-captured and internet videos and show our method archives superior reconstruction quality and robustness in both self and cross reenactment tasks. To fully utilize the efficient rendering speed of Gaussian splatting, we additionally propose an accelerated inference method of our trained model without Multi-Layer Perceptron (MLP) queries and reach a stable rendering speed of around 130 FPS for any subjects.
MeshGS: Adaptive Mesh-Aligned Gaussian Splatting for High-Quality Rendering
Recently, 3D Gaussian splatting has gained attention for its capability to generate high-fidelity rendering results. At the same time, most applications such as games, animation, and AR/VR use mesh-based representations to represent and render 3D scenes. We propose a novel approach that integrates mesh representation with 3D Gaussian splats to perform high-quality rendering of reconstructed real-world scenes. In particular, we introduce a distance-based Gaussian splatting technique to align the Gaussian splats with the mesh surface and remove redundant Gaussian splats that do not contribute to the rendering. We consider the distance between each Gaussian splat and the mesh surface to distinguish between tightly-bound and loosely-bound Gaussian splats. The tightly-bound splats are flattened and aligned well with the mesh geometry. The loosely-bound Gaussian splats are used to account for the artifacts in reconstructed 3D meshes in terms of rendering. We present a training strategy of binding Gaussian splats to the mesh geometry, and take into account both types of splats. In this context, we introduce several regularization techniques aimed at precisely aligning tightly-bound Gaussian splats with the mesh surface during the training process. We validate the effectiveness of our method on large and unbounded scene from mip-NeRF 360 and Deep Blending datasets. Our method surpasses recent mesh-based neural rendering techniques by achieving a 2dB higher PSNR, and outperforms mesh-based Gaussian splatting methods by 1.3 dB PSNR, particularly on the outdoor mip-NeRF 360 dataset, demonstrating better rendering quality. We provide analyses for each type of Gaussian splat and achieve a reduction in the number of Gaussian splats by 30% compared to the original 3D Gaussian splatting.
GaMeS: Mesh-Based Adapting and Modification of Gaussian Splatting
Recently, a range of neural network-based methods for image rendering have been introduced. One such widely-researched neural radiance field (NeRF) relies on a neural network to represent 3D scenes, allowing for realistic view synthesis from a small number of 2D images. However, most NeRF models are constrained by long training and inference times. In comparison, Gaussian Splatting (GS) is a novel, state-of-the-art technique for rendering points in a 3D scene by approximating their contribution to image pixels through Gaussian distributions, warranting fast training and swift, real-time rendering. A drawback of GS is the absence of a well-defined approach for its conditioning due to the necessity to condition several hundred thousand Gaussian components. To solve this, we introduce the Gaussian Mesh Splatting (GaMeS) model, which allows modification of Gaussian components in a similar way as meshes. We parameterize each Gaussian component by the vertices of the mesh face. Furthermore, our model needs mesh initialization on input or estimated mesh during training. We also define Gaussian splats solely based on their location on the mesh, allowing for automatic adjustments in position, scale, and rotation during animation. As a result, we obtain a real-time rendering of editable GS.
GAvatar: Animatable 3D Gaussian Avatars with Implicit Mesh Learning
Gaussian splatting has emerged as a powerful 3D representation that harnesses the advantages of both explicit (mesh) and implicit (NeRF) 3D representations. In this paper, we seek to leverage Gaussian splatting to generate realistic animatable avatars from textual descriptions, addressing the limitations (e.g., flexibility and efficiency) imposed by mesh or NeRF-based representations. However, a naive application of Gaussian splatting cannot generate high-quality animatable avatars and suffers from learning instability; it also cannot capture fine avatar geometries and often leads to degenerate body parts. To tackle these problems, we first propose a primitive-based 3D Gaussian representation where Gaussians are defined inside pose-driven primitives to facilitate animation. Second, to stabilize and amortize the learning of millions of Gaussians, we propose to use neural implicit fields to predict the Gaussian attributes (e.g., colors). Finally, to capture fine avatar geometries and extract detailed meshes, we propose a novel SDF-based implicit mesh learning approach for 3D Gaussians that regularizes the underlying geometries and extracts highly detailed textured meshes. Our proposed method, GAvatar, enables the large-scale generation of diverse animatable avatars using only text prompts. GAvatar significantly surpasses existing methods in terms of both appearance and geometry quality, and achieves extremely fast rendering (100 fps) at 1K resolution.
SplattingAvatar: Realistic Real-Time Human Avatars with Mesh-Embedded Gaussian Splatting
We present SplattingAvatar, a hybrid 3D representation of photorealistic human avatars with Gaussian Splatting embedded on a triangle mesh, which renders over 300 FPS on a modern GPU and 30 FPS on a mobile device. We disentangle the motion and appearance of a virtual human with explicit mesh geometry and implicit appearance modeling with Gaussian Splatting. The Gaussians are defined by barycentric coordinates and displacement on a triangle mesh as Phong surfaces. We extend lifted optimization to simultaneously optimize the parameters of the Gaussians while walking on the triangle mesh. SplattingAvatar is a hybrid representation of virtual humans where the mesh represents low-frequency motion and surface deformation, while the Gaussians take over the high-frequency geometry and detailed appearance. Unlike existing deformation methods that rely on an MLP-based linear blend skinning (LBS) field for motion, we control the rotation and translation of the Gaussians directly by mesh, which empowers its compatibility with various animation techniques, e.g., skeletal animation, blend shapes, and mesh editing. Trainable from monocular videos for both full-body and head avatars, SplattingAvatar shows state-of-the-art rendering quality across multiple datasets.
PICA: Physics-Integrated Clothed Avatar
We introduce PICA, a novel representation for high-fidelity animatable clothed human avatars with physics-accurate dynamics, even for loose clothing. Previous neural rendering-based representations of animatable clothed humans typically employ a single model to represent both the clothing and the underlying body. While efficient, these approaches often fail to accurately represent complex garment dynamics, leading to incorrect deformations and noticeable rendering artifacts, especially for sliding or loose garments. Furthermore, previous works represent garment dynamics as pose-dependent deformations and facilitate novel pose animations in a data-driven manner. This often results in outcomes that do not faithfully represent the mechanics of motion and are prone to generating artifacts in out-of-distribution poses. To address these issues, we adopt two individual 3D Gaussian Splatting (3DGS) models with different deformation characteristics, modeling the human body and clothing separately. This distinction allows for better handling of their respective motion characteristics. With this representation, we integrate a graph neural network (GNN)-based clothed body physics simulation module to ensure an accurate representation of clothing dynamics. Our method, through its carefully designed features, achieves high-fidelity rendering of clothed human bodies in complex and novel driving poses, significantly outperforming previous methods under the same settings.
Mesh-based Gaussian Splatting for Real-time Large-scale Deformation
Neural implicit representations, including Neural Distance Fields and Neural Radiance Fields, have demonstrated significant capabilities for reconstructing surfaces with complicated geometry and topology, and generating novel views of a scene. Nevertheless, it is challenging for users to directly deform or manipulate these implicit representations with large deformations in the real-time fashion. Gaussian Splatting(GS) has recently become a promising method with explicit geometry for representing static scenes and facilitating high-quality and real-time synthesis of novel views. However,it cannot be easily deformed due to the use of discrete Gaussians and lack of explicit topology. To address this, we develop a novel GS-based method that enables interactive deformation. Our key idea is to design an innovative mesh-based GS representation, which is integrated into Gaussian learning and manipulation. 3D Gaussians are defined over an explicit mesh, and they are bound with each other: the rendering of 3D Gaussians guides the mesh face split for adaptive refinement, and the mesh face split directs the splitting of 3D Gaussians. Moreover, the explicit mesh constraints help regularize the Gaussian distribution, suppressing poor-quality Gaussians(e.g. misaligned Gaussians,long-narrow shaped Gaussians), thus enhancing visual quality and avoiding artifacts during deformation. Based on this representation, we further introduce a large-scale Gaussian deformation technique to enable deformable GS, which alters the parameters of 3D Gaussians according to the manipulation of the associated mesh. Our method benefits from existing mesh deformation datasets for more realistic data-driven Gaussian deformation. Extensive experiments show that our approach achieves high-quality reconstruction and effective deformation, while maintaining the promising rendering results at a high frame rate(65 FPS on average).
Surface Reconstruction from Gaussian Splatting via Novel Stereo Views
The Gaussian splatting for radiance field rendering method has recently emerged as an efficient approach for accurate scene representation. It optimizes the location, size, color, and shape of a cloud of 3D Gaussian elements to visually match, after projection, or splatting, a set of given images taken from various viewing directions. And yet, despite the proximity of Gaussian elements to the shape boundaries, direct surface reconstruction of objects in the scene is a challenge. We propose a novel approach for surface reconstruction from Gaussian splatting models. Rather than relying on the Gaussian elements' locations as a prior for surface reconstruction, we leverage the superior novel-view synthesis capabilities of 3DGS. To that end, we use the Gaussian splatting model to render pairs of stereo-calibrated novel views from which we extract depth profiles using a stereo matching method. We then combine the extracted RGB-D images into a geometrically consistent surface. The resulting reconstruction is more accurate and shows finer details when compared to other methods for surface reconstruction from Gaussian splatting models, while requiring significantly less compute time compared to other surface reconstruction methods. We performed extensive testing of the proposed method on in-the-wild scenes, taken by a smartphone, showcasing its superior reconstruction abilities. Additionally, we tested the proposed method on the Tanks and Temples benchmark, and it has surpassed the current leading method for surface reconstruction from Gaussian splatting models. Project page: https://gs2mesh.github.io/.
Confident Splatting: Confidence-Based Compression of 3D Gaussian Splatting via Learnable Beta Distributions
3D Gaussian Splatting enables high-quality real-time rendering but often produces millions of splats, resulting in excessive storage and computational overhead. We propose a novel lossy compression method based on learnable confidence scores modeled as Beta distributions. Each splat's confidence is optimized through reconstruction-aware losses, enabling pruning of low-confidence splats while preserving visual fidelity. The proposed approach is architecture-agnostic and can be applied to any Gaussian Splatting variant. In addition, the average confidence values serve as a new metric to assess the quality of the scene. Extensive experiments demonstrate favorable trade-offs between compression and fidelity compared to prior work. Our code and data are publicly available at https://github.com/amirhossein-razlighi/Confident-Splatting
Splatter Image: Ultra-Fast Single-View 3D Reconstruction
We introduce the Splatter Image, an ultra-fast approach for monocular 3D object reconstruction which operates at 38 FPS. Splatter Image is based on Gaussian Splatting, which has recently brought real-time rendering, fast training, and excellent scaling to multi-view reconstruction. For the first time, we apply Gaussian Splatting in a monocular reconstruction setting. Our approach is learning-based, and, at test time, reconstruction only requires the feed-forward evaluation of a neural network. The main innovation of Splatter Image is the surprisingly straightforward design: it uses a 2D image-to-image network to map the input image to one 3D Gaussian per pixel. The resulting Gaussians thus have the form of an image, the Splatter Image. We further extend the method to incorporate more than one image as input, which we do by adding cross-view attention. Owning to the speed of the renderer (588 FPS), we can use a single GPU for training while generating entire images at each iteration in order to optimize perceptual metrics like LPIPS. On standard benchmarks, we demonstrate not only fast reconstruction but also better results than recent and much more expensive baselines in terms of PSNR, LPIPS, and other metrics.
SuGaR: Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering
We propose a method to allow precise and extremely fast mesh extraction from 3D Gaussian Splatting. Gaussian Splatting has recently become very popular as it yields realistic rendering while being significantly faster to train than NeRFs. It is however challenging to extract a mesh from the millions of tiny 3D gaussians as these gaussians tend to be unorganized after optimization and no method has been proposed so far. Our first key contribution is a regularization term that encourages the gaussians to align well with the surface of the scene. We then introduce a method that exploits this alignment to extract a mesh from the Gaussians using Poisson reconstruction, which is fast, scalable, and preserves details, in contrast to the Marching Cubes algorithm usually applied to extract meshes from Neural SDFs. Finally, we introduce an optional refinement strategy that binds gaussians to the surface of the mesh, and jointly optimizes these Gaussians and the mesh through Gaussian splatting rendering. This enables easy editing, sculpting, rigging, animating, compositing and relighting of the Gaussians using traditional softwares by manipulating the mesh instead of the gaussians themselves. Retrieving such an editable mesh for realistic rendering is done within minutes with our method, compared to hours with the state-of-the-art methods on neural SDFs, while providing a better rendering quality.
Human Gaussian Splatting: Real-time Rendering of Animatable Avatars
This work addresses the problem of real-time rendering of photorealistic human body avatars learned from multi-view videos. While the classical approaches to model and render virtual humans generally use a textured mesh, recent research has developed neural body representations that achieve impressive visual quality. However, these models are difficult to render in real-time and their quality degrades when the character is animated with body poses different than the training observations. We propose an animatable human model based on 3D Gaussian Splatting, that has recently emerged as a very efficient alternative to neural radiance fields. The body is represented by a set of gaussian primitives in a canonical space which is deformed with a coarse to fine approach that combines forward skinning and local non-rigid refinement. We describe how to learn our Human Gaussian Splatting (HuGS) model in an end-to-end fashion from multi-view observations, and evaluate it against the state-of-the-art approaches for novel pose synthesis of clothed body. Our method achieves 1.5 dB PSNR improvement over the state-of-the-art on THuman4 dataset while being able to render in real-time (80 fps for 512x512 resolution).
SolidGS: Consolidating Gaussian Surfel Splatting for Sparse-View Surface Reconstruction
Gaussian splatting has achieved impressive improvements for both novel-view synthesis and surface reconstruction from multi-view images. However, current methods still struggle to reconstruct high-quality surfaces from only sparse view input images using Gaussian splatting. In this paper, we propose a novel method called SolidGS to address this problem. We observed that the reconstructed geometry can be severely inconsistent across multi-views, due to the property of Gaussian function in geometry rendering. This motivates us to consolidate all Gaussians by adopting a more solid kernel function, which effectively improves the surface reconstruction quality. With the additional help of geometrical regularization and monocular normal estimation, our method achieves superior performance on the sparse view surface reconstruction than all the Gaussian splatting methods and neural field methods on the widely used DTU, Tanks-and-Temples, and LLFF datasets.
MD-Splatting: Learning Metric Deformation from 4D Gaussians in Highly Deformable Scenes
Accurate 3D tracking in highly deformable scenes with occlusions and shadows can facilitate new applications in robotics, augmented reality, and generative AI. However, tracking under these conditions is extremely challenging due to the ambiguity that arises with large deformations, shadows, and occlusions. We introduce MD-Splatting, an approach for simultaneous 3D tracking and novel view synthesis, using video captures of a dynamic scene from various camera poses. MD-Splatting builds on recent advances in Gaussian splatting, a method that learns the properties of a large number of Gaussians for state-of-the-art and fast novel view synthesis. MD-Splatting learns a deformation function to project a set of Gaussians with non-metric, thus canonical, properties into metric space. The deformation function uses a neural-voxel encoding and a multilayer perceptron (MLP) to infer Gaussian position, rotation, and a shadow scalar. We enforce physics-inspired regularization terms based on local rigidity, conservation of momentum, and isometry, which leads to trajectories with smaller trajectory errors. MD-Splatting achieves high-quality 3D tracking on highly deformable scenes with shadows and occlusions. Compared to state-of-the-art, we improve 3D tracking by an average of 23.9 %, while simultaneously achieving high-quality novel view synthesis. With sufficient texture such as in scene 6, MD-Splatting achieves a median tracking error of 3.39 mm on a cloth of 1 x 1 meters in size. Project website: https://md-splatting.github.io/.
A Study of the Framework and Real-World Applications of Language Embedding for 3D Scene Understanding
Gaussian Splatting has rapidly emerged as a transformative technique for real-time 3D scene representation, offering a highly efficient and expressive alternative to Neural Radiance Fields (NeRF). Its ability to render complex scenes with high fidelity has enabled progress across domains such as scene reconstruction, robotics, and interactive content creation. More recently, the integration of Large Language Models (LLMs) and language embeddings into Gaussian Splatting pipelines has opened new possibilities for text-conditioned generation, editing, and semantic scene understanding. Despite these advances, a comprehensive overview of this emerging intersection has been lacking. This survey presents a structured review of current research efforts that combine language guidance with 3D Gaussian Splatting, detailing theoretical foundations, integration strategies, and real-world use cases. We highlight key limitations such as computational bottlenecks, generalizability, and the scarcity of semantically annotated 3D Gaussian data and outline open challenges and future directions for advancing language-guided 3D scene understanding using Gaussian Splatting.
Motion Blender Gaussian Splatting for Dynamic Scene Reconstruction
Gaussian splatting has emerged as a powerful tool for high-fidelity reconstruction of dynamic scenes. However, existing methods primarily rely on implicit motion representations, such as encoding motions into neural networks or per-Gaussian parameters, which makes it difficult to further manipulate the reconstructed motions. This lack of explicit controllability limits existing methods to replaying recorded motions only, which hinders a wider application in robotics. To address this, we propose Motion Blender Gaussian Splatting (MBGS), a novel framework that uses motion graphs as an explicit and sparse motion representation. The motion of a graph's links is propagated to individual Gaussians via dual quaternion skinning, with learnable weight painting functions that determine the influence of each link. The motion graphs and 3D Gaussians are jointly optimized from input videos via differentiable rendering. Experiments show that MBGS achieves state-of-the-art performance on the highly challenging iPhone dataset while being competitive on HyperNeRF. We demonstrate the application potential of our method in animating novel object poses, synthesizing real robot demonstrations, and predicting robot actions through visual planning. The source code, models, video demonstrations can be found at http://mlzxy.github.io/motion-blender-gs.
REdiSplats: Ray Tracing for Editable Gaussian Splatting
Gaussian Splatting (GS) has become one of the most important neural rendering algorithms. GS represents 3D scenes using Gaussian components with trainable color and opacity. This representation achieves high-quality renderings with fast inference. Regrettably, it is challenging to integrate such a solution with varying light conditions, including shadows and light reflections, manual adjustments, and a physical engine. Recently, a few approaches have appeared that incorporate ray-tracing or mesh primitives into GS to address some of these caveats. However, no such solution can simultaneously solve all the existing limitations of the classical GS. Consequently, we introduce REdiSplats, which employs ray tracing and a mesh-based representation of flat 3D Gaussians. In practice, we model the scene using flat Gaussian distributions parameterized by the mesh. We can leverage fast ray tracing and control Gaussian modification by adjusting the mesh vertices. Moreover, REdiSplats allows modeling of light conditions, manual adjustments, and physical simulation. Furthermore, we can render our models using 3D tools such as Blender or Nvdiffrast, which opens the possibility of integrating them with all existing 3D graphics techniques dedicated to mesh representations.
2D Gaussian Splatting for Geometrically Accurate Radiance Fields
3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking. However, 3DGS fails to accurately represent surfaces due to the multi-view inconsistent nature of 3D Gaussians. We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images. Our key idea is to collapse the 3D volume into a set of 2D oriented planar Gaussian disks. Unlike 3D Gaussians, 2D Gaussians provide view-consistent geometry while modeling surfaces intrinsically. To accurately recover thin surfaces and achieve stable optimization, we introduce a perspective-accurate 2D splatting process utilizing ray-splat intersection and rasterization. Additionally, we incorporate depth distortion and normal consistency terms to further enhance the quality of the reconstructions. We demonstrate that our differentiable renderer allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering. Our code will be made publicly available.
GarmentDreamer: 3DGS Guided Garment Synthesis with Diverse Geometry and Texture Details
Traditional 3D garment creation is labor-intensive, involving sketching, modeling, UV mapping, and texturing, which are time-consuming and costly. Recent advances in diffusion-based generative models have enabled new possibilities for 3D garment generation from text prompts, images, and videos. However, existing methods either suffer from inconsistencies among multi-view images or require additional processes to separate cloth from the underlying human model. In this paper, we propose GarmentDreamer, a novel method that leverages 3D Gaussian Splatting (GS) as guidance to generate wearable, simulation-ready 3D garment meshes from text prompts. In contrast to using multi-view images directly predicted by generative models as guidance, our 3DGS guidance ensures consistent optimization in both garment deformation and texture synthesis. Our method introduces a novel garment augmentation module, guided by normal and RGBA information, and employs implicit Neural Texture Fields (NeTF) combined with Score Distillation Sampling (SDS) to generate diverse geometric and texture details. We validate the effectiveness of our approach through comprehensive qualitative and quantitative experiments, showcasing the superior performance of GarmentDreamer over state-of-the-art alternatives. Our project page is available at: https://xuan-li.github.io/GarmentDreamerDemo/.
Compact 3D Scene Representation via Self-Organizing Gaussian Grids
3D Gaussian Splatting has recently emerged as a highly promising technique for modeling of static 3D scenes. In contrast to Neural Radiance Fields, it utilizes efficient rasterization allowing for very fast rendering at high-quality. However, the storage size is significantly higher, which hinders practical deployment, e.g.~on resource constrained devices. In this paper, we introduce a compact scene representation organizing the parameters of 3D Gaussian Splatting (3DGS) into a 2D grid with local homogeneity, ensuring a drastic reduction in storage requirements without compromising visual quality during rendering. Central to our idea is the explicit exploitation of perceptual redundancies present in natural scenes. In essence, the inherent nature of a scene allows for numerous permutations of Gaussian parameters to equivalently represent it. To this end, we propose a novel highly parallel algorithm that regularly arranges the high-dimensional Gaussian parameters into a 2D grid while preserving their neighborhood structure. During training, we further enforce local smoothness between the sorted parameters in the grid. The uncompressed Gaussians use the same structure as 3DGS, ensuring a seamless integration with established renderers. Our method achieves a reduction factor of 8x to 26x in size for complex scenes with no increase in training time, marking a substantial leap forward in the domain of 3D scene distribution and consumption. Additional information can be found on our project page: https://fraunhoferhhi.github.io/Self-Organizing-Gaussians/
Deblurring 3D Gaussian Splatting
Recent studies in Radiance Fields have paved the robust way for novel view synthesis with their photorealistic rendering quality. Nevertheless, they usually employ neural networks and volumetric rendering, which are costly to train and impede their broad use in various real-time applications due to the lengthy rendering time. Lately 3D Gaussians splatting-based approach has been proposed to model the 3D scene, and it achieves remarkable visual quality while rendering the images in real-time. However, it suffers from severe degradation in the rendering quality if the training images are blurry. Blurriness commonly occurs due to the lens defocusing, object motion, and camera shake, and it inevitably intervenes in clean image acquisition. Several previous studies have attempted to render clean and sharp images from blurry input images using neural fields. The majority of those works, however, are designed only for volumetric rendering-based neural radiance fields and are not straightforwardly applicable to rasterization-based 3D Gaussian splatting methods. Thus, we propose a novel real-time deblurring framework, deblurring 3D Gaussian Splatting, using a small Multi-Layer Perceptron (MLP) that manipulates the covariance of each 3D Gaussian to model the scene blurriness. While deblurring 3D Gaussian Splatting can still enjoy real-time rendering, it can reconstruct fine and sharp details from blurry images. A variety of experiments have been conducted on the benchmark, and the results have revealed the effectiveness of our approach for deblurring. Qualitative results are available at https://benhenryl.github.io/Deblurring-3D-Gaussian-Splatting/
GDGS: 3D Gaussian Splatting Via Geometry-Guided Initialization And Dynamic Density Control
We propose a method to enhance 3D Gaussian Splatting (3DGS)~Kerbl2023, addressing challenges in initialization, optimization, and density control. Gaussian Splatting is an alternative for rendering realistic images while supporting real-time performance, and it has gained popularity due to its explicit 3D Gaussian representation. However, 3DGS heavily depends on accurate initialization and faces difficulties in optimizing unstructured Gaussian distributions into ordered surfaces, with limited adaptive density control mechanism proposed so far. Our first key contribution is a geometry-guided initialization to predict Gaussian parameters, ensuring precise placement and faster convergence. We then introduce a surface-aligned optimization strategy to refine Gaussian placement, improving geometric accuracy and aligning with the surface normals of the scene. Finally, we present a dynamic adaptive density control mechanism that adjusts Gaussian density based on regional complexity, for visual fidelity. These innovations enable our method to achieve high-fidelity real-time rendering and significant improvements in visual quality, even in complex scenes. Our method demonstrates comparable or superior results to state-of-the-art methods, rendering high-fidelity images in real time.
Gaussian Splashing: Dynamic Fluid Synthesis with Gaussian Splatting
We demonstrate the feasibility of integrating physics-based animations of solids and fluids with 3D Gaussian Splatting (3DGS) to create novel effects in virtual scenes reconstructed using 3DGS. Leveraging the coherence of the Gaussian splatting and position-based dynamics (PBD) in the underlying representation, we manage rendering, view synthesis, and the dynamics of solids and fluids in a cohesive manner. Similar to Gaussian shader, we enhance each Gaussian kernel with an added normal, aligning the kernel's orientation with the surface normal to refine the PBD simulation. This approach effectively eliminates spiky noises that arise from rotational deformation in solids. It also allows us to integrate physically based rendering to augment the dynamic surface reflections on fluids. Consequently, our framework is capable of realistically reproducing surface highlights on dynamic fluids and facilitating interactions between scene objects and fluids from new views. For more information, please visit our project page at https://amysteriouscat.github.io/GaussianSplashing/.
Disco4D: Disentangled 4D Human Generation and Animation from a Single Image
We present Disco4D, a novel Gaussian Splatting framework for 4D human generation and animation from a single image. Different from existing methods, Disco4D distinctively disentangles clothings (with Gaussian models) from the human body (with SMPL-X model), significantly enhancing the generation details and flexibility. It has the following technical innovations. 1) Disco4D learns to efficiently fit the clothing Gaussians over the SMPL-X Gaussians. 2) It adopts diffusion models to enhance the 3D generation process, e.g., modeling occluded parts not visible in the input image. 3) It learns an identity encoding for each clothing Gaussian to facilitate the separation and extraction of clothing assets. Furthermore, Disco4D naturally supports 4D human animation with vivid dynamics. Extensive experiments demonstrate the superiority of Disco4D on 4D human generation and animation tasks. Our visualizations can be found in https://disco-4d.github.io/.
ODHSR: Online Dense 3D Reconstruction of Humans and Scenes from Monocular Videos
Creating a photorealistic scene and human reconstruction from a single monocular in-the-wild video figures prominently in the perception of a human-centric 3D world. Recent neural rendering advances have enabled holistic human-scene reconstruction but require pre-calibrated camera and human poses, and days of training time. In this work, we introduce a novel unified framework that simultaneously performs camera tracking, human pose estimation and human-scene reconstruction in an online fashion. 3D Gaussian Splatting is utilized to learn Gaussian primitives for humans and scenes efficiently, and reconstruction-based camera tracking and human pose estimation modules are designed to enable holistic understanding and effective disentanglement of pose and appearance. Specifically, we design a human deformation module to reconstruct the details and enhance generalizability to out-of-distribution poses faithfully. Aiming to learn the spatial correlation between human and scene accurately, we introduce occlusion-aware human silhouette rendering and monocular geometric priors, which further improve reconstruction quality. Experiments on the EMDB and NeuMan datasets demonstrate superior or on-par performance with existing methods in camera tracking, human pose estimation, novel view synthesis and runtime. Our project page is at https://eth-ait.github.io/ODHSR.
3DitScene: Editing Any Scene via Language-guided Disentangled Gaussian Splatting
Scene image editing is crucial for entertainment, photography, and advertising design. Existing methods solely focus on either 2D individual object or 3D global scene editing. This results in a lack of a unified approach to effectively control and manipulate scenes at the 3D level with different levels of granularity. In this work, we propose 3DitScene, a novel and unified scene editing framework leveraging language-guided disentangled Gaussian Splatting that enables seamless editing from 2D to 3D, allowing precise control over scene composition and individual objects. We first incorporate 3D Gaussians that are refined through generative priors and optimization techniques. Language features from CLIP then introduce semantics into 3D geometry for object disentanglement. With the disentangled Gaussians, 3DitScene allows for manipulation at both the global and individual levels, revolutionizing creative expression and empowering control over scenes and objects. Experimental results demonstrate the effectiveness and versatility of 3DitScene in scene image editing. Code and online demo can be found at our project homepage: https://zqh0253.github.io/3DitScene/.
SWAG: Splatting in the Wild images with Appearance-conditioned Gaussians
Implicit neural representation methods have shown impressive advancements in learning 3D scenes from unstructured in-the-wild photo collections but are still limited by the large computational cost of volumetric rendering. More recently, 3D Gaussian Splatting emerged as a much faster alternative with superior rendering quality and training efficiency, especially for small-scale and object-centric scenarios. Nevertheless, this technique suffers from poor performance on unstructured in-the-wild data. To tackle this, we extend over 3D Gaussian Splatting to handle unstructured image collections. We achieve this by modeling appearance to seize photometric variations in the rendered images. Additionally, we introduce a new mechanism to train transient Gaussians to handle the presence of scene occluders in an unsupervised manner. Experiments on diverse photo collection scenes and multi-pass acquisition of outdoor landmarks show the effectiveness of our method over prior works achieving state-of-the-art results with improved efficiency.
FSFSplatter: Build Surface and Novel Views with Sparse-Views within 2min
Gaussian Splatting has become a leading reconstruction technique, known for its high-quality novel view synthesis and detailed reconstruction. However, most existing methods require dense, calibrated views. Reconstructing from free sparse images often leads to poor surface due to limited overlap and overfitting. We introduce FSFSplatter, a new approach for fast surface reconstruction from free sparse images. Our method integrates end-to-end dense Gaussian initialization, camera parameter estimation, and geometry-enhanced scene optimization. Specifically, FSFSplatter employs a large Transformer to encode multi-view images and generates a dense and geometrically consistent Gaussian scene initialization via a self-splitting Gaussian head. It eliminates local floaters through contribution-based pruning and mitigates overfitting to limited views by leveraging depth and multi-view feature supervision with differentiable camera parameters during rapid optimization. FSFSplatter outperforms current state-of-the-art methods on widely used DTU, Replica, and BlendedMVS datasets.
A Survey on 3D Gaussian Splatting
3D Gaussian splatting (GS) has recently emerged as a transformative technique in the realm of explicit radiance field and computer graphics. This innovative approach, characterized by the utilization of millions of learnable 3D Gaussians, represents a significant departure from mainstream neural radiance field approaches, which predominantly use implicit, coordinate-based models to map spatial coordinates to pixel values. 3D GS, with its explicit scene representation and differentiable rendering algorithm, not only promises real-time rendering capability but also introduces unprecedented levels of editability. This positions 3D GS as a potential game-changer for the next generation of 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research in this domain. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in applicable and explicit radiance field representation.
Interactive Rendering of Relightable and Animatable Gaussian Avatars
Creating relightable and animatable avatars from multi-view or monocular videos is a challenging task for digital human creation and virtual reality applications. Previous methods rely on neural radiance fields or ray tracing, resulting in slow training and rendering processes. By utilizing Gaussian Splatting, we propose a simple and efficient method to decouple body materials and lighting from sparse-view or monocular avatar videos, so that the avatar can be rendered simultaneously under novel viewpoints, poses, and lightings at interactive frame rates (6.9 fps). Specifically, we first obtain the canonical body mesh using a signed distance function and assign attributes to each mesh vertex. The Gaussians in the canonical space then interpolate from nearby body mesh vertices to obtain the attributes. We subsequently deform the Gaussians to the posed space using forward skinning, and combine the learnable environment light with the Gaussian attributes for shading computation. To achieve fast shadow modeling, we rasterize the posed body mesh from dense viewpoints to obtain the visibility. Our approach is not only simple but also fast enough to allow interactive rendering of avatar animation under environmental light changes. Experiments demonstrate that, compared to previous works, our method can render higher quality results at a faster speed on both synthetic and real datasets.
Compact3D: Compressing Gaussian Splat Radiance Field Models with Vector Quantization
3D Gaussian Splatting is a new method for modeling and rendering 3D radiance fields that achieves much faster learning and rendering time compared to SOTA NeRF methods. However, it comes with a drawback in the much larger storage demand compared to NeRF methods since it needs to store the parameters for several 3D Gaussians. We notice that many Gaussians may share similar parameters, so we introduce a simple vector quantization method based on \kmeans algorithm to quantize the Gaussian parameters. Then, we store the small codebook along with the index of the code for each Gaussian. Moreover, we compress the indices further by sorting them and using a method similar to run-length encoding. We do extensive experiments on standard benchmarks as well as a new benchmark which is an order of magnitude larger than the standard benchmarks. We show that our simple yet effective method can reduce the storage cost for the original 3D Gaussian Splatting method by a factor of almost 20times with a very small drop in the quality of rendered images.
Depth-Regularized Optimization for 3D Gaussian Splatting in Few-Shot Images
In this paper, we present a method to optimize Gaussian splatting with a limited number of images while avoiding overfitting. Representing a 3D scene by combining numerous Gaussian splats has yielded outstanding visual quality. However, it tends to overfit the training views when only a small number of images are available. To address this issue, we introduce a dense depth map as a geometry guide to mitigate overfitting. We obtained the depth map using a pre-trained monocular depth estimation model and aligning the scale and offset using sparse COLMAP feature points. The adjusted depth aids in the color-based optimization of 3D Gaussian splatting, mitigating floating artifacts, and ensuring adherence to geometric constraints. We verify the proposed method on the NeRF-LLFF dataset with varying numbers of few images. Our approach demonstrates robust geometry compared to the original method that relies solely on images. Project page: robot0321.github.io/DepthRegGS
3D Gaussian Splatting as Markov Chain Monte Carlo
While 3D Gaussian Splatting has recently become popular for neural rendering, current methods rely on carefully engineered cloning and splitting strategies for placing Gaussians, which can lead to poor-quality renderings, and reliance on a good initialization. In this work, we rethink the set of 3D Gaussians as a random sample drawn from an underlying probability distribution describing the physical representation of the scene-in other words, Markov Chain Monte Carlo (MCMC) samples. Under this view, we show that the 3D Gaussian updates can be converted as Stochastic Gradient Langevin Dynamics (SGLD) updates by simply introducing noise. We then rewrite the densification and pruning strategies in 3D Gaussian Splatting as simply a deterministic state transition of MCMC samples, removing these heuristics from the framework. To do so, we revise the 'cloning' of Gaussians into a relocalization scheme that approximately preserves sample probability. To encourage efficient use of Gaussians, we introduce a regularizer that promotes the removal of unused Gaussians. On various standard evaluation scenes, we show that our method provides improved rendering quality, easy control over the number of Gaussians, and robustness to initialization.
DepthSplat: Connecting Gaussian Splatting and Depth
Gaussian splatting and single/multi-view depth estimation are typically studied in isolation. In this paper, we present DepthSplat to connect Gaussian splatting and depth estimation and study their interactions. More specifically, we first contribute a robust multi-view depth model by leveraging pre-trained monocular depth features, leading to high-quality feed-forward 3D Gaussian splatting reconstructions. We also show that Gaussian splatting can serve as an unsupervised pre-training objective for learning powerful depth models from large-scale unlabelled datasets. We validate the synergy between Gaussian splatting and depth estimation through extensive ablation and cross-task transfer experiments. Our DepthSplat achieves state-of-the-art performance on ScanNet, RealEstate10K and DL3DV datasets in terms of both depth estimation and novel view synthesis, demonstrating the mutual benefits of connecting both tasks. Our code, models, and video results are available at https://haofeixu.github.io/depthsplat/.
Efficient Gaussian Splatting for Monocular Dynamic Scene Rendering via Sparse Time-Variant Attribute Modeling
Rendering dynamic scenes from monocular videos is a crucial yet challenging task. The recent deformable Gaussian Splatting has emerged as a robust solution to represent real-world dynamic scenes. However, it often leads to heavily redundant Gaussians, attempting to fit every training view at various time steps, leading to slower rendering speeds. Additionally, the attributes of Gaussians in static areas are time-invariant, making it unnecessary to model every Gaussian, which can cause jittering in static regions. In practice, the primary bottleneck in rendering speed for dynamic scenes is the number of Gaussians. In response, we introduce Efficient Dynamic Gaussian Splatting (EDGS), which represents dynamic scenes via sparse time-variant attribute modeling. Our approach formulates dynamic scenes using a sparse anchor-grid representation, with the motion flow of dense Gaussians calculated via a classical kernel representation. Furthermore, we propose an unsupervised strategy to efficiently filter out anchors corresponding to static areas. Only anchors associated with deformable objects are input into MLPs to query time-variant attributes. Experiments on two real-world datasets demonstrate that our EDGS significantly improves the rendering speed with superior rendering quality compared to previous state-of-the-art methods.
2DGS-Avatar: Animatable High-fidelity Clothed Avatar via 2D Gaussian Splatting
Real-time rendering of high-fidelity and animatable avatars from monocular videos remains a challenging problem in computer vision and graphics. Over the past few years, the Neural Radiance Field (NeRF) has made significant progress in rendering quality but behaves poorly in run-time performance due to the low efficiency of volumetric rendering. Recently, methods based on 3D Gaussian Splatting (3DGS) have shown great potential in fast training and real-time rendering. However, they still suffer from artifacts caused by inaccurate geometry. To address these problems, we propose 2DGS-Avatar, a novel approach based on 2D Gaussian Splatting (2DGS) for modeling animatable clothed avatars with high-fidelity and fast training performance. Given monocular RGB videos as input, our method generates an avatar that can be driven by poses and rendered in real-time. Compared to 3DGS-based methods, our 2DGS-Avatar retains the advantages of fast training and rendering while also capturing detailed, dynamic, and photo-realistic appearances. We conduct abundant experiments on popular datasets such as AvatarRex and THuman4.0, demonstrating impressive performance in both qualitative and quantitative metrics.
3DGUT: Enabling Distorted Cameras and Secondary Rays in Gaussian Splatting
3D Gaussian Splatting (3DGS) enables efficient reconstruction and high-fidelity real-time rendering of complex scenes on consumer hardware. However, due to its rasterization-based formulation, 3DGS is constrained to ideal pinhole cameras and lacks support for secondary lighting effects. Recent methods address these limitations by tracing the particles instead, but, this comes at the cost of significantly slower rendering. In this work, we propose 3D Gaussian Unscented Transform (3DGUT), replacing the EWA splatting formulation with the Unscented Transform that approximates the particles through sigma points, which can be projected exactly under any nonlinear projection function. This modification enables trivial support of distorted cameras with time dependent effects such as rolling shutter, while retaining the efficiency of rasterization. Additionally, we align our rendering formulation with that of tracing-based methods, enabling secondary ray tracing required to represent phenomena such as reflections and refraction within the same 3D representation. The source code is available at: https://github.com/nv-tlabs/3dgrut.
DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation
Recent advances in 3D content creation mostly leverage optimization-based 3D generation via score distillation sampling (SDS). Though promising results have been exhibited, these methods often suffer from slow per-sample optimization, limiting their practical usage. In this paper, we propose DreamGaussian, a novel 3D content generation framework that achieves both efficiency and quality simultaneously. Our key insight is to design a generative 3D Gaussian Splatting model with companioned mesh extraction and texture refinement in UV space. In contrast to the occupancy pruning used in Neural Radiance Fields, we demonstrate that the progressive densification of 3D Gaussians converges significantly faster for 3D generative tasks. To further enhance the texture quality and facilitate downstream applications, we introduce an efficient algorithm to convert 3D Gaussians into textured meshes and apply a fine-tuning stage to refine the details. Extensive experiments demonstrate the superior efficiency and competitive generation quality of our proposed approach. Notably, DreamGaussian produces high-quality textured meshes in just 2 minutes from a single-view image, achieving approximately 10 times acceleration compared to existing methods.
Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering
Neural rendering methods have significantly advanced photo-realistic 3D scene rendering in various academic and industrial applications. The recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed combining the benefits of both primitive-based representations and volumetric representations. However, it often leads to heavily redundant Gaussians that try to fit every training view, neglecting the underlying scene geometry. Consequently, the resulting model becomes less robust to significant view changes, texture-less area and lighting effects. We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians, and predicts their attributes on-the-fly based on viewing direction and distance within the view frustum. Anchor growing and pruning strategies are developed based on the importance of neural Gaussians to reliably improve the scene coverage. We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering. We also demonstrates an enhanced capability to accommodate scenes with varying levels-of-detail and view-dependent observations, without sacrificing the rendering speed.
AttentionGS: Towards Initialization-Free 3D Gaussian Splatting via Structural Attention
3D Gaussian Splatting (3DGS) is a powerful alternative to Neural Radiance Fields (NeRF), excelling in complex scene reconstruction and efficient rendering. However, it relies on high-quality point clouds from Structure-from-Motion (SfM), limiting its applicability. SfM also fails in texture-deficient or constrained-view scenarios, causing severe degradation in 3DGS reconstruction. To address this limitation, we propose AttentionGS, a novel framework that eliminates the dependency on high-quality initial point clouds by leveraging structural attention for direct 3D reconstruction from randomly initialization. In the early training stage, we introduce geometric attention to rapidly recover the global scene structure. As training progresses, we incorporate texture attention to refine fine-grained details and enhance rendering quality. Furthermore, we employ opacity-weighted gradients to guide Gaussian densification, leading to improved surface reconstruction. Extensive experiments on multiple benchmark datasets demonstrate that AttentionGS significantly outperforms state-of-the-art methods, particularly in scenarios where point cloud initialization is unreliable. Our approach paves the way for more robust and flexible 3D Gaussian Splatting in real-world applications.
Self-Ensembling Gaussian Splatting for Few-Shot Novel View Synthesis
3D Gaussian Splatting (3DGS) has demonstrated remarkable effectiveness in novel view synthesis (NVS). However, 3DGS tends to overfit when trained with sparse views, limiting its generalization to novel viewpoints. In this paper, we address this overfitting issue by introducing Self-Ensembling Gaussian Splatting (SE-GS). We achieve self-ensembling by incorporating an uncertainty-aware perturbation strategy during training. A Delta-model and a Sigma-model are jointly trained on the available images. The Delta-model is dynamically perturbed based on rendering uncertainty across training steps, generating diverse perturbed models with negligible computational overhead. Discrepancies between the Sigma-model and these perturbed models are minimized throughout training, forming a robust ensemble of 3DGS models. This ensemble, represented by the Sigma-model, is then used to generate novel-view images during inference. Experimental results on the LLFF, Mip-NeRF360, DTU, and MVImgNet datasets demonstrate that our approach enhances NVS quality under few-shot training conditions, outperforming existing state-of-the-art methods. The code is released at: https://sailor-z.github.io/projects/SEGS.html.
Gaussian Splatting with NeRF-based Color and Opacity
Neural Radiance Fields (NeRFs) have demonstrated the remarkable potential of neural networks to capture the intricacies of 3D objects. By encoding the shape and color information within neural network weights, NeRFs excel at producing strikingly sharp novel views of 3D objects. Recently, numerous generalizations of NeRFs utilizing generative models have emerged, expanding its versatility. In contrast, Gaussian Splatting (GS) offers a similar render quality with faster training and inference as it does not need neural networks to work. It encodes information about the 3D objects in the set of Gaussian distributions that can be rendered in 3D similarly to classical meshes. Unfortunately, GS are difficult to condition since they usually require circa hundred thousand Gaussian components. To mitigate the caveats of both models, we propose a hybrid model Viewing Direction Gaussian Splatting (VDGS) that uses GS representation of the 3D object's shape and NeRF-based encoding of color and opacity. Our model uses Gaussian distributions with trainable positions (i.e. means of Gaussian), shape (i.e. covariance of Gaussian), color and opacity, and a neural network that takes Gaussian parameters and viewing direction to produce changes in the said color and opacity. As a result, our model better describes shadows, light reflections, and the transparency of 3D objects without adding additional texture and light components.
Does Gaussian Splatting need SFM Initialization?
3D Gaussian Splatting has recently been embraced as a versatile and effective method for scene reconstruction and novel view synthesis, owing to its high-quality results and compatibility with hardware rasterization. Despite its advantages, Gaussian Splatting's reliance on high-quality point cloud initialization by Structure-from-Motion (SFM) algorithms is a significant limitation to be overcome. To this end, we investigate various initialization strategies for Gaussian Splatting and delve into how volumetric reconstructions from Neural Radiance Fields (NeRF) can be utilized to bypass the dependency on SFM data. Our findings demonstrate that random initialization can perform much better if carefully designed and that by employing a combination of improved initialization strategies and structure distillation from low-cost NeRF models, it is possible to achieve equivalent results, or at times even superior, to those obtained from SFM initialization.
FixingGS: Enhancing 3D Gaussian Splatting via Training-Free Score Distillation
Recently, 3D Gaussian Splatting (3DGS) has demonstrated remarkable success in 3D reconstruction and novel view synthesis. However, reconstructing 3D scenes from sparse viewpoints remains highly challenging due to insufficient visual information, which results in noticeable artifacts persisting across the 3D representation. To address this limitation, recent methods have resorted to generative priors to remove artifacts and complete missing content in under-constrained areas. Despite their effectiveness, these approaches struggle to ensure multi-view consistency, resulting in blurred structures and implausible details. In this work, we propose FixingGS, a training-free method that fully exploits the capabilities of the existing diffusion model for sparse-view 3DGS reconstruction enhancement. At the core of FixingGS is our distillation approach, which delivers more accurate and cross-view coherent diffusion priors, thereby enabling effective artifact removal and inpainting. In addition, we propose an adaptive progressive enhancement scheme that further refines reconstructions in under-constrained regions. Extensive experiments demonstrate that FixingGS surpasses existing state-of-the-art methods with superior visual quality and reconstruction performance. Our code will be released publicly.
EDGS: Eliminating Densification for Efficient Convergence of 3DGS
3D Gaussian Splatting reconstructs scenes by starting from a sparse Structure-from-Motion initialization and iteratively refining under-reconstructed regions. This process is inherently slow, as it requires multiple densification steps where Gaussians are repeatedly split and adjusted, following a lengthy optimization path. Moreover, this incremental approach often leads to suboptimal renderings, particularly in high-frequency regions where detail is critical. We propose a fundamentally different approach: we eliminate densification process with a one-step approximation of scene geometry using triangulated pixels from dense image correspondences. This dense initialization allows us to estimate rough geometry of the scene while preserving rich details from input RGB images, providing each Gaussian with well-informed colors, scales, and positions. As a result, we dramatically shorten the optimization path and remove the need for densification. Unlike traditional methods that rely on sparse keypoints, our dense initialization ensures uniform detail across the scene, even in high-frequency regions where 3DGS and other methods struggle. Moreover, since all splats are initialized in parallel at the start of optimization, we eliminate the need to wait for densification to adjust new Gaussians. Our method not only outperforms speed-optimized models in training efficiency but also achieves higher rendering quality than state-of-the-art approaches, all while using only half the splats of standard 3DGS. It is fully compatible with other 3DGS acceleration techniques, making it a versatile and efficient solution that can be integrated with existing approaches.
CLIPGaussian: Universal and Multimodal Style Transfer Based on Gaussian Splatting
Gaussian Splatting (GS) has recently emerged as an efficient representation for rendering 3D scenes from 2D images and has been extended to images, videos, and dynamic 4D content. However, applying style transfer to GS-based representations, especially beyond simple color changes, remains challenging. In this work, we introduce CLIPGaussians, the first unified style transfer framework that supports text- and image-guided stylization across multiple modalities: 2D images, videos, 3D objects, and 4D scenes. Our method operates directly on Gaussian primitives and integrates into existing GS pipelines as a plug-in module, without requiring large generative models or retraining from scratch. CLIPGaussians approach enables joint optimization of color and geometry in 3D and 4D settings, and achieves temporal coherence in videos, while preserving a model size. We demonstrate superior style fidelity and consistency across all tasks, validating CLIPGaussians as a universal and efficient solution for multimodal style transfer.
Textured-GS: Gaussian Splatting with Spatially Defined Color and Opacity
In this paper, we introduce Textured-GS, an innovative method for rendering Gaussian splatting that incorporates spatially defined color and opacity variations using Spherical Harmonics (SH). This approach enables each Gaussian to exhibit a richer representation by accommodating varying colors and opacities across its surface, significantly enhancing rendering quality compared to traditional methods. To demonstrate the merits of our approach, we have adapted the Mini-Splatting architecture to integrate textured Gaussians without increasing the number of Gaussians. Our experiments across multiple real-world datasets show that Textured-GS consistently outperforms both the baseline Mini-Splatting and standard 3DGS in terms of visual fidelity. The results highlight the potential of Textured-GS to advance Gaussian-based rendering technologies, promising more efficient and high-quality scene reconstructions.
GScream: Learning 3D Geometry and Feature Consistent Gaussian Splatting for Object Removal
This paper tackles the intricate challenge of object removal to update the radiance field using the 3D Gaussian Splatting. The main challenges of this task lie in the preservation of geometric consistency and the maintenance of texture coherence in the presence of the substantial discrete nature of Gaussian primitives. We introduce a robust framework specifically designed to overcome these obstacles. The key insight of our approach is the enhancement of information exchange among visible and invisible areas, facilitating content restoration in terms of both geometry and texture. Our methodology begins with optimizing the positioning of Gaussian primitives to improve geometric consistency across both removed and visible areas, guided by an online registration process informed by monocular depth estimation. Following this, we employ a novel feature propagation mechanism to bolster texture coherence, leveraging a cross-attention design that bridges sampling Gaussians from both uncertain and certain areas. This innovative approach significantly refines the texture coherence within the final radiance field. Extensive experiments validate that our method not only elevates the quality of novel view synthesis for scenes undergoing object removal but also showcases notable efficiency gains in training and rendering speeds.
RobustSplat: Decoupling Densification and Dynamics for Transient-Free 3DGS
3D Gaussian Splatting (3DGS) has gained significant attention for its real-time, photo-realistic rendering in novel-view synthesis and 3D modeling. However, existing methods struggle with accurately modeling scenes affected by transient objects, leading to artifacts in the rendered images. We identify that the Gaussian densification process, while enhancing scene detail capture, unintentionally contributes to these artifacts by growing additional Gaussians that model transient disturbances. To address this, we propose RobustSplat, a robust solution based on two critical designs. First, we introduce a delayed Gaussian growth strategy that prioritizes optimizing static scene structure before allowing Gaussian splitting/cloning, mitigating overfitting to transient objects in early optimization. Second, we design a scale-cascaded mask bootstrapping approach that first leverages lower-resolution feature similarity supervision for reliable initial transient mask estimation, taking advantage of its stronger semantic consistency and robustness to noise, and then progresses to high-resolution supervision to achieve more precise mask prediction. Extensive experiments on multiple challenging datasets show that our method outperforms existing methods, clearly demonstrating the robustness and effectiveness of our method. Our project page is https://fcyycf.github.io/RobustSplat/.
LayGA: Layered Gaussian Avatars for Animatable Clothing Transfer
Animatable clothing transfer, aiming at dressing and animating garments across characters, is a challenging problem. Most human avatar works entangle the representations of the human body and clothing together, which leads to difficulties for virtual try-on across identities. What's worse, the entangled representations usually fail to exactly track the sliding motion of garments. To overcome these limitations, we present Layered Gaussian Avatars (LayGA), a new representation that formulates body and clothing as two separate layers for photorealistic animatable clothing transfer from multi-view videos. Our representation is built upon the Gaussian map-based avatar for its excellent representation power of garment details. However, the Gaussian map produces unstructured 3D Gaussians distributed around the actual surface. The absence of a smooth explicit surface raises challenges in accurate garment tracking and collision handling between body and garments. Therefore, we propose two-stage training involving single-layer reconstruction and multi-layer fitting. In the single-layer reconstruction stage, we propose a series of geometric constraints to reconstruct smooth surfaces and simultaneously obtain the segmentation between body and clothing. Next, in the multi-layer fitting stage, we train two separate models to represent body and clothing and utilize the reconstructed clothing geometries as 3D supervision for more accurate garment tracking. Furthermore, we propose geometry and rendering layers for both high-quality geometric reconstruction and high-fidelity rendering. Overall, the proposed LayGA realizes photorealistic animations and virtual try-on, and outperforms other baseline methods. Our project page is https://jsnln.github.io/layga/index.html.
Optimized Minimal 4D Gaussian Splatting
4D Gaussian Splatting has emerged as a new paradigm for dynamic scene representation, enabling real-time rendering of scenes with complex motions. However, it faces a major challenge of storage overhead, as millions of Gaussians are required for high-fidelity reconstruction. While several studies have attempted to alleviate this memory burden, they still face limitations in compression ratio or visual quality. In this work, we present OMG4 (Optimized Minimal 4D Gaussian Splatting), a framework that constructs a compact set of salient Gaussians capable of faithfully representing 4D Gaussian models. Our method progressively prunes Gaussians in three stages: (1) Gaussian Sampling to identify primitives critical to reconstruction fidelity, (2) Gaussian Pruning to remove redundancies, and (3) Gaussian Merging to fuse primitives with similar characteristics. In addition, we integrate implicit appearance compression and generalize Sub-Vector Quantization (SVQ) to 4D representations, further reducing storage while preserving quality. Extensive experiments on standard benchmark datasets demonstrate that OMG4 significantly outperforms recent state-of-the-art methods, reducing model sizes by over 60% while maintaining reconstruction quality. These results position OMG4 as a significant step forward in compact 4D scene representation, opening new possibilities for a wide range of applications. Our source code is available at https://minshirley.github.io/OMG4/.
GaussianCube: Structuring Gaussian Splatting using Optimal Transport for 3D Generative Modeling
3D Gaussian Splatting (GS) have achieved considerable improvement over Neural Radiance Fields in terms of 3D fitting fidelity and rendering speed. However, this unstructured representation with scattered Gaussians poses a significant challenge for generative modeling. To address the problem, we introduce GaussianCube, a structured GS representation that is both powerful and efficient for generative modeling. We achieve this by first proposing a modified densification-constrained GS fitting algorithm which can yield high-quality fitting results using a fixed number of free Gaussians, and then re-arranging the Gaussians into a predefined voxel grid via Optimal Transport. The structured grid representation allows us to use standard 3D U-Net as our backbone in diffusion generative modeling without elaborate designs. Extensive experiments conducted on ShapeNet and OmniObject3D show that our model achieves state-of-the-art generation results both qualitatively and quantitatively, underscoring the potential of GaussianCube as a powerful and versatile 3D representation.
SplitGaussian: Reconstructing Dynamic Scenes via Visual Geometry Decomposition
Reconstructing dynamic 3D scenes from monocular video remains fundamentally challenging due to the need to jointly infer motion, structure, and appearance from limited observations. Existing dynamic scene reconstruction methods based on Gaussian Splatting often entangle static and dynamic elements in a shared representation, leading to motion leakage, geometric distortions, and temporal flickering. We identify that the root cause lies in the coupled modeling of geometry and appearance across time, which hampers both stability and interpretability. To address this, we propose SplitGaussian, a novel framework that explicitly decomposes scene representations into static and dynamic components. By decoupling motion modeling from background geometry and allowing only the dynamic branch to deform over time, our method prevents motion artifacts in static regions while supporting view- and time-dependent appearance refinement. This disentangled design not only enhances temporal consistency and reconstruction fidelity but also accelerates convergence. Extensive experiments demonstrate that SplitGaussian outperforms prior state-of-the-art methods in rendering quality, geometric stability, and motion separation.
GausSurf: Geometry-Guided 3D Gaussian Splatting for Surface Reconstruction
3D Gaussian Splatting has achieved impressive performance in novel view synthesis with real-time rendering capabilities. However, reconstructing high-quality surfaces with fine details using 3D Gaussians remains a challenging task. In this work, we introduce GausSurf, a novel approach to high-quality surface reconstruction by employing geometry guidance from multi-view consistency in texture-rich areas and normal priors in texture-less areas of a scene. We observe that a scene can be mainly divided into two primary regions: 1) texture-rich and 2) texture-less areas. To enforce multi-view consistency at texture-rich areas, we enhance the reconstruction quality by incorporating a traditional patch-match based Multi-View Stereo (MVS) approach to guide the geometry optimization in an iterative scheme. This scheme allows for mutual reinforcement between the optimization of Gaussians and patch-match refinement, which significantly improves the reconstruction results and accelerates the training process. Meanwhile, for the texture-less areas, we leverage normal priors from a pre-trained normal estimation model to guide optimization. Extensive experiments on the DTU and Tanks and Temples datasets demonstrate that our method surpasses state-of-the-art methods in terms of reconstruction quality and computation time.
Distilled-3DGS:Distilled 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has exhibited remarkable efficacy in novel view synthesis (NVS). However, it suffers from a significant drawback: achieving high-fidelity rendering typically necessitates a large number of 3D Gaussians, resulting in substantial memory consumption and storage requirements. To address this challenge, we propose the first knowledge distillation framework for 3DGS, featuring various teacher models, including vanilla 3DGS, noise-augmented variants, and dropout-regularized versions. The outputs of these teachers are aggregated to guide the optimization of a lightweight student model. To distill the hidden geometric structure, we propose a structural similarity loss to boost the consistency of spatial geometric distributions between the student and teacher model. Through comprehensive quantitative and qualitative evaluations across diverse datasets, the proposed Distilled-3DGS, a simple yet effective framework without bells and whistles, achieves promising rendering results in both rendering quality and storage efficiency compared to state-of-the-art methods. Project page: https://distilled3dgs.github.io . Code: https://github.com/lt-xiang/Distilled-3DGS .
3DGS-Avatar: Animatable Avatars via Deformable 3D Gaussian Splatting
We introduce an approach that creates animatable human avatars from monocular videos using 3D Gaussian Splatting (3DGS). Existing methods based on neural radiance fields (NeRFs) achieve high-quality novel-view/novel-pose image synthesis but often require days of training, and are extremely slow at inference time. Recently, the community has explored fast grid structures for efficient training of clothed avatars. Albeit being extremely fast at training, these methods can barely achieve an interactive rendering frame rate with around 15 FPS. In this paper, we use 3D Gaussian Splatting and learn a non-rigid deformation network to reconstruct animatable clothed human avatars that can be trained within 30 minutes and rendered at real-time frame rates (50+ FPS). Given the explicit nature of our representation, we further introduce as-isometric-as-possible regularizations on both the Gaussian mean vectors and the covariance matrices, enhancing the generalization of our model on highly articulated unseen poses. Experimental results show that our method achieves comparable and even better performance compared to state-of-the-art approaches on animatable avatar creation from a monocular input, while being 400x and 250x faster in training and inference, respectively.
Bridging 3D Gaussian and Mesh for Freeview Video Rendering
This is only a preview version of GauMesh. Recently, primitive-based rendering has been proven to achieve convincing results in solving the problem of modeling and rendering the 3D dynamic scene from 2D images. Despite this, in the context of novel view synthesis, each type of primitive has its inherent defects in terms of representation ability. It is difficult to exploit the mesh to depict the fuzzy geometry. Meanwhile, the point-based splatting (e.g. the 3D Gaussian Splatting) method usually produces artifacts or blurry pixels in the area with smooth geometry and sharp textures. As a result, it is difficult, even not impossible, to represent the complex and dynamic scene with a single type of primitive. To this end, we propose a novel approach, GauMesh, to bridge the 3D Gaussian and Mesh for modeling and rendering the dynamic scenes. Given a sequence of tracked mesh as initialization, our goal is to simultaneously optimize the mesh geometry, color texture, opacity maps, a set of 3D Gaussians, and the deformation field. At a specific time, we perform alpha-blending on the RGB and opacity values based on the merged and re-ordered z-buffers from mesh and 3D Gaussian rasterizations. This produces the final rendering, which is supervised by the ground-truth image. Experiments demonstrate that our approach adapts the appropriate type of primitives to represent the different parts of the dynamic scene and outperforms all the baseline methods in both quantitative and qualitative comparisons without losing render speed.
Gaussian Grouping: Segment and Edit Anything in 3D Scenes
The recent Gaussian Splatting achieves high-quality and real-time novel-view synthesis of the 3D scenes. However, it is solely concentrated on the appearance and geometry modeling, while lacking in fine-grained object-level scene understanding. To address this issue, we propose Gaussian Grouping, which extends Gaussian Splatting to jointly reconstruct and segment anything in open-world 3D scenes. We augment each Gaussian with a compact Identity Encoding, allowing the Gaussians to be grouped according to their object instance or stuff membership in the 3D scene. Instead of resorting to expensive 3D labels, we supervise the Identity Encodings during the differentiable rendering by leveraging the 2D mask predictions by SAM, along with introduced 3D spatial consistency regularization. Comparing to the implicit NeRF representation, we show that the discrete and grouped 3D Gaussians can reconstruct, segment and edit anything in 3D with high visual quality, fine granularity and efficiency. Based on Gaussian Grouping, we further propose a local Gaussian Editing scheme, which shows efficacy in versatile scene editing applications, including 3D object removal, inpainting, colorization and scene recomposition. Our code and models will be at https://github.com/lkeab/gaussian-grouping.
Compression in 3D Gaussian Splatting: A Survey of Methods, Trends, and Future Directions
3D Gaussian Splatting (3DGS) has recently emerged as a pioneering approach in explicit scene rendering and computer graphics. Unlike traditional neural radiance field (NeRF) methods, which typically rely on implicit, coordinate-based models to map spatial coordinates to pixel values, 3DGS utilizes millions of learnable 3D Gaussians. Its differentiable rendering technique and inherent capability for explicit scene representation and manipulation positions 3DGS as a potential game-changer for the next generation of 3D reconstruction and representation technologies. This enables 3DGS to deliver real-time rendering speeds while offering unparalleled editability levels. However, despite its advantages, 3DGS suffers from substantial memory and storage requirements, posing challenges for deployment on resource-constrained devices. In this survey, we provide a comprehensive overview focusing on the scalability and compression of 3DGS. We begin with a detailed background overview of 3DGS, followed by a structured taxonomy of existing compression methods. Additionally, we analyze and compare current methods from the topological perspective, evaluating their strengths and limitations in terms of fidelity, compression ratios, and computational efficiency. Furthermore, we explore how advancements in efficient NeRF representations can inspire future developments in 3DGS optimization. Finally, we conclude with current research challenges and highlight key directions for future exploration.
CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting
Gaussian splatting, renowned for its exceptional rendering quality and efficiency, has emerged as a prominent technique in 3D scene representation. However, the substantial data volume of Gaussian splatting impedes its practical utility in real-world applications. Herein, we propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS), which harnesses compact Gaussian primitives for faithful 3D scene modeling with a remarkably reduced data size. To ensure the compactness of Gaussian primitives, we devise a hybrid primitive structure that captures predictive relationships between each other. Then, we exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms. Moreover, we develop a rate-constrained optimization scheme to eliminate redundancies within such hybrid primitives, steering our CompGS towards an optimal trade-off between bitrate consumption and representation efficacy. Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality. Our code will be released on GitHub for further research.
DiffSplat: Repurposing Image Diffusion Models for Scalable Gaussian Splat Generation
Recent advancements in 3D content generation from text or a single image struggle with limited high-quality 3D datasets and inconsistency from 2D multi-view generation. We introduce DiffSplat, a novel 3D generative framework that natively generates 3D Gaussian splats by taming large-scale text-to-image diffusion models. It differs from previous 3D generative models by effectively utilizing web-scale 2D priors while maintaining 3D consistency in a unified model. To bootstrap the training, a lightweight reconstruction model is proposed to instantly produce multi-view Gaussian splat grids for scalable dataset curation. In conjunction with the regular diffusion loss on these grids, a 3D rendering loss is introduced to facilitate 3D coherence across arbitrary views. The compatibility with image diffusion models enables seamless adaptions of numerous techniques for image generation to the 3D realm. Extensive experiments reveal the superiority of DiffSplat in text- and image-conditioned generation tasks and downstream applications. Thorough ablation studies validate the efficacy of each critical design choice and provide insights into the underlying mechanism.
GaussianPro: 3D Gaussian Splatting with Progressive Propagation
The advent of 3D Gaussian Splatting (3DGS) has recently brought about a revolution in the field of neural rendering, facilitating high-quality renderings at real-time speed. However, 3DGS heavily depends on the initialized point cloud produced by Structure-from-Motion (SfM) techniques. When tackling with large-scale scenes that unavoidably contain texture-less surfaces, the SfM techniques always fail to produce enough points in these surfaces and cannot provide good initialization for 3DGS. As a result, 3DGS suffers from difficult optimization and low-quality renderings. In this paper, inspired by classical multi-view stereo (MVS) techniques, we propose GaussianPro, a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians. Compared to the simple split and clone strategies used in 3DGS, our method leverages the priors of the existing reconstructed geometries of the scene and patch matching techniques to produce new Gaussians with accurate positions and orientations. Experiments on both large-scale and small-scale scenes validate the effectiveness of our method, where our method significantly surpasses 3DGS on the Waymo dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
GASP: Gaussian Splatting for Physic-Based Simulations
Physics simulation is paramount for modeling and utilizing 3D scenes in various real-world applications. However, integrating with state-of-the-art 3D scene rendering techniques such as Gaussian Splatting (GS) remains challenging. Existing models use additional meshing mechanisms, including triangle or tetrahedron meshing, marching cubes, or cage meshes. Alternatively, we can modify the physics-grounded Newtonian dynamics to align with 3D Gaussian components. Current models take the first-order approximation of a deformation map, which locally approximates the dynamics by linear transformations. In contrast, our GS for Physics-Based Simulations (GASP) pipeline uses parametrized flat Gaussian distributions. Consequently, the problem of modeling Gaussian components using the physics engine is reduced to working with 3D points. In our work, we present additional rules for manipulating Gaussians, demonstrating how to adapt the pipeline to incorporate meshes, control Gaussian sizes during simulations, and enhance simulation efficiency. This is achieved through the Gaussian grouping strategy, which implements hierarchical structuring and enables simulations to be performed exclusively on selected Gaussians. The resulting solution can be integrated into any physics engine that can be treated as a black box. As demonstrated in our studies, the proposed pipeline exhibits superior performance on a diverse range of benchmark datasets designed for 3D object rendering. The project webpage, which includes additional visualizations, can be found at https://waczjoan.github.io/GASP.
360-GS: Layout-guided Panoramic Gaussian Splatting For Indoor Roaming
3D Gaussian Splatting (3D-GS) has recently attracted great attention with real-time and photo-realistic renderings. This technique typically takes perspective images as input and optimizes a set of 3D elliptical Gaussians by splatting them onto the image planes, resulting in 2D Gaussians. However, applying 3D-GS to panoramic inputs presents challenges in effectively modeling the projection onto the spherical surface of {360^circ} images using 2D Gaussians. In practical applications, input panoramas are often sparse, leading to unreliable initialization of 3D Gaussians and subsequent degradation of 3D-GS quality. In addition, due to the under-constrained geometry of texture-less planes (e.g., walls and floors), 3D-GS struggles to model these flat regions with elliptical Gaussians, resulting in significant floaters in novel views. To address these issues, we propose 360-GS, a novel 360^{circ} Gaussian splatting for a limited set of panoramic inputs. Instead of splatting 3D Gaussians directly onto the spherical surface, 360-GS projects them onto the tangent plane of the unit sphere and then maps them to the spherical projections. This adaptation enables the representation of the projection using Gaussians. We guide the optimization of 360-GS by exploiting layout priors within panoramas, which are simple to obtain and contain strong structural information about the indoor scene. Our experimental results demonstrate that 360-GS allows panoramic rendering and outperforms state-of-the-art methods with fewer artifacts in novel view synthesis, thus providing immersive roaming in indoor scenarios.
7DGS: Unified Spatial-Temporal-Angular Gaussian Splatting
Real-time rendering of dynamic scenes with view-dependent effects remains a fundamental challenge in computer graphics. While recent advances in Gaussian Splatting have shown promising results separately handling dynamic scenes (4DGS) and view-dependent effects (6DGS), no existing method unifies these capabilities while maintaining real-time performance. We present 7D Gaussian Splatting (7DGS), a unified framework representing scene elements as seven-dimensional Gaussians spanning position (3D), time (1D), and viewing direction (3D). Our key contribution is an efficient conditional slicing mechanism that transforms 7D Gaussians into view- and time-conditioned 3D Gaussians, maintaining compatibility with existing 3D Gaussian Splatting pipelines while enabling joint optimization. Experiments demonstrate that 7DGS outperforms prior methods by up to 7.36 dB in PSNR while achieving real-time rendering (401 FPS) on challenging dynamic scenes with complex view-dependent effects. The project page is: https://gaozhongpai.github.io/7dgs/.
2D Gaussian Splatting with Semantic Alignment for Image Inpainting
Gaussian Splatting (GS), a recent technique for converting discrete points into continuous spatial representations, has shown promising results in 3D scene modeling and 2D image super-resolution. In this paper, we explore its untapped potential for image inpainting, which demands both locally coherent pixel synthesis and globally consistent semantic restoration. We propose the first image inpainting framework based on 2D Gaussian Splatting, which encodes incomplete images into a continuous field of 2D Gaussian splat coefficients and reconstructs the final image via a differentiable rasterization process. The continuous rendering paradigm of GS inherently promotes pixel-level coherence in the inpainted results. To improve efficiency and scalability, we introduce a patch-wise rasterization strategy that reduces memory overhead and accelerates inference. For global semantic consistency, we incorporate features from a pretrained DINO model. We observe that DINO's global features are naturally robust to small missing regions and can be effectively adapted to guide semantic alignment in large-mask scenarios, ensuring that the inpainted content remains contextually consistent with the surrounding scene. Extensive experiments on standard benchmarks demonstrate that our method achieves competitive performance in both quantitative metrics and perceptual quality, establishing a new direction for applying Gaussian Splatting to 2D image processing.
Robust Gaussian Splatting
In this paper, we address common error sources for 3D Gaussian Splatting (3DGS) including blur, imperfect camera poses, and color inconsistencies, with the goal of improving its robustness for practical applications like reconstructions from handheld phone captures. Our main contribution involves modeling motion blur as a Gaussian distribution over camera poses, allowing us to address both camera pose refinement and motion blur correction in a unified way. Additionally, we propose mechanisms for defocus blur compensation and for addressing color in-consistencies caused by ambient light, shadows, or due to camera-related factors like varying white balancing settings. Our proposed solutions integrate in a seamless way with the 3DGS formulation while maintaining its benefits in terms of training efficiency and rendering speed. We experimentally validate our contributions on relevant benchmark datasets including Scannet++ and Deblur-NeRF, obtaining state-of-the-art results and thus consistent improvements over relevant baselines.
HyRF: Hybrid Radiance Fields for Memory-efficient and High-quality Novel View Synthesis
Recently, 3D Gaussian Splatting (3DGS) has emerged as a powerful alternative to NeRF-based approaches, enabling real-time, high-quality novel view synthesis through explicit, optimizable 3D Gaussians. However, 3DGS suffers from significant memory overhead due to its reliance on per-Gaussian parameters to model view-dependent effects and anisotropic shapes. While recent works propose compressing 3DGS with neural fields, these methods struggle to capture high-frequency spatial variations in Gaussian properties, leading to degraded reconstruction of fine details. We present Hybrid Radiance Fields (HyRF), a novel scene representation that combines the strengths of explicit Gaussians and neural fields. HyRF decomposes the scene into (1) a compact set of explicit Gaussians storing only critical high-frequency parameters and (2) grid-based neural fields that predict remaining properties. To enhance representational capacity, we introduce a decoupled neural field architecture, separately modeling geometry (scale, opacity, rotation) and view-dependent color. Additionally, we propose a hybrid rendering scheme that composites Gaussian splatting with a neural field-predicted background, addressing limitations in distant scene representation. Experiments demonstrate that HyRF achieves state-of-the-art rendering quality while reducing model size by over 20 times compared to 3DGS and maintaining real-time performance. Our project page is available at https://wzpscott.github.io/hyrf/.
Neural Surface Priors for Editable Gaussian Splatting
In computer graphics, there is a need to recover easily modifiable representations of 3D geometry and appearance from image data. We introduce a novel method for this task using 3D Gaussian Splatting, which enables intuitive scene editing through mesh adjustments. Starting with input images and camera poses, we reconstruct the underlying geometry using a neural Signed Distance Field and extract a high-quality mesh. Our model then estimates a set of Gaussians, where each component is flat, and the opacity is conditioned on the recovered neural surface. To facilitate editing, we produce a proxy representation that encodes information about the Gaussians' shape and position. Unlike other methods, our pipeline allows modifications applied to the extracted mesh to be propagated to the proxy representation, from which we recover the updated parameters of the Gaussians. This effectively transfers the mesh edits back to the recovered appearance representation. By leveraging mesh-guided transformations, our approach simplifies 3D scene editing and offers improvements over existing methods in terms of usability and visual fidelity of edits. The complete source code for this project can be accessed at https://github.com/WJakubowska/NeuralSurfacePriors
GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering
Advancements in 3D Gaussian Splatting have significantly accelerated 3D reconstruction and generation. However, it may require a large number of Gaussians, which creates a substantial memory footprint. This paper introduces GES (Generalized Exponential Splatting), a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes, requiring far fewer particles to represent a scene and thus significantly outperforming Gaussian Splatting methods in efficiency with a plug-and-play replacement ability for Gaussian-based utilities. GES is validated theoretically and empirically in both principled 1D setup and realistic 3D scenes. It is shown to represent signals with sharp edges more accurately, which are typically challenging for Gaussians due to their inherent low-pass characteristics. Our empirical analysis demonstrates that GEF outperforms Gaussians in fitting natural-occurring signals (e.g. squares, triangles, and parabolic signals), thereby reducing the need for extensive splitting operations that increase the memory footprint of Gaussian Splatting. With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks while requiring less than half the memory storage of Gaussian Splatting and increasing the rendering speed by up to 39%. The code is available on the project website https://abdullahamdi.com/ges .
SplatArmor: Articulated Gaussian splatting for animatable humans from monocular RGB videos
We propose SplatArmor, a novel approach for recovering detailed and animatable human models by `armoring' a parameterized body model with 3D Gaussians. Our approach represents the human as a set of 3D Gaussians within a canonical space, whose articulation is defined by extending the skinning of the underlying SMPL geometry to arbitrary locations in the canonical space. To account for pose-dependent effects, we introduce a SE(3) field, which allows us to capture both the location and anisotropy of the Gaussians. Furthermore, we propose the use of a neural color field to provide color regularization and 3D supervision for the precise positioning of these Gaussians. We show that Gaussian splatting provides an interesting alternative to neural rendering based methods by leverging a rasterization primitive without facing any of the non-differentiability and optimization challenges typically faced in such approaches. The rasterization paradigms allows us to leverage forward skinning, and does not suffer from the ambiguities associated with inverse skinning and warping. We show compelling results on the ZJU MoCap and People Snapshot datasets, which underscore the effectiveness of our method for controllable human synthesis.
GP-GS: Gaussian Processes for Enhanced Gaussian Splatting
3D Gaussian Splatting has emerged as an efficient photorealistic novel view synthesis method. However, its reliance on sparse Structure-from-Motion (SfM) point clouds consistently compromises the scene reconstruction quality. To address these limitations, this paper proposes a novel 3D reconstruction framework Gaussian Processes Gaussian Splatting (GP-GS), where a multi-output Gaussian Process model is developed to achieve adaptive and uncertainty-guided densification of sparse SfM point clouds. Specifically, we propose a dynamic sampling and filtering pipeline that adaptively expands the SfM point clouds by leveraging GP-based predictions to infer new candidate points from the input 2D pixels and depth maps. The pipeline utilizes uncertainty estimates to guide the pruning of high-variance predictions, ensuring geometric consistency and enabling the generation of dense point clouds. The densified point clouds provide high-quality initial 3D Gaussians to enhance reconstruction performance. Extensive experiments conducted on synthetic and real-world datasets across various scales validate the effectiveness and practicality of the proposed framework.
Gaussian RBFNet: Gaussian Radial Basis Functions for Fast and Accurate Representation and Reconstruction of Neural Fields
Neural fields such as DeepSDF and Neural Radiance Fields have recently revolutionized novel-view synthesis and 3D reconstruction from RGB images and videos. However, achieving high-quality representation, reconstruction, and rendering requires deep neural networks, which are slow to train and evaluate. Although several acceleration techniques have been proposed, they often trade off speed for memory. Gaussian splatting-based methods, on the other hand, accelerate the rendering time but remain costly in terms of training speed and memory needed to store the parameters of a large number of Gaussians. In this paper, we introduce a novel neural representation that is fast, both at training and inference times, and lightweight. Our key observation is that the neurons used in traditional MLPs perform simple computations (a dot product followed by ReLU activation) and thus one needs to use either wide and deep MLPs or high-resolution and high-dimensional feature grids to parameterize complex nonlinear functions. We show in this paper that by replacing traditional neurons with Radial Basis Function (RBF) kernels, one can achieve highly accurate representation of 2D (RGB images), 3D (geometry), and 5D (radiance fields) signals with just a single layer of such neurons. The representation is highly parallelizable, operates on low-resolution feature grids, and is compact and memory-efficient. We demonstrate that the proposed novel representation can be trained for 3D geometry representation in less than 15 seconds and for novel view synthesis in less than 15 mins. At runtime, it can synthesize novel views at more than 60 fps without sacrificing quality.
SC-GS: Sparse-Controlled Gaussian Splatting for Editable Dynamic Scenes
Novel view synthesis for dynamic scenes is still a challenging problem in computer vision and graphics. Recently, Gaussian splatting has emerged as a robust technique to represent static scenes and enable high-quality and real-time novel view synthesis. Building upon this technique, we propose a new representation that explicitly decomposes the motion and appearance of dynamic scenes into sparse control points and dense Gaussians, respectively. Our key idea is to use sparse control points, significantly fewer in number than the Gaussians, to learn compact 6 DoF transformation bases, which can be locally interpolated through learned interpolation weights to yield the motion field of 3D Gaussians. We employ a deformation MLP to predict time-varying 6 DoF transformations for each control point, which reduces learning complexities, enhances learning abilities, and facilitates obtaining temporal and spatial coherent motion patterns. Then, we jointly learn the 3D Gaussians, the canonical space locations of control points, and the deformation MLP to reconstruct the appearance, geometry, and dynamics of 3D scenes. During learning, the location and number of control points are adaptively adjusted to accommodate varying motion complexities in different regions, and an ARAP loss following the principle of as rigid as possible is developed to enforce spatial continuity and local rigidity of learned motions. Finally, thanks to the explicit sparse motion representation and its decomposition from appearance, our method can enable user-controlled motion editing while retaining high-fidelity appearances. Extensive experiments demonstrate that our approach outperforms existing approaches on novel view synthesis with a high rendering speed and enables novel appearance-preserved motion editing applications. Project page: https://yihua7.github.io/SC-GS-web/
2DGS-Room: Seed-Guided 2D Gaussian Splatting with Geometric Constrains for High-Fidelity Indoor Scene Reconstruction
The reconstruction of indoor scenes remains challenging due to the inherent complexity of spatial structures and the prevalence of textureless regions. Recent advancements in 3D Gaussian Splatting have improved novel view synthesis with accelerated processing but have yet to deliver comparable performance in surface reconstruction. In this paper, we introduce 2DGS-Room, a novel method leveraging 2D Gaussian Splatting for high-fidelity indoor scene reconstruction. Specifically, we employ a seed-guided mechanism to control the distribution of 2D Gaussians, with the density of seed points dynamically optimized through adaptive growth and pruning mechanisms. To further improve geometric accuracy, we incorporate monocular depth and normal priors to provide constraints for details and textureless regions respectively. Additionally, multi-view consistency constraints are employed to mitigate artifacts and further enhance reconstruction quality. Extensive experiments on ScanNet and ScanNet++ datasets demonstrate that our method achieves state-of-the-art performance in indoor scene reconstruction.
Spectrally Pruned Gaussian Fields with Neural Compensation
Recently, 3D Gaussian Splatting, as a novel 3D representation, has garnered attention for its fast rendering speed and high rendering quality. However, this comes with high memory consumption, e.g., a well-trained Gaussian field may utilize three million Gaussian primitives and over 700 MB of memory. We credit this high memory footprint to the lack of consideration for the relationship between primitives. In this paper, we propose a memory-efficient Gaussian field named SUNDAE with spectral pruning and neural compensation. On one hand, we construct a graph on the set of Gaussian primitives to model their relationship and design a spectral down-sampling module to prune out primitives while preserving desired signals. On the other hand, to compensate for the quality loss of pruning Gaussians, we exploit a lightweight neural network head to mix splatted features, which effectively compensates for quality losses while capturing the relationship between primitives in its weights. We demonstrate the performance of SUNDAE with extensive results. For example, SUNDAE can achieve 26.80 PSNR at 145 FPS using 104 MB memory while the vanilla Gaussian splatting algorithm achieves 25.60 PSNR at 160 FPS using 523 MB memory, on the Mip-NeRF360 dataset. Codes are publicly available at https://runyiyang.github.io/projects/SUNDAE/.
D3DR: Lighting-Aware Object Insertion in Gaussian Splatting
Gaussian Splatting has become a popular technique for various 3D Computer Vision tasks, including novel view synthesis, scene reconstruction, and dynamic scene rendering. However, the challenge of natural-looking object insertion, where the object's appearance seamlessly matches the scene, remains unsolved. In this work, we propose a method, dubbed D3DR, for inserting a 3DGS-parametrized object into 3DGS scenes while correcting its lighting, shadows, and other visual artifacts to ensure consistency, a problem that has not been successfully addressed before. We leverage advances in diffusion models, which, trained on real-world data, implicitly understand correct scene lighting. After inserting the object, we optimize a diffusion-based Delta Denoising Score (DDS)-inspired objective to adjust its 3D Gaussian parameters for proper lighting correction. Utilizing diffusion model personalization techniques to improve optimization quality, our approach ensures seamless object insertion and natural appearance. Finally, we demonstrate the method's effectiveness by comparing it to existing approaches, achieving 0.5 PSNR and 0.15 SSIM improvements in relighting quality.
Gaussian Garments: Reconstructing Simulation-Ready Clothing with Photorealistic Appearance from Multi-View Video
We introduce Gaussian Garments, a novel approach for reconstructing realistic simulation-ready garment assets from multi-view videos. Our method represents garments with a combination of a 3D mesh and a Gaussian texture that encodes both the color and high-frequency surface details. This representation enables accurate registration of garment geometries to multi-view videos and helps disentangle albedo textures from lighting effects. Furthermore, we demonstrate how a pre-trained graph neural network (GNN) can be fine-tuned to replicate the real behavior of each garment. The reconstructed Gaussian Garments can be automatically combined into multi-garment outfits and animated with the fine-tuned GNN.
VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction
Existing NeRF-based methods for large scene reconstruction often have limitations in visual quality and rendering speed. While the recent 3D Gaussian Splatting works well on small-scale and object-centric scenes, scaling it up to large scenes poses challenges due to limited video memory, long optimization time, and noticeable appearance variations. To address these challenges, we present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting. We propose a progressive partitioning strategy to divide a large scene into multiple cells, where the training cameras and point cloud are properly distributed with an airspace-aware visibility criterion. These cells are merged into a complete scene after parallel optimization. We also introduce decoupled appearance modeling into the optimization process to reduce appearance variations in the rendered images. Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets, enabling fast optimization and high-fidelity real-time rendering.
GS-Verse: Mesh-based Gaussian Splatting for Physics-aware Interaction in Virtual Reality
As the demand for immersive 3D content grows, the need for intuitive and efficient interaction methods becomes paramount. Current techniques for physically manipulating 3D content within Virtual Reality (VR) often face significant limitations, including reliance on engineering-intensive processes and simplified geometric representations, such as tetrahedral cages, which can compromise visual fidelity and physical accuracy. In this paper, we introduce GS-Verse (Gaussian Splatting for Virtual Environment Rendering and Scene Editing), a novel method designed to overcome these challenges by directly integrating an object's mesh with a Gaussian Splatting (GS) representation. Our approach enables more precise surface approximation, leading to highly realistic deformations and interactions. By leveraging existing 3D mesh assets, GS-Verse facilitates seamless content reuse and simplifies the development workflow. Moreover, our system is designed to be physics-engine-agnostic, granting developers robust deployment flexibility. This versatile architecture delivers a highly realistic, adaptable, and intuitive approach to interactive 3D manipulation. We rigorously validate our method against the current state-of-the-art technique that couples VR with GS in a comparative user study involving 18 participants. Specifically, we demonstrate that our approach is statistically significantly better for physics-aware stretching manipulation and is also more consistent in other physics-based manipulations like twisting and shaking. Further evaluation across various interactions and scenes confirms that our method consistently delivers high and reliable performance, showing its potential as a plausible alternative to existing methods.
SpotlessSplats: Ignoring Distractors in 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) is a promising technique for 3D reconstruction, offering efficient training and rendering speeds, making it suitable for real-time applications.However, current methods require highly controlled environments (no moving people or wind-blown elements, and consistent lighting) to meet the inter-view consistency assumption of 3DGS. This makes reconstruction of real-world captures problematic. We present SpotlessSplats, an approach that leverages pre-trained and general-purpose features coupled with robust optimization to effectively ignore transient distractors. Our method achieves state-of-the-art reconstruction quality both visually and quantitatively, on casual captures.
Triangle Splatting+: Differentiable Rendering with Opaque Triangles
Reconstructing 3D scenes and synthesizing novel views has seen rapid progress in recent years. Neural Radiance Fields demonstrated that continuous volumetric radiance fields can achieve high-quality image synthesis, but their long training and rendering times limit practicality. 3D Gaussian Splatting (3DGS) addressed these issues by representing scenes with millions of Gaussians, enabling real-time rendering and fast optimization. However, Gaussian primitives are not natively compatible with the mesh-based pipelines used in VR headsets, and real-time graphics applications. Existing solutions attempt to convert Gaussians into meshes through post-processing or two-stage pipelines, which increases complexity and degrades visual quality. In this work, we introduce Triangle Splatting+, which directly optimizes triangles, the fundamental primitive of computer graphics, within a differentiable splatting framework. We formulate triangle parametrization to enable connectivity through shared vertices, and we design a training strategy that enforces opaque triangles. The final output is immediately usable in standard graphics engines without post-processing. Experiments on the Mip-NeRF360 and Tanks & Temples datasets show that Triangle Splatting+achieves state-of-the-art performance in mesh-based novel view synthesis. Our method surpasses prior splatting approaches in visual fidelity while remaining efficient and fast to training. Moreover, the resulting semi-connected meshes support downstream applications such as physics-based simulation or interactive walkthroughs. The project page is https://trianglesplatting2.github.io/trianglesplatting2/.
EvaGaussians: Event Stream Assisted Gaussian Splatting from Blurry Images
3D Gaussian Splatting (3D-GS) has demonstrated exceptional capabilities in 3D scene reconstruction and novel view synthesis. However, its training heavily depends on high-quality, sharp images and accurate camera poses. Fulfilling these requirements can be challenging in non-ideal real-world scenarios, where motion-blurred images are commonly encountered in high-speed moving cameras or low-light environments that require long exposure times. To address these challenges, we introduce Event Stream Assisted Gaussian Splatting (EvaGaussians), a novel approach that integrates event streams captured by an event camera to assist in reconstructing high-quality 3D-GS from blurry images. Capitalizing on the high temporal resolution and dynamic range offered by the event camera, we leverage the event streams to explicitly model the formation process of motion-blurred images and guide the deblurring reconstruction of 3D-GS. By jointly optimizing the 3D-GS parameters and recovering camera motion trajectories during the exposure time, our method can robustly facilitate the acquisition of high-fidelity novel views with intricate texture details. We comprehensively evaluated our method and compared it with previous state-of-the-art deblurring rendering methods. Both qualitative and quantitative comparisons demonstrate that our method surpasses existing techniques in restoring fine details from blurry images and producing high-fidelity novel views.
GST: Precise 3D Human Body from a Single Image with Gaussian Splatting Transformers
Reconstructing realistic 3D human models from monocular images has significant applications in creative industries, human-computer interfaces, and healthcare. We base our work on 3D Gaussian Splatting (3DGS), a scene representation composed of a mixture of Gaussians. Predicting such mixtures for a human from a single input image is challenging, as it is a non-uniform density (with a many-to-one relationship with input pixels) with strict physical constraints. At the same time, it needs to be flexible to accommodate a variety of clothes and poses. Our key observation is that the vertices of standardized human meshes (such as SMPL) can provide an adequate density and approximate initial position for Gaussians. We can then train a transformer model to jointly predict comparatively small adjustments to these positions, as well as the other Gaussians' attributes and the SMPL parameters. We show empirically that this combination (using only multi-view supervision) can achieve fast inference of 3D human models from a single image without test-time optimization, expensive diffusion models, or 3D points supervision. We also show that it can improve 3D pose estimation by better fitting human models that account for clothes and other variations. The code is available on the project website https://abdullahamdi.com/gst/ .
MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting
Dynamic scene reconstruction is a long-term challenge in the field of 3D vision. Recently, the emergence of 3D Gaussian Splatting has provided new insights into this problem. Although subsequent efforts rapidly extend static 3D Gaussian to dynamic scenes, they often lack explicit constraints on object motion, leading to optimization difficulties and performance degradation. To address the above issues, we propose a novel deformable 3D Gaussian splatting framework called MotionGS, which explores explicit motion priors to guide the deformation of 3D Gaussians. Specifically, we first introduce an optical flow decoupling module that decouples optical flow into camera flow and motion flow, corresponding to camera movement and object motion respectively. Then the motion flow can effectively constrain the deformation of 3D Gaussians, thus simulating the motion of dynamic objects. Additionally, a camera pose refinement module is proposed to alternately optimize 3D Gaussians and camera poses, mitigating the impact of inaccurate camera poses. Extensive experiments in the monocular dynamic scenes validate that MotionGS surpasses state-of-the-art methods and exhibits significant superiority in both qualitative and quantitative results. Project page: https://ruijiezhu94.github.io/MotionGS_page
PointGS: Point Attention-Aware Sparse View Synthesis with Gaussian Splatting
3D Gaussian splatting (3DGS) is an innovative rendering technique that surpasses the neural radiance field (NeRF) in both rendering speed and visual quality by leveraging an explicit 3D scene representation. Existing 3DGS approaches require a large number of calibrated views to generate a consistent and complete scene representation. When input views are limited, 3DGS tends to overfit the training views, leading to noticeable degradation in rendering quality. To address this limitation, we propose a Point-wise Feature-Aware Gaussian Splatting framework that enables real-time, high-quality rendering from sparse training views. Specifically, we first employ the latest stereo foundation model to estimate accurate camera poses and reconstruct a dense point cloud for Gaussian initialization. We then encode the colour attributes of each 3D Gaussian by sampling and aggregating multiscale 2D appearance features from sparse inputs. To enhance point-wise appearance representation, we design a point interaction network based on a self-attention mechanism, allowing each Gaussian point to interact with its nearest neighbors. These enriched features are subsequently decoded into Gaussian parameters through two lightweight multi-layer perceptrons (MLPs) for final rendering. Extensive experiments on diverse benchmarks demonstrate that our method significantly outperforms NeRF-based approaches and achieves competitive performance under few-shot settings compared to the state-of-the-art 3DGS methods.
Optimization-Free Style Transfer for 3D Gaussian Splats
The task of style transfer for 3D Gaussian splats has been explored in many previous works, but these require reconstructing or fine-tuning the splat while incorporating style information or optimizing a feature extraction network on the splat representation. We propose a reconstruction- and optimization-free approach to stylizing 3D Gaussian splats. This is done by generating a graph structure across the implicit surface of the splat representation. A feed-forward, surface-based stylization method is then used and interpolated back to the individual splats in the scene. This allows for any style image and 3D Gaussian splat to be used without any additional training or optimization. This also allows for fast stylization of splats, achieving speeds under 2 minutes even on consumer-grade hardware. We demonstrate the quality results this approach achieves and compare to other 3D Gaussian splat style transfer methods. Code is publicly available at https://github.com/davidmhart/FastSplatStyler.
Generalizable Human Gaussians for Sparse View Synthesis
Recent progress in neural rendering has brought forth pioneering methods, such as NeRF and Gaussian Splatting, which revolutionize view rendering across various domains like AR/VR, gaming, and content creation. While these methods excel at interpolating {\em within the training data}, the challenge of generalizing to new scenes and objects from very sparse views persists. Specifically, modeling 3D humans from sparse views presents formidable hurdles due to the inherent complexity of human geometry, resulting in inaccurate reconstructions of geometry and textures. To tackle this challenge, this paper leverages recent advancements in Gaussian Splatting and introduces a new method to learn generalizable human Gaussians that allows photorealistic and accurate view-rendering of a new human subject from a limited set of sparse views in a feed-forward manner. A pivotal innovation of our approach involves reformulating the learning of 3D Gaussian parameters into a regression process defined on the 2D UV space of a human template, which allows leveraging the strong geometry prior and the advantages of 2D convolutions. In addition, a multi-scaffold is proposed to effectively represent the offset details. Our method outperforms recent methods on both within-dataset generalization as well as cross-dataset generalization settings.
End-to-End Rate-Distortion Optimized 3D Gaussian Representation
3D Gaussian Splatting (3DGS) has become an emerging technique with remarkable potential in 3D representation and image rendering. However, the substantial storage overhead of 3DGS significantly impedes its practical applications. In this work, we formulate the compact 3D Gaussian learning as an end-to-end Rate-Distortion Optimization (RDO) problem and propose RDO-Gaussian that can achieve flexible and continuous rate control. RDO-Gaussian addresses two main issues that exist in current schemes: 1) Different from prior endeavors that minimize the rate under the fixed distortion, we introduce dynamic pruning and entropy-constrained vector quantization (ECVQ) that optimize the rate and distortion at the same time. 2) Previous works treat the colors of each Gaussian equally, while we model the colors of different regions and materials with learnable numbers of parameters. We verify our method on both real and synthetic scenes, showcasing that RDO-Gaussian greatly reduces the size of 3D Gaussian over 40x, and surpasses existing methods in rate-distortion performance.
GaussVideoDreamer: 3D Scene Generation with Video Diffusion and Inconsistency-Aware Gaussian Splatting
Single-image 3D scene reconstruction presents significant challenges due to its inherently ill-posed nature and limited input constraints. Recent advances have explored two promising directions: multiview generative models that train on 3D consistent datasets but struggle with out-of-distribution generalization, and 3D scene inpainting and completion frameworks that suffer from cross-view inconsistency and suboptimal error handling, as they depend exclusively on depth data or 3D smoothness, which ultimately degrades output quality and computational performance. Building upon these approaches, we present GaussVideoDreamer, which advances generative multimedia approaches by bridging the gap between image, video, and 3D generation, integrating their strengths through two key innovations: (1) A progressive video inpainting strategy that harnesses temporal coherence for improved multiview consistency and faster convergence. (2) A 3D Gaussian Splatting consistency mask to guide the video diffusion with 3D consistent multiview evidence. Our pipeline combines three core components: a geometry-aware initialization protocol, Inconsistency-Aware Gaussian Splatting, and a progressive video inpainting strategy. Experimental results demonstrate that our approach achieves 32% higher LLaVA-IQA scores and at least 2x speedup compared to existing methods while maintaining robust performance across diverse scenes.
VeGaS: Video Gaussian Splatting
Implicit Neural Representations (INRs) employ neural networks to approximate discrete data as continuous functions. In the context of video data, such models can be utilized to transform the coordinates of pixel locations along with frame occurrence times (or indices) into RGB color values. Although INRs facilitate effective compression, they are unsuitable for editing purposes. One potential solution is to use a 3D Gaussian Splatting (3DGS) based model, such as the Video Gaussian Representation (VGR), which is capable of encoding video as a multitude of 3D Gaussians and is applicable for numerous video processing operations, including editing. Nevertheless, in this case, the capacity for modification is constrained to a limited set of basic transformations. To address this issue, we introduce the Video Gaussian Splatting (VeGaS) model, which enables realistic modifications of video data. To construct VeGaS, we propose a novel family of Folded-Gaussian distributions designed to capture nonlinear dynamics in a video stream and model consecutive frames by 2D Gaussians obtained as respective conditional distributions. Our experiments demonstrate that VeGaS outperforms state-of-the-art solutions in frame reconstruction tasks and allows realistic modifications of video data. The code is available at: https://github.com/gmum/VeGaS.
TRIPS: Trilinear Point Splatting for Real-Time Radiance Field Rendering
Point-based radiance field rendering has demonstrated impressive results for novel view synthesis, offering a compelling blend of rendering quality and computational efficiency. However, also latest approaches in this domain are not without their shortcomings. 3D Gaussian Splatting [Kerbl and Kopanas et al. 2023] struggles when tasked with rendering highly detailed scenes, due to blurring and cloudy artifacts. On the other hand, ADOP [R\"uckert et al. 2022] can accommodate crisper images, but the neural reconstruction network decreases performance, it grapples with temporal instability and it is unable to effectively address large gaps in the point cloud. In this paper, we present TRIPS (Trilinear Point Splatting), an approach that combines ideas from both Gaussian Splatting and ADOP. The fundamental concept behind our novel technique involves rasterizing points into a screen-space image pyramid, with the selection of the pyramid layer determined by the projected point size. This approach allows rendering arbitrarily large points using a single trilinear write. A lightweight neural network is then used to reconstruct a hole-free image including detail beyond splat resolution. Importantly, our render pipeline is entirely differentiable, allowing for automatic optimization of both point sizes and positions. Our evaluation demonstrate that TRIPS surpasses existing state-of-the-art methods in terms of rendering quality while maintaining a real-time frame rate of 60 frames per second on readily available hardware. This performance extends to challenging scenarios, such as scenes featuring intricate geometry, expansive landscapes, and auto-exposed footage.
Hybrid 3D-4D Gaussian Splatting for Fast Dynamic Scene Representation
Recent advancements in dynamic 3D scene reconstruction have shown promising results, enabling high-fidelity 3D novel view synthesis with improved temporal consistency. Among these, 4D Gaussian Splatting (4DGS) has emerged as an appealing approach due to its ability to model high-fidelity spatial and temporal variations. However, existing methods suffer from substantial computational and memory overhead due to the redundant allocation of 4D Gaussians to static regions, which can also degrade image quality. In this work, we introduce hybrid 3D-4D Gaussian Splatting (3D-4DGS), a novel framework that adaptively represents static regions with 3D Gaussians while reserving 4D Gaussians for dynamic elements. Our method begins with a fully 4D Gaussian representation and iteratively converts temporally invariant Gaussians into 3D, significantly reducing the number of parameters and improving computational efficiency. Meanwhile, dynamic Gaussians retain their full 4D representation, capturing complex motions with high fidelity. Our approach achieves significantly faster training times compared to baseline 4D Gaussian Splatting methods while maintaining or improving the visual quality.
3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes
Recent advances in radiance field reconstruction, such as 3D Gaussian Splatting (3DGS), have achieved high-quality novel view synthesis and fast rendering by representing scenes with compositions of Gaussian primitives. However, 3D Gaussians present several limitations for scene reconstruction. Accurately capturing hard edges is challenging without significantly increasing the number of Gaussians, creating a large memory footprint. Moreover, they struggle to represent flat surfaces, as they are diffused in space. Without hand-crafted regularizers, they tend to disperse irregularly around the actual surface. To circumvent these issues, we introduce a novel method, named 3D Convex Splatting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multi-view images. Smooth convex shapes offer greater flexibility than Gaussians, allowing for a better representation of 3D scenes with hard edges and dense volumes using fewer primitives. Powered by our efficient CUDA-based rasterizer, 3DCS achieves superior performance over 3DGS on benchmarks such as Mip-NeRF360, Tanks and Temples, and Deep Blending. Specifically, our method attains an improvement of up to 0.81 in PSNR and 0.026 in LPIPS compared to 3DGS while maintaining high rendering speeds and reducing the number of required primitives. Our results highlight the potential of 3D Convex Splatting to become the new standard for high-quality scene reconstruction and novel view synthesis. Project page: convexsplatting.github.io.
Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene Reconstruction
Implicit neural representation has paved the way for new approaches to dynamic scene reconstruction and rendering. Nonetheless, cutting-edge dynamic neural rendering methods rely heavily on these implicit representations, which frequently struggle to capture the intricate details of objects in the scene. Furthermore, implicit methods have difficulty achieving real-time rendering in general dynamic scenes, limiting their use in a variety of tasks. To address the issues, we propose a deformable 3D Gaussians Splatting method that reconstructs scenes using 3D Gaussians and learns them in canonical space with a deformation field to model monocular dynamic scenes. We also introduce an annealing smoothing training mechanism with no extra overhead, which can mitigate the impact of inaccurate poses on the smoothness of time interpolation tasks in real-world datasets. Through a differential Gaussian rasterizer, the deformable 3D Gaussians not only achieve higher rendering quality but also real-time rendering speed. Experiments show that our method outperforms existing methods significantly in terms of both rendering quality and speed, making it well-suited for tasks such as novel-view synthesis, time interpolation, and real-time rendering.
SplatFields: Neural Gaussian Splats for Sparse 3D and 4D Reconstruction
Digitizing 3D static scenes and 4D dynamic events from multi-view images has long been a challenge in computer vision and graphics. Recently, 3D Gaussian Splatting (3DGS) has emerged as a practical and scalable reconstruction method, gaining popularity due to its impressive reconstruction quality, real-time rendering capabilities, and compatibility with widely used visualization tools. However, the method requires a substantial number of input views to achieve high-quality scene reconstruction, introducing a significant practical bottleneck. This challenge is especially severe in capturing dynamic scenes, where deploying an extensive camera array can be prohibitively costly. In this work, we identify the lack of spatial autocorrelation of splat features as one of the factors contributing to the suboptimal performance of the 3DGS technique in sparse reconstruction settings. To address the issue, we propose an optimization strategy that effectively regularizes splat features by modeling them as the outputs of a corresponding implicit neural field. This results in a consistent enhancement of reconstruction quality across various scenarios. Our approach effectively handles static and dynamic cases, as demonstrated by extensive testing across different setups and scene complexities.
GauFRe: Gaussian Deformation Fields for Real-time Dynamic Novel View Synthesis
We propose a method for dynamic scene reconstruction using deformable 3D Gaussians that is tailored for monocular video. Building upon the efficiency of Gaussian splatting, our approach extends the representation to accommodate dynamic elements via a deformable set of Gaussians residing in a canonical space, and a time-dependent deformation field defined by a multi-layer perceptron (MLP). Moreover, under the assumption that most natural scenes have large regions that remain static, we allow the MLP to focus its representational power by additionally including a static Gaussian point cloud. The concatenated dynamic and static point clouds form the input for the Gaussian Splatting rasterizer, enabling real-time rendering. The differentiable pipeline is optimized end-to-end with a self-supervised rendering loss. Our method achieves results that are comparable to state-of-the-art dynamic neural radiance field methods while allowing much faster optimization and rendering. Project website: https://lynl7130.github.io/gaufre/index.html
iHuman: Instant Animatable Digital Humans From Monocular Videos
Personalized 3D avatars require an animatable representation of digital humans. Doing so instantly from monocular videos offers scalability to broad class of users and wide-scale applications. In this paper, we present a fast, simple, yet effective method for creating animatable 3D digital humans from monocular videos. Our method utilizes the efficiency of Gaussian splatting to model both 3D geometry and appearance. However, we observed that naively optimizing Gaussian splats results in inaccurate geometry, thereby leading to poor animations. This work achieves and illustrates the need of accurate 3D mesh-type modelling of the human body for animatable digitization through Gaussian splats. This is achieved by developing a novel pipeline that benefits from three key aspects: (a) implicit modelling of surface's displacements and the color's spherical harmonics; (b) binding of 3D Gaussians to the respective triangular faces of the body template; (c) a novel technique to render normals followed by their auxiliary supervision. Our exhaustive experiments on three different benchmark datasets demonstrates the state-of-the-art results of our method, in limited time settings. In fact, our method is faster by an order of magnitude (in terms of training time) than its closest competitor. At the same time, we achieve superior rendering and 3D reconstruction performance under the change of poses.
UVGS: Reimagining Unstructured 3D Gaussian Splatting using UV Mapping
3D Gaussian Splatting (3DGS) has demonstrated superior quality in modeling 3D objects and scenes. However, generating 3DGS remains challenging due to their discrete, unstructured, and permutation-invariant nature. In this work, we present a simple yet effective method to overcome these challenges. We utilize spherical mapping to transform 3DGS into a structured 2D representation, termed UVGS. UVGS can be viewed as multi-channel images, with feature dimensions as a concatenation of Gaussian attributes such as position, scale, color, opacity, and rotation. We further find that these heterogeneous features can be compressed into a lower-dimensional (e.g., 3-channel) shared feature space using a carefully designed multi-branch network. The compressed UVGS can be treated as typical RGB images. Remarkably, we discover that typical VAEs trained with latent diffusion models can directly generalize to this new representation without additional training. Our novel representation makes it effortless to leverage foundational 2D models, such as diffusion models, to directly model 3DGS. Additionally, one can simply increase the 2D UV resolution to accommodate more Gaussians, making UVGS a scalable solution compared to typical 3D backbones. This approach immediately unlocks various novel generation applications of 3DGS by inherently utilizing the already developed superior 2D generation capabilities. In our experiments, we demonstrate various unconditional, conditional generation, and inpainting applications of 3DGS based on diffusion models, which were previously non-trivial.
Spacetime Gaussian Feature Splatting for Real-Time Dynamic View Synthesis
Novel view synthesis of dynamic scenes has been an intriguing yet challenging problem. Despite recent advancements, simultaneously achieving high-resolution photorealistic results, real-time rendering, and compact storage remains a formidable task. To address these challenges, we propose Spacetime Gaussian Feature Splatting as a novel dynamic scene representation, composed of three pivotal components. First, we formulate expressive Spacetime Gaussians by enhancing 3D Gaussians with temporal opacity and parametric motion/rotation. This enables Spacetime Gaussians to capture static, dynamic, as well as transient content within a scene. Second, we introduce splatted feature rendering, which replaces spherical harmonics with neural features. These features facilitate the modeling of view- and time-dependent appearance while maintaining small size. Third, we leverage the guidance of training error and coarse depth to sample new Gaussians in areas that are challenging to converge with existing pipelines. Experiments on several established real-world datasets demonstrate that our method achieves state-of-the-art rendering quality and speed, while retaining compact storage. At 8K resolution, our lite-version model can render at 60 FPS on an Nvidia RTX 4090 GPU.
Low-Frequency First: Eliminating Floating Artifacts in 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) is a powerful and computationally efficient representation for 3D reconstruction. Despite its strengths, 3DGS often produces floating artifacts, which are erroneous structures detached from the actual geometry and significantly degrade visual fidelity. The underlying mechanisms causing these artifacts, particularly in low-quality initialization scenarios, have not been fully explored. In this paper, we investigate the origins of floating artifacts from a frequency-domain perspective and identify under-optimized Gaussians as the primary source. Based on our analysis, we propose Eliminating-Floating-Artifacts Gaussian Splatting (EFA-GS), which selectively expands under-optimized Gaussians to prioritize accurate low-frequency learning. Additionally, we introduce complementary depth-based and scale-based strategies to dynamically refine Gaussian expansion, effectively mitigating detail erosion. Extensive experiments on both synthetic and real-world datasets demonstrate that EFA-GS substantially reduces floating artifacts while preserving high-frequency details, achieving an improvement of 1.68 dB in PSNR over baseline method on our RWLQ dataset. Furthermore, we validate the effectiveness of our approach in downstream 3D editing tasks. We provide our implementation in https://jcwang-gh.github.io/EFA-GS.
COLMAP-Free 3D Gaussian Splatting
While neural rendering has led to impressive advances in scene reconstruction and novel view synthesis, it relies heavily on accurately pre-computed camera poses. To relax this constraint, multiple efforts have been made to train Neural Radiance Fields (NeRFs) without pre-processed camera poses. However, the implicit representations of NeRFs provide extra challenges to optimize the 3D structure and camera poses at the same time. On the other hand, the recently proposed 3D Gaussian Splatting provides new opportunities given its explicit point cloud representations. This paper leverages both the explicit geometric representation and the continuity of the input video stream to perform novel view synthesis without any SfM preprocessing. We process the input frames in a sequential manner and progressively grow the 3D Gaussians set by taking one input frame at a time, without the need to pre-compute the camera poses. Our method significantly improves over previous approaches in view synthesis and camera pose estimation under large motion changes. Our project page is https://oasisyang.github.io/colmap-free-3dgs
TC-GS: Tri-plane based compression for 3D Gaussian Splatting
Recently, 3D Gaussian Splatting (3DGS) has emerged as a prominent framework for novel view synthesis, providing high fidelity and rapid rendering speed. However, the substantial data volume of 3DGS and its attributes impede its practical utility, requiring compression techniques for reducing memory cost. Nevertheless, the unorganized shape of 3DGS leads to difficulties in compression. To formulate unstructured attributes into normative distribution, we propose a well-structured tri-plane to encode Gaussian attributes, leveraging the distribution of attributes for compression. To exploit the correlations among adjacent Gaussians, K-Nearest Neighbors (KNN) is used when decoding Gaussian distribution from the Tri-plane. We also introduce Gaussian position information as a prior of the position-sensitive decoder. Additionally, we incorporate an adaptive wavelet loss, aiming to focus on the high-frequency details as iterations increase. Our approach has achieved results that are comparable to or surpass that of SOTA 3D Gaussians Splatting compression work in extensive experiments across multiple datasets. The codes are released at https://github.com/timwang2001/TC-GS.
ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes
3D Gaussian Splatting (3DGS) has made significant strides in novel view synthesis but is limited by the substantial number of Gaussian primitives required, posing challenges for deployment on lightweight devices. Recent methods address this issue by compressing the storage size of densified Gaussians, yet fail to preserve rendering quality and efficiency. To overcome these limitations, we propose ProtoGS to learn Gaussian prototypes to represent Gaussian primitives, significantly reducing the total Gaussian amount without sacrificing visual quality. Our method directly uses Gaussian prototypes to enable efficient rendering and leverage the resulting reconstruction loss to guide prototype learning. To further optimize memory efficiency during training, we incorporate structure-from-motion (SfM) points as anchor points to group Gaussian primitives. Gaussian prototypes are derived within each group by clustering of K-means, and both the anchor points and the prototypes are optimized jointly. Our experiments on real-world and synthetic datasets prove that we outperform existing methods, achieving a substantial reduction in the number of Gaussians, and enabling high rendering speed while maintaining or even enhancing rendering fidelity.
FlashSplat: 2D to 3D Gaussian Splatting Segmentation Solved Optimally
This study addresses the challenge of accurately segmenting 3D Gaussian Splatting from 2D masks. Conventional methods often rely on iterative gradient descent to assign each Gaussian a unique label, leading to lengthy optimization and sub-optimal solutions. Instead, we propose a straightforward yet globally optimal solver for 3D-GS segmentation. The core insight of our method is that, with a reconstructed 3D-GS scene, the rendering of the 2D masks is essentially a linear function with respect to the labels of each Gaussian. As such, the optimal label assignment can be solved via linear programming in closed form. This solution capitalizes on the alpha blending characteristic of the splatting process for single step optimization. By incorporating the background bias in our objective function, our method shows superior robustness in 3D segmentation against noises. Remarkably, our optimization completes within 30 seconds, about 50times faster than the best existing methods. Extensive experiments demonstrate the efficiency and robustness of our method in segmenting various scenes, and its superior performance in downstream tasks such as object removal and inpainting. Demos and code will be available at https://github.com/florinshen/FlashSplat.
3D Gaussian Editing with A Single Image
The modeling and manipulation of 3D scenes captured from the real world are pivotal in various applications, attracting growing research interest. While previous works on editing have achieved interesting results through manipulating 3D meshes, they often require accurately reconstructed meshes to perform editing, which limits their application in 3D content generation. To address this gap, we introduce a novel single-image-driven 3D scene editing approach based on 3D Gaussian Splatting, enabling intuitive manipulation via directly editing the content on a 2D image plane. Our method learns to optimize the 3D Gaussians to align with an edited version of the image rendered from a user-specified viewpoint of the original scene. To capture long-range object deformation, we introduce positional loss into the optimization process of 3D Gaussian Splatting and enable gradient propagation through reparameterization. To handle occluded 3D Gaussians when rendering from the specified viewpoint, we build an anchor-based structure and employ a coarse-to-fine optimization strategy capable of handling long-range deformation while maintaining structural stability. Furthermore, we design a novel masking strategy to adaptively identify non-rigid deformation regions for fine-scale modeling. Extensive experiments show the effectiveness of our method in handling geometric details, long-range, and non-rigid deformation, demonstrating superior editing flexibility and quality compared to previous approaches.
Splatfacto-W: A Nerfstudio Implementation of Gaussian Splatting for Unconstrained Photo Collections
Novel view synthesis from unconstrained in-the-wild image collections remains a significant yet challenging task due to photometric variations and transient occluders that complicate accurate scene reconstruction. Previous methods have approached these issues by integrating per-image appearance features embeddings in Neural Radiance Fields (NeRFs). Although 3D Gaussian Splatting (3DGS) offers faster training and real-time rendering, adapting it for unconstrained image collections is non-trivial due to the substantially different architecture. In this paper, we introduce Splatfacto-W, an approach that integrates per-Gaussian neural color features and per-image appearance embeddings into the rasterization process, along with a spherical harmonics-based background model to represent varying photometric appearances and better depict backgrounds. Our key contributions include latent appearance modeling, efficient transient object handling, and precise background modeling. Splatfacto-W delivers high-quality, real-time novel view synthesis with improved scene consistency in in-the-wild scenarios. Our method improves the Peak Signal-to-Noise Ratio (PSNR) by an average of 5.3 dB compared to 3DGS, enhances training speed by 150 times compared to NeRF-based methods, and achieves a similar rendering speed to 3DGS. Additional video results and code integrated into Nerfstudio are available at https://kevinxu02.github.io/splatfactow/.
GaussianGrasper: 3D Language Gaussian Splatting for Open-vocabulary Robotic Grasping
Constructing a 3D scene capable of accommodating open-ended language queries, is a pivotal pursuit, particularly within the domain of robotics. Such technology facilitates robots in executing object manipulations based on human language directives. To tackle this challenge, some research efforts have been dedicated to the development of language-embedded implicit fields. However, implicit fields (e.g. NeRF) encounter limitations due to the necessity of processing a large number of input views for reconstruction, coupled with their inherent inefficiencies in inference. Thus, we present the GaussianGrasper, which utilizes 3D Gaussian Splatting to explicitly represent the scene as a collection of Gaussian primitives. Our approach takes a limited set of RGB-D views and employs a tile-based splatting technique to create a feature field. In particular, we propose an Efficient Feature Distillation (EFD) module that employs contrastive learning to efficiently and accurately distill language embeddings derived from foundational models. With the reconstructed geometry of the Gaussian field, our method enables the pre-trained grasping model to generate collision-free grasp pose candidates. Furthermore, we propose a normal-guided grasp module to select the best grasp pose. Through comprehensive real-world experiments, we demonstrate that GaussianGrasper enables robots to accurately query and grasp objects with language instructions, providing a new solution for language-guided manipulation tasks. Data and codes can be available at https://github.com/MrSecant/GaussianGrasper.
BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting
While neural rendering has demonstrated impressive capabilities in 3D scene reconstruction and novel view synthesis, it heavily relies on high-quality sharp images and accurate camera poses. Numerous approaches have been proposed to train Neural Radiance Fields (NeRF) with motion-blurred images, commonly encountered in real-world scenarios such as low-light or long-exposure conditions. However, the implicit representation of NeRF struggles to accurately recover intricate details from severely motion-blurred images and cannot achieve real-time rendering. In contrast, recent advancements in 3D Gaussian Splatting achieve high-quality 3D scene reconstruction and real-time rendering by explicitly optimizing point clouds as Gaussian spheres. In this paper, we introduce a novel approach, named BAD-Gaussians (Bundle Adjusted Deblur Gaussian Splatting), which leverages explicit Gaussian representation and handles severe motion-blurred images with inaccurate camera poses to achieve high-quality scene reconstruction. Our method models the physical image formation process of motion-blurred images and jointly learns the parameters of Gaussians while recovering camera motion trajectories during exposure time. In our experiments, we demonstrate that BAD-Gaussians not only achieves superior rendering quality compared to previous state-of-the-art deblur neural rendering methods on both synthetic and real datasets but also enables real-time rendering capabilities. Our project page and source code is available at https://lingzhezhao.github.io/BAD-Gaussians/
G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs
State-of-the-art novel view synthesis methods such as 3D Gaussian Splatting (3DGS) achieve remarkable visual quality. While 3DGS and its variants can be rendered efficiently using rasterization, many tasks require access to the underlying 3D surface, which remains challenging to extract due to the sparse and explicit nature of this representation. In this paper, we introduce G2SDF, a novel approach that addresses this limitation by integrating a neural implicit Signed Distance Field (SDF) into the Gaussian Splatting framework. Our method links the opacity values of Gaussians with their distances to the surface, ensuring a closer alignment of Gaussians with the scene surface. To extend this approach to unbounded scenes at varying scales, we propose a normalization function that maps any range to a fixed interval. To further enhance reconstruction quality, we leverage an off-the-shelf depth estimator as pseudo ground truth during Gaussian Splatting optimization. By establishing a differentiable connection between the explicit Gaussians and the implicit SDF, our approach enables high-quality surface reconstruction and rendering. Experimental results on several real-world datasets demonstrate that G2SDF achieves superior reconstruction quality than prior works while maintaining the efficiency of 3DGS.
Taming 3DGS: High-Quality Radiance Fields with Limited Resources
3D Gaussian Splatting (3DGS) has transformed novel-view synthesis with its fast, interpretable, and high-fidelity rendering. However, its resource requirements limit its usability. Especially on constrained devices, training performance degrades quickly and often cannot complete due to excessive memory consumption of the model. The method converges with an indefinite number of Gaussians -- many of them redundant -- making rendering unnecessarily slow and preventing its usage in downstream tasks that expect fixed-size inputs. To address these issues, we tackle the challenges of training and rendering 3DGS models on a budget. We use a guided, purely constructive densification process that steers densification toward Gaussians that raise the reconstruction quality. Model size continuously increases in a controlled manner towards an exact budget, using score-based densification of Gaussians with training-time priors that measure their contribution. We further address training speed obstacles: following a careful analysis of 3DGS' original pipeline, we derive faster, numerically equivalent solutions for gradient computation and attribute updates, including an alternative parallelization for efficient backpropagation. We also propose quality-preserving approximations where suitable to reduce training time even further. Taken together, these enhancements yield a robust, scalable solution with reduced training times, lower compute and memory requirements, and high quality. Our evaluation shows that in a budgeted setting, we obtain competitive quality metrics with 3DGS while achieving a 4--5x reduction in both model size and training time. With more generous budgets, our measured quality surpasses theirs. These advances open the door for novel-view synthesis in constrained environments, e.g., mobile devices.
MoDec-GS: Global-to-Local Motion Decomposition and Temporal Interval Adjustment for Compact Dynamic 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has made significant strides in scene representation and neural rendering, with intense efforts focused on adapting it for dynamic scenes. Despite delivering remarkable rendering quality and speed, existing methods struggle with storage demands and representing complex real-world motions. To tackle these issues, we propose MoDecGS, a memory-efficient Gaussian splatting framework designed for reconstructing novel views in challenging scenarios with complex motions. We introduce GlobaltoLocal Motion Decomposition (GLMD) to effectively capture dynamic motions in a coarsetofine manner. This approach leverages Global Canonical Scaffolds (Global CS) and Local Canonical Scaffolds (Local CS), extending static Scaffold representation to dynamic video reconstruction. For Global CS, we propose Global Anchor Deformation (GAD) to efficiently represent global dynamics along complex motions, by directly deforming the implicit Scaffold attributes which are anchor position, offset, and local context features. Next, we finely adjust local motions via the Local Gaussian Deformation (LGD) of Local CS explicitly. Additionally, we introduce Temporal Interval Adjustment (TIA) to automatically control the temporal coverage of each Local CS during training, allowing MoDecGS to find optimal interval assignments based on the specified number of temporal segments. Extensive evaluations demonstrate that MoDecGS achieves an average 70% reduction in model size over stateoftheart methods for dynamic 3D Gaussians from realworld dynamic videos while maintaining or even improving rendering quality.
Neural 4D Evolution under Large Topological Changes from 2D Images
In the literature, it has been shown that the evolution of the known explicit 3D surface to the target one can be learned from 2D images using the instantaneous flow field, where the known and target 3D surfaces may largely differ in topology. We are interested in capturing 4D shapes whose topology changes largely over time. We encounter that the straightforward extension of the existing 3D-based method to the desired 4D case performs poorly. In this work, we address the challenges in extending 3D neural evolution to 4D under large topological changes by proposing two novel modifications. More precisely, we introduce (i) a new architecture to discretize and encode the deformation and learn the SDF and (ii) a technique to impose the temporal consistency. (iii) Also, we propose a rendering scheme for color prediction based on Gaussian splatting. Furthermore, to facilitate learning directly from 2D images, we propose a learning framework that can disentangle the geometry and appearance from RGB images. This method of disentanglement, while also useful for the 4D evolution problem that we are concentrating on, is also novel and valid for static scenes. Our extensive experiments on various data provide awesome results and, most importantly, open a new approach toward reconstructing challenging scenes with significant topological changes and deformations. Our source code and the dataset are publicly available at https://github.com/insait-institute/N4DE.
Optimized Minimal 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has emerged as a powerful representation for real-time, high-performance rendering, enabling a wide range of applications. However, representing 3D scenes with numerous explicit Gaussian primitives imposes significant storage and memory overhead. Recent studies have shown that high-quality rendering can be achieved with a substantially reduced number of Gaussians when represented with high-precision attributes. Nevertheless, existing 3DGS compression methods still rely on a relatively large number of Gaussians, focusing primarily on attribute compression. This is because a smaller set of Gaussians becomes increasingly sensitive to lossy attribute compression, leading to severe quality degradation. Since the number of Gaussians is directly tied to computational costs, it is essential to reduce the number of Gaussians effectively rather than only optimizing storage. In this paper, we propose Optimized Minimal Gaussians representation (OMG), which significantly reduces storage while using a minimal number of primitives. First, we determine the distinct Gaussian from the near ones, minimizing redundancy without sacrificing quality. Second, we propose a compact and precise attribute representation that efficiently captures both continuity and irregularity among primitives. Additionally, we propose a sub-vector quantization technique for improved irregularity representation, maintaining fast training with a negligible codebook size. Extensive experiments demonstrate that OMG reduces storage requirements by nearly 50% compared to the previous state-of-the-art and enables 600+ FPS rendering while maintaining high rendering quality. Our source code is available at https://maincold2.github.io/omg/.
VDG: Vision-Only Dynamic Gaussian for Driving Simulation
Dynamic Gaussian splatting has led to impressive scene reconstruction and image synthesis advances in novel views. Existing methods, however, heavily rely on pre-computed poses and Gaussian initialization by Structure from Motion (SfM) algorithms or expensive sensors. For the first time, this paper addresses this issue by integrating self-supervised VO into our pose-free dynamic Gaussian method (VDG) to boost pose and depth initialization and static-dynamic decomposition. Moreover, VDG can work with only RGB image input and construct dynamic scenes at a faster speed and larger scenes compared with the pose-free dynamic view-synthesis method. We demonstrate the robustness of our approach via extensive quantitative and qualitative experiments. Our results show favorable performance over the state-of-the-art dynamic view synthesis methods. Additional video and source code will be posted on our project page at https://3d-aigc.github.io/VDG.
SmileSplat: Generalizable Gaussian Splats for Unconstrained Sparse Images
Sparse Multi-view Images can be Learned to predict explicit radiance fields via Generalizable Gaussian Splatting approaches, which can achieve wider application prospects in real-life when ground-truth camera parameters are not required as inputs. In this paper, a novel generalizable Gaussian Splatting method, SmileSplat, is proposed to reconstruct pixel-aligned Gaussian surfels for diverse scenarios only requiring unconstrained sparse multi-view images. First, Gaussian surfels are predicted based on the multi-head Gaussian regression decoder, which can are represented with less degree-of-freedom but have better multi-view consistency. Furthermore, the normal vectors of Gaussian surfel are enhanced based on high-quality of normal priors. Second, the Gaussians and camera parameters (both extrinsic and intrinsic) are optimized to obtain high-quality Gaussian radiance fields for novel view synthesis tasks based on the proposed Bundle-Adjusting Gaussian Splatting module. Extensive experiments on novel view rendering and depth map prediction tasks are conducted on public datasets, demonstrating that the proposed method achieves state-of-the-art performance in various 3D vision tasks. More information can be found on our project page (https://yanyan-li.github.io/project/gs/smilesplat)
DET-GS: Depth- and Edge-Aware Regularization for High-Fidelity 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) represents a significant advancement in the field of efficient and high-fidelity novel view synthesis. Despite recent progress, achieving accurate geometric reconstruction under sparse-view conditions remains a fundamental challenge. Existing methods often rely on non-local depth regularization, which fails to capture fine-grained structures and is highly sensitive to depth estimation noise. Furthermore, traditional smoothing methods neglect semantic boundaries and indiscriminately degrade essential edges and textures, consequently limiting the overall quality of reconstruction. In this work, we propose DET-GS, a unified depth and edge-aware regularization framework for 3D Gaussian Splatting. DET-GS introduces a hierarchical geometric depth supervision framework that adaptively enforces multi-level geometric consistency, significantly enhancing structural fidelity and robustness against depth estimation noise. To preserve scene boundaries, we design an edge-aware depth regularization guided by semantic masks derived from Canny edge detection. Furthermore, we introduce an RGB-guided edge-preserving Total Variation loss that selectively smooths homogeneous regions while rigorously retaining high-frequency details and textures. Extensive experiments demonstrate that DET-GS achieves substantial improvements in both geometric accuracy and visual fidelity, outperforming state-of-the-art (SOTA) methods on sparse-view novel view synthesis benchmarks.
Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields
3D Gaussian splatting (3DGS) has recently emerged as an alternative representation that leverages a 3D Gaussian-based representation and introduces an approximated volumetric rendering, achieving very fast rendering speed and promising image quality. Furthermore, subsequent studies have successfully extended 3DGS to dynamic 3D scenes, demonstrating its wide range of applications. However, a significant drawback arises as 3DGS and its following methods entail a substantial number of Gaussians to maintain the high fidelity of the rendered images, which requires a large amount of memory and storage. To address this critical issue, we place a specific emphasis on two key objectives: reducing the number of Gaussian points without sacrificing performance and compressing the Gaussian attributes, such as view-dependent color and covariance. To this end, we propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance. In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field rather than relying on spherical harmonics. Finally, we learn codebooks to compactly represent the geometric and temporal attributes by residual vector quantization. With model compression techniques such as quantization and entropy coding, we consistently show over 25x reduced storage and enhanced rendering speed compared to 3DGS for static scenes, while maintaining the quality of the scene representation. For dynamic scenes, our approach achieves more than 12x storage efficiency and retains a high-quality reconstruction compared to the existing state-of-the-art methods. Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering. Our project page is available at https://maincold2.github.io/c3dgs/.
GeoTexDensifier: Geometry-Texture-Aware Densification for High-Quality Photorealistic 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has recently attracted wide attentions in various areas such as 3D navigation, Virtual Reality (VR) and 3D simulation, due to its photorealistic and efficient rendering performance. High-quality reconstrution of 3DGS relies on sufficient splats and a reasonable distribution of these splats to fit real geometric surface and texture details, which turns out to be a challenging problem. We present GeoTexDensifier, a novel geometry-texture-aware densification strategy to reconstruct high-quality Gaussian splats which better comply with the geometric structure and texture richness of the scene. Specifically, our GeoTexDensifier framework carries out an auxiliary texture-aware densification method to produce a denser distribution of splats in fully textured areas, while keeping sparsity in low-texture regions to maintain the quality of Gaussian point cloud. Meanwhile, a geometry-aware splitting strategy takes depth and normal priors to guide the splitting sampling and filter out the noisy splats whose initial positions are far from the actual geometric surfaces they aim to fit, under a Validation of Depth Ratio Change checking. With the help of relative monocular depth prior, such geometry-aware validation can effectively reduce the influence of scattered Gaussians to the final rendering quality, especially in regions with weak textures or without sufficient training views. The texture-aware densification and geometry-aware splitting strategies are fully combined to obtain a set of high-quality Gaussian splats. We experiment our GeoTexDensifier framework on various datasets and compare our Novel View Synthesis results to other state-of-the-art 3DGS approaches, with detailed quantitative and qualitative evaluations to demonstrate the effectiveness of our method in producing more photorealistic 3DGS models.
GaussianFlow: Splatting Gaussian Dynamics for 4D Content Creation
Creating 4D fields of Gaussian Splatting from images or videos is a challenging task due to its under-constrained nature. While the optimization can draw photometric reference from the input videos or be regulated by generative models, directly supervising Gaussian motions remains underexplored. In this paper, we introduce a novel concept, Gaussian flow, which connects the dynamics of 3D Gaussians and pixel velocities between consecutive frames. The Gaussian flow can be efficiently obtained by splatting Gaussian dynamics into the image space. This differentiable process enables direct dynamic supervision from optical flow. Our method significantly benefits 4D dynamic content generation and 4D novel view synthesis with Gaussian Splatting, especially for contents with rich motions that are hard to be handled by existing methods. The common color drifting issue that happens in 4D generation is also resolved with improved Guassian dynamics. Superior visual quality on extensive experiments demonstrates our method's effectiveness. Quantitative and qualitative evaluations show that our method achieves state-of-the-art results on both tasks of 4D generation and 4D novel view synthesis. Project page: https://zerg-overmind.github.io/GaussianFlow.github.io/
PLA4D: Pixel-Level Alignments for Text-to-4D Gaussian Splatting
As text-conditioned diffusion models (DMs) achieve breakthroughs in image, video, and 3D generation, the research community's focus has shifted to the more challenging task of text-to-4D synthesis, which introduces a temporal dimension to generate dynamic 3D objects. In this context, we identify Score Distillation Sampling (SDS), a widely used technique for text-to-3D synthesis, as a significant hindrance to text-to-4D performance due to its Janus-faced and texture-unrealistic problems coupled with high computational costs. In this paper, we propose Pixel-Level Alignments for Text-to-4D Gaussian Splatting (PLA4D), a novel method that utilizes text-to-video frames as explicit pixel alignment targets to generate static 3D objects and inject motion into them. Specifically, we introduce Focal Alignment to calibrate camera poses for rendering and GS-Mesh Contrastive Learning to distill geometry priors from rendered image contrasts at the pixel level. Additionally, we develop Motion Alignment using a deformation network to drive changes in Gaussians and implement Reference Refinement for smooth 4D object surfaces. These techniques enable 4D Gaussian Splatting to align geometry, texture, and motion with generated videos at the pixel level. Compared to previous methods, PLA4D produces synthesized outputs with better texture details in less time and effectively mitigates the Janus-faced problem. PLA4D is fully implemented using open-source models, offering an accessible, user-friendly, and promising direction for 4D digital content creation. Our project page: https://github.com/MiaoQiaowei/PLA4D.github.io{https://github.com/MiaoQiaowei/PLA4D.github.io}.
GaussianDreamerPro: Text to Manipulable 3D Gaussians with Highly Enhanced Quality
Recently, 3D Gaussian splatting (3D-GS) has achieved great success in reconstructing and rendering real-world scenes. To transfer the high rendering quality to generation tasks, a series of research works attempt to generate 3D-Gaussian assets from text. However, the generated assets have not achieved the same quality as those in reconstruction tasks. We observe that Gaussians tend to grow without control as the generation process may cause indeterminacy. Aiming at highly enhancing the generation quality, we propose a novel framework named GaussianDreamerPro. The main idea is to bind Gaussians to reasonable geometry, which evolves over the whole generation process. Along different stages of our framework, both the geometry and appearance can be enriched progressively. The final output asset is constructed with 3D Gaussians bound to mesh, which shows significantly enhanced details and quality compared with previous methods. Notably, the generated asset can also be seamlessly integrated into downstream manipulation pipelines, e.g. animation, composition, and simulation etc., greatly promoting its potential in wide applications. Demos are available at https://taoranyi.com/gaussiandreamerpro/.
MVSplat: Efficient 3D Gaussian Splatting from Sparse Multi-View Images
We propose MVSplat, an efficient feed-forward 3D Gaussian Splatting model learned from sparse multi-view images. To accurately localize the Gaussian centers, we propose to build a cost volume representation via plane sweeping in the 3D space, where the cross-view feature similarities stored in the cost volume can provide valuable geometry cues to the estimation of depth. We learn the Gaussian primitives' opacities, covariances, and spherical harmonics coefficients jointly with the Gaussian centers while only relying on photometric supervision. We demonstrate the importance of the cost volume representation in learning feed-forward Gaussian Splatting models via extensive experimental evaluations. On the large-scale RealEstate10K and ACID benchmarks, our model achieves state-of-the-art performance with the fastest feed-forward inference speed (22 fps). Compared to the latest state-of-the-art method pixelSplat, our model uses 10times fewer parameters and infers more than 2times faster while providing higher appearance and geometry quality as well as better cross-dataset generalization.
WeatherGS: 3D Scene Reconstruction in Adverse Weather Conditions via Gaussian Splatting
3D Gaussian Splatting (3DGS) has gained significant attention for 3D scene reconstruction, but still suffers from complex outdoor environments, especially under adverse weather. This is because 3DGS treats the artifacts caused by adverse weather as part of the scene and will directly reconstruct them, largely reducing the clarity of the reconstructed scene. To address this challenge, we propose WeatherGS, a 3DGS-based framework for reconstructing clear scenes from multi-view images under different weather conditions. Specifically, we explicitly categorize the multi-weather artifacts into the dense particles and lens occlusions that have very different characters, in which the former are caused by snowflakes and raindrops in the air, and the latter are raised by the precipitation on the camera lens. In light of this, we propose a dense-to-sparse preprocess strategy, which sequentially removes the dense particles by an Atmospheric Effect Filter (AEF) and then extracts the relatively sparse occlusion masks with a Lens Effect Detector (LED). Finally, we train a set of 3D Gaussians by the processed images and generated masks for excluding occluded areas, and accurately recover the underlying clear scene by Gaussian splatting. We conduct a diverse and challenging benchmark to facilitate the evaluation of 3D reconstruction under complex weather scenarios. Extensive experiments on this benchmark demonstrate that our WeatherGS consistently produces high-quality, clean scenes across various weather scenarios, outperforming existing state-of-the-art methods. See project page:https://jumponthemoon.github.io/weather-gs.
MonoSplat: Generalizable 3D Gaussian Splatting from Monocular Depth Foundation Models
Recent advances in generalizable 3D Gaussian Splatting have demonstrated promising results in real-time high-fidelity rendering without per-scene optimization, yet existing approaches still struggle to handle unfamiliar visual content during inference on novel scenes due to limited generalizability. To address this challenge, we introduce MonoSplat, a novel framework that leverages rich visual priors from pre-trained monocular depth foundation models for robust Gaussian reconstruction. Our approach consists of two key components: a Mono-Multi Feature Adapter that transforms monocular features into multi-view representations, coupled with an Integrated Gaussian Prediction module that effectively fuses both feature types for precise Gaussian generation. Through the Adapter's lightweight attention mechanism, features are seamlessly aligned and aggregated across views while preserving valuable monocular priors, enabling the Prediction module to generate Gaussian primitives with accurate geometry and appearance. Through extensive experiments on diverse real-world datasets, we convincingly demonstrate that MonoSplat achieves superior reconstruction quality and generalization capability compared to existing methods while maintaining computational efficiency with minimal trainable parameters. Codes are available at https://github.com/CUHK-AIM-Group/MonoSplat.
SOGS: Second-Order Anchor for Advanced 3D Gaussian Splatting
Anchor-based 3D Gaussian splatting (3D-GS) exploits anchor features in 3D Gaussian prediction, which has achieved impressive 3D rendering quality with reduced Gaussian redundancy. On the other hand, it often encounters the dilemma among anchor features, model size, and rendering quality - large anchor features lead to large 3D models and high-quality rendering whereas reducing anchor features degrades Gaussian attribute prediction which leads to clear artifacts in the rendered textures and geometries. We design SOGS, an anchor-based 3D-GS technique that introduces second-order anchors to achieve superior rendering quality and reduced anchor features and model size simultaneously. Specifically, SOGS incorporates covariance-based second-order statistics and correlation across feature dimensions to augment features within each anchor, compensating for the reduced feature size and improving rendering quality effectively. In addition, it introduces a selective gradient loss to enhance the optimization of scene textures and scene geometries, leading to high-quality rendering with small anchor features. Extensive experiments over multiple widely adopted benchmarks show that SOGS achieves superior rendering quality in novel view synthesis with clearly reduced model size.
Octree-GS: Towards Consistent Real-time Rendering with LOD-Structured 3D Gaussians
The recent 3D Gaussian splatting (3D-GS) has shown remarkable rendering fidelity and efficiency compared to NeRF-based neural scene representations. While demonstrating the potential for real-time rendering, 3D-GS encounters rendering bottlenecks in large scenes with complex details due to an excessive number of Gaussian primitives located within the viewing frustum. This limitation is particularly noticeable in zoom-out views and can lead to inconsistent rendering speeds in scenes with varying details. Moreover, it often struggles to capture the corresponding level of details at different scales with its heuristic density control operation. Inspired by the Level-of-Detail (LOD) techniques, we introduce Octree-GS, featuring an LOD-structured 3D Gaussian approach supporting level-of-detail decomposition for scene representation that contributes to the final rendering results. Our model dynamically selects the appropriate level from the set of multi-resolution anchor points, ensuring consistent rendering performance with adaptive LOD adjustments while maintaining high-fidelity rendering results.
A Survey on 3D Gaussian Splatting Applications: Segmentation, Editing, and Generation
3D Gaussian Splatting (3DGS) has recently emerged as a powerful alternative to Neural Radiance Fields (NeRF) for 3D scene representation, offering high-fidelity photorealistic rendering with real-time performance. Beyond novel view synthesis, the explicit and compact nature of 3DGS enables a wide range of downstream applications that require geometric and semantic understanding. This survey provides a comprehensive overview of recent progress in 3DGS applications. It first introduces 2D foundation models that support semantic understanding and control in 3DGS applications, followed by a review of NeRF-based methods that inform their 3DGS counterparts. We then categorize 3DGS applications into segmentation, editing, generation, and other functional tasks. For each, we summarize representative methods, supervision strategies, and learning paradigms, highlighting shared design principles and emerging trends. Commonly used datasets and evaluation protocols are also summarized, along with comparative analyses of recent methods across public benchmarks. To support ongoing research and development, a continually updated repository of papers, code, and resources is maintained at https://github.com/heshuting555/Awesome-3DGS-Applications.
Duplex-GS: Proxy-Guided Weighted Blending for Real-Time Order-Independent Gaussian Splatting
Recent advances in 3D Gaussian Splatting (3DGS) have demonstrated remarkable rendering fidelity and efficiency. However, these methods still rely on computationally expensive sequential alpha-blending operations, resulting in significant overhead, particularly on resource-constrained platforms. In this paper, we propose Duplex-GS, a dual-hierarchy framework that integrates proxy Gaussian representations with order-independent rendering techniques to achieve photorealistic results while sustaining real-time performance. To mitigate the overhead caused by view-adaptive radix sort, we introduce cell proxies for local Gaussians management and propose cell search rasterization for further acceleration. By seamlessly combining our framework with Order-Independent Transparency (OIT), we develop a physically inspired weighted sum rendering technique that simultaneously eliminates "popping" and "transparency" artifacts, yielding substantial improvements in both accuracy and efficiency. Extensive experiments on a variety of real-world datasets demonstrate the robustness of our method across diverse scenarios, including multi-scale training views and large-scale environments. Our results validate the advantages of the OIT rendering paradigm in Gaussian Splatting, achieving high-quality rendering with an impressive 1.5 to 4 speedup over existing OIT based Gaussian Splatting approaches and 52.2% to 86.9% reduction of the radix sort overhead without quality degradation.
HuGDiffusion: Generalizable Single-Image Human Rendering via 3D Gaussian Diffusion
We present HuGDiffusion, a generalizable 3D Gaussian splatting (3DGS) learning pipeline to achieve novel view synthesis (NVS) of human characters from single-view input images. Existing approaches typically require monocular videos or calibrated multi-view images as inputs, whose applicability could be weakened in real-world scenarios with arbitrary and/or unknown camera poses. In this paper, we aim to generate the set of 3DGS attributes via a diffusion-based framework conditioned on human priors extracted from a single image. Specifically, we begin with carefully integrated human-centric feature extraction procedures to deduce informative conditioning signals. Based on our empirical observations that jointly learning the whole 3DGS attributes is challenging to optimize, we design a multi-stage generation strategy to obtain different types of 3DGS attributes. To facilitate the training process, we investigate constructing proxy ground-truth 3D Gaussian attributes as high-quality attribute-level supervision signals. Through extensive experiments, our HuGDiffusion shows significant performance improvements over the state-of-the-art methods. Our code will be made publicly available.
SelfSplat: Pose-Free and 3D Prior-Free Generalizable 3D Gaussian Splatting
We propose SelfSplat, a novel 3D Gaussian Splatting model designed to perform pose-free and 3D prior-free generalizable 3D reconstruction from unposed multi-view images. These settings are inherently ill-posed due to the lack of ground-truth data, learned geometric information, and the need to achieve accurate 3D reconstruction without finetuning, making it difficult for conventional methods to achieve high-quality results. Our model addresses these challenges by effectively integrating explicit 3D representations with self-supervised depth and pose estimation techniques, resulting in reciprocal improvements in both pose accuracy and 3D reconstruction quality. Furthermore, we incorporate a matching-aware pose estimation network and a depth refinement module to enhance geometry consistency across views, ensuring more accurate and stable 3D reconstructions. To present the performance of our method, we evaluated it on large-scale real-world datasets, including RealEstate10K, ACID, and DL3DV. SelfSplat achieves superior results over previous state-of-the-art methods in both appearance and geometry quality, also demonstrates strong cross-dataset generalization capabilities. Extensive ablation studies and analysis also validate the effectiveness of our proposed methods. Code and pretrained models are available at https://gynjn.github.io/selfsplat/
4D Gaussian Splatting for Real-Time Dynamic Scene Rendering
Representing and rendering dynamic scenes has been an important but challenging task. Especially, to accurately model complex motions, high efficiency is usually hard to maintain. We introduce the 4D Gaussian Splatting (4D-GS) to achieve real-time dynamic scene rendering while also enjoying high training and storage efficiency. An efficient deformation field is constructed to model both Gaussian motions and shape deformations. Different adjacent Gaussians are connected via a HexPlane to produce more accurate position and shape deformations. Our 4D-GS method achieves real-time rendering under high resolutions, 70 FPS at a 800times800 resolution on an RTX 3090 GPU, while maintaining comparable or higher quality than previous state-of-the-art methods. More demos and code are available at https://guanjunwu.github.io/4dgs/.
Adaptive and Temporally Consistent Gaussian Surfels for Multi-view Dynamic Reconstruction
3D Gaussian Splatting has recently achieved notable success in novel view synthesis for dynamic scenes and geometry reconstruction in static scenes. Building on these advancements, early methods have been developed for dynamic surface reconstruction by globally optimizing entire sequences. However, reconstructing dynamic scenes with significant topology changes, emerging or disappearing objects, and rapid movements remains a substantial challenge, particularly for long sequences. To address these issues, we propose AT-GS, a novel method for reconstructing high-quality dynamic surfaces from multi-view videos through per-frame incremental optimization. To avoid local minima across frames, we introduce a unified and adaptive gradient-aware densification strategy that integrates the strengths of conventional cloning and splitting techniques. Additionally, we reduce temporal jittering in dynamic surfaces by ensuring consistency in curvature maps across consecutive frames. Our method achieves superior accuracy and temporal coherence in dynamic surface reconstruction, delivering high-fidelity space-time novel view synthesis, even in complex and challenging scenes. Extensive experiments on diverse multi-view video datasets demonstrate the effectiveness of our approach, showing clear advantages over baseline methods. Project page: https://fraunhoferhhi.github.io/AT-GS
TUGS: Physics-based Compact Representation of Underwater Scenes by Tensorized Gaussian
Underwater 3D scene reconstruction is crucial for undewater robotic perception and navigation. However, the task is significantly challenged by the complex interplay between light propagation, water medium, and object surfaces, with existing methods unable to model their interactions accurately. Additionally, expensive training and rendering costs limit their practical application in underwater robotic systems. Therefore, we propose Tensorized Underwater Gaussian Splatting (TUGS), which can effectively solve the modeling challenges of the complex interactions between object geometries and water media while achieving significant parameter reduction. TUGS employs lightweight tensorized higher-order Gaussians with a physics-based underwater Adaptive Medium Estimation (AME) module, enabling accurate simulation of both light attenuation and backscatter effects in underwater environments. Compared to other NeRF-based and GS-based methods designed for underwater, TUGS is able to render high-quality underwater images with faster rendering speeds and less memory usage. Extensive experiments on real-world underwater datasets have demonstrated that TUGS can efficiently achieve superior reconstruction quality using a limited number of parameters, making it particularly suitable for memory-constrained underwater UAV applications
UFV-Splatter: Pose-Free Feed-Forward 3D Gaussian Splatting Adapted to Unfavorable Views
This paper presents a pose-free, feed-forward 3D Gaussian Splatting (3DGS) framework designed to handle unfavorable input views. A common rendering setup for training feed-forward approaches places a 3D object at the world origin and renders it from cameras pointed toward the origin -- i.e., from favorable views, limiting the applicability of these models to real-world scenarios involving varying and unknown camera poses. To overcome this limitation, we introduce a novel adaptation framework that enables pretrained pose-free feed-forward 3DGS models to handle unfavorable views. We leverage priors learned from favorable images by feeding recentered images into a pretrained model augmented with low-rank adaptation (LoRA) layers. We further propose a Gaussian adapter module to enhance the geometric consistency of the Gaussians derived from the recentered inputs, along with a Gaussian alignment method to render accurate target views for training. Additionally, we introduce a new training strategy that utilizes an off-the-shelf dataset composed solely of favorable images. Experimental results on both synthetic images from the Google Scanned Objects dataset and real images from the OmniObject3D dataset validate the effectiveness of our method in handling unfavorable input views.
GSV3D: Gaussian Splatting-based Geometric Distillation with Stable Video Diffusion for Single-Image 3D Object Generation
Image-based 3D generation has vast applications in robotics and gaming, where high-quality, diverse outputs and consistent 3D representations are crucial. However, existing methods have limitations: 3D diffusion models are limited by dataset scarcity and the absence of strong pre-trained priors, while 2D diffusion-based approaches struggle with geometric consistency. We propose a method that leverages 2D diffusion models' implicit 3D reasoning ability while ensuring 3D consistency via Gaussian-splatting-based geometric distillation. Specifically, the proposed Gaussian Splatting Decoder enforces 3D consistency by transforming SV3D latent outputs into an explicit 3D representation. Unlike SV3D, which only relies on implicit 2D representations for video generation, Gaussian Splatting explicitly encodes spatial and appearance attributes, enabling multi-view consistency through geometric constraints. These constraints correct view inconsistencies, ensuring robust geometric consistency. As a result, our approach simultaneously generates high-quality, multi-view-consistent images and accurate 3D models, providing a scalable solution for single-image-based 3D generation and bridging the gap between 2D Diffusion diversity and 3D structural coherence. Experimental results demonstrate state-of-the-art multi-view consistency and strong generalization across diverse datasets. The code will be made publicly available upon acceptance.
RUSplatting: Robust 3D Gaussian Splatting for Sparse-View Underwater Scene Reconstruction
Reconstructing high-fidelity underwater scenes remains a challenging task due to light absorption, scattering, and limited visibility inherent in aquatic environments. This paper presents an enhanced Gaussian Splatting-based framework that improves both the visual quality and geometric accuracy of deep underwater rendering. We propose decoupled learning for RGB channels, guided by the physics of underwater attenuation, to enable more accurate colour restoration. To address sparse-view limitations and improve view consistency, we introduce a frame interpolation strategy with a novel adaptive weighting scheme. Additionally, we introduce a new loss function aimed at reducing noise while preserving edges, which is essential for deep-sea content. We also release a newly collected dataset, Submerged3D, captured specifically in deep-sea environments. Experimental results demonstrate that our framework consistently outperforms state-of-the-art methods with PSNR gains up to 1.90dB, delivering superior perceptual quality and robustness, and offering promising directions for marine robotics and underwater visual analytics. The code of RUSplatting is available at https://github.com/theflash987/RUSplatting and the dataset Submerged3D can be downloaded at https://zenodo.org/records/15482420.
GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction
We present GSD, a diffusion model approach based on Gaussian Splatting (GS) representation for 3D object reconstruction from a single view. Prior works suffer from inconsistent 3D geometry or mediocre rendering quality due to improper representations. We take a step towards resolving these shortcomings by utilizing the recent state-of-the-art 3D explicit representation, Gaussian Splatting, and an unconditional diffusion model. This model learns to generate 3D objects represented by sets of GS ellipsoids. With these strong generative 3D priors, though learning unconditionally, the diffusion model is ready for view-guided reconstruction without further model fine-tuning. This is achieved by propagating fine-grained 2D features through the efficient yet flexible splatting function and the guided denoising sampling process. In addition, a 2D diffusion model is further employed to enhance rendering fidelity, and improve reconstructed GS quality by polishing and re-using the rendered images. The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views. Experiments on the challenging real-world CO3D dataset demonstrate the superiority of our approach. Project page: https://yxmu.foo/GSD/{this https URL}
Unposed 3DGS Reconstruction with Probabilistic Procrustes Mapping
3D Gaussian Splatting (3DGS) has emerged as a core technique for 3D representation. Its effectiveness largely depends on precise camera poses and accurate point cloud initialization, which are often derived from pretrained Multi-View Stereo (MVS) models. However, in unposed reconstruction task from hundreds of outdoor images, existing MVS models may struggle with memory limits and lose accuracy as the number of input images grows. To address this limitation, we propose a novel unposed 3DGS reconstruction framework that integrates pretrained MVS priors with the probabilistic Procrustes mapping strategy. The method partitions input images into subsets, maps submaps into a global space, and jointly optimizes geometry and poses with 3DGS. Technically, we formulate the mapping of tens of millions of point clouds as a probabilistic Procrustes problem and solve a closed-form alignment. By employing probabilistic coupling along with a soft dustbin mechanism to reject uncertain correspondences, our method globally aligns point clouds and poses within minutes across hundreds of images. Moreover, we propose a joint optimization framework for 3DGS and camera poses. It constructs Gaussians from confidence-aware anchor points and integrates 3DGS differentiable rendering with an analytical Jacobian to jointly refine scene and poses, enabling accurate reconstruction and pose estimation. Experiments on Waymo and KITTI datasets show that our method achieves accurate reconstruction from unposed image sequences, setting a new state of the art for unposed 3DGS reconstruction.
FDGaussian: Fast Gaussian Splatting from Single Image via Geometric-aware Diffusion Model
Reconstructing detailed 3D objects from single-view images remains a challenging task due to the limited information available. In this paper, we introduce FDGaussian, a novel two-stage framework for single-image 3D reconstruction. Recent methods typically utilize pre-trained 2D diffusion models to generate plausible novel views from the input image, yet they encounter issues with either multi-view inconsistency or lack of geometric fidelity. To overcome these challenges, we propose an orthogonal plane decomposition mechanism to extract 3D geometric features from the 2D input, enabling the generation of consistent multi-view images. Moreover, we further accelerate the state-of-the-art Gaussian Splatting incorporating epipolar attention to fuse images from different viewpoints. We demonstrate that FDGaussian generates images with high consistency across different views and reconstructs high-quality 3D objects, both qualitatively and quantitatively. More examples can be found at our website https://qjfeng.net/FDGaussian/.
EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS
Recently, 3D Gaussian splatting (3D-GS) has gained popularity in novel-view scene synthesis. It addresses the challenges of lengthy training times and slow rendering speeds associated with Neural Radiance Fields (NeRFs). Through rapid, differentiable rasterization of 3D Gaussians, 3D-GS achieves real-time rendering and accelerated training. They, however, demand substantial memory resources for both training and storage, as they require millions of Gaussians in their point cloud representation for each scene. We present a technique utilizing quantized embeddings to significantly reduce memory storage requirements and a coarse-to-fine training strategy for a faster and more stable optimization of the Gaussian point clouds. Our approach results in scene representations with fewer Gaussians and quantized representations, leading to faster training times and rendering speeds for real-time rendering of high resolution scenes. We reduce memory by more than an order of magnitude all while maintaining the reconstruction quality. We validate the effectiveness of our approach on a variety of datasets and scenes preserving the visual quality while consuming 10-20x less memory and faster training/inference speed. Project page and code is available https://efficientgaussian.github.io
SparseGS: Real-Time 360° Sparse View Synthesis using Gaussian Splatting
The problem of novel view synthesis has grown significantly in popularity recently with the introduction of Neural Radiance Fields (NeRFs) and other implicit scene representation methods. A recent advance, 3D Gaussian Splatting (3DGS), leverages an explicit representation to achieve real-time rendering with high-quality results. However, 3DGS still requires an abundance of training views to generate a coherent scene representation. In few shot settings, similar to NeRF, 3DGS tends to overfit to training views, causing background collapse and excessive floaters, especially as the number of training views are reduced. We propose a method to enable training coherent 3DGS-based radiance fields of 360 scenes from sparse training views. We find that using naive depth priors is not sufficient and integrate depth priors with generative and explicit constraints to reduce background collapse, remove floaters, and enhance consistency from unseen viewpoints. Experiments show that our method outperforms base 3DGS by up to 30.5% and NeRF-based methods by up to 15.6% in LPIPS on the MipNeRF-360 dataset with substantially less training and inference cost.
Drivable 3D Gaussian Avatars
We present Drivable 3D Gaussian Avatars (D3GA), the first 3D controllable model for human bodies rendered with Gaussian splats. Current photorealistic drivable avatars require either accurate 3D registrations during training, dense input images during testing, or both. The ones based on neural radiance fields also tend to be prohibitively slow for telepresence applications. This work uses the recently presented 3D Gaussian Splatting (3DGS) technique to render realistic humans at real-time framerates, using dense calibrated multi-view videos as input. To deform those primitives, we depart from the commonly used point deformation method of linear blend skinning (LBS) and use a classic volumetric deformation method: cage deformations. Given their smaller size, we drive these deformations with joint angles and keypoints, which are more suitable for communication applications. Our experiments on nine subjects with varied body shapes, clothes, and motions obtain higher-quality results than state-of-the-art methods when using the same training and test data.
High-Fidelity Novel View Synthesis via Splatting-Guided Diffusion
Despite recent advances in Novel View Synthesis (NVS), generating high-fidelity views from single or sparse observations remains a significant challenge. Existing splatting-based approaches often produce distorted geometry due to splatting errors. While diffusion-based methods leverage rich 3D priors to achieve improved geometry, they often suffer from texture hallucination. In this paper, we introduce SplatDiff, a pixel-splatting-guided video diffusion model designed to synthesize high-fidelity novel views from a single image. Specifically, we propose an aligned synthesis strategy for precise control of target viewpoints and geometry-consistent view synthesis. To mitigate texture hallucination, we design a texture bridge module that enables high-fidelity texture generation through adaptive feature fusion. In this manner, SplatDiff leverages the strengths of splatting and diffusion to generate novel views with consistent geometry and high-fidelity details. Extensive experiments verify the state-of-the-art performance of SplatDiff in single-view NVS. Additionally, without extra training, SplatDiff shows remarkable zero-shot performance across diverse tasks, including sparse-view NVS and stereo video conversion.
HairGS: Hair Strand Reconstruction based on 3D Gaussian Splatting
Human hair reconstruction is a challenging problem in computer vision, with growing importance for applications in virtual reality and digital human modeling. Recent advances in 3D Gaussians Splatting (3DGS) provide efficient and explicit scene representations that naturally align with the structure of hair strands. In this work, we extend the 3DGS framework to enable strand-level hair geometry reconstruction from multi-view images. Our multi-stage pipeline first reconstructs detailed hair geometry using a differentiable Gaussian rasterizer, then merges individual Gaussian segments into coherent strands through a novel merging scheme, and finally refines and grows the strands under photometric supervision. While existing methods typically evaluate reconstruction quality at the geometric level, they often neglect the connectivity and topology of hair strands. To address this, we propose a new evaluation metric that serves as a proxy for assessing topological accuracy in strand reconstruction. Extensive experiments on both synthetic and real-world datasets demonstrate that our method robustly handles a wide range of hairstyles and achieves efficient reconstruction, typically completing within one hour. The project page can be found at: https://yimin-pan.github.io/hair-gs/
Robotic Fabric Flattening with Wrinkle Direction Detection
Deformable Object Manipulation (DOM) is an important field of research as it contributes to practical tasks such as automatic cloth handling, cable routing, surgical operation, etc. Perception is considered one of the major challenges in DOM due to the complex dynamics and high degree of freedom of deformable objects. In this paper, we develop a novel image-processing algorithm based on Gabor filters to extract useful features from cloth, and based on this, devise a strategy for cloth flattening tasks. We also evaluate the overall framework experimentally and compare it with three human operators. The results show that our algorithm can determine the direction of wrinkles on the cloth accurately in simulation as well as in real robot experiments. Furthermore, our dewrinkling strategy compares favorably to baseline methods. The experiment video is available on https://sites.google.com/view/robotic-fabric-flattening/home
Compact 3D Gaussian Representation for Radiance Field
Neural Radiance Fields (NeRFs) have demonstrated remarkable potential in capturing complex 3D scenes with high fidelity. However, one persistent challenge that hinders the widespread adoption of NeRFs is the computational bottleneck due to the volumetric rendering. On the other hand, 3D Gaussian splatting (3DGS) has recently emerged as an alternative representation that leverages a 3D Gaussisan-based representation and adopts the rasterization pipeline to render the images rather than volumetric rendering, achieving very fast rendering speed and promising image quality. However, a significant drawback arises as 3DGS entails a substantial number of 3D Gaussians to maintain the high fidelity of the rendered images, which requires a large amount of memory and storage. To address this critical issue, we place a specific emphasis on two key objectives: reducing the number of Gaussian points without sacrificing performance and compressing the Gaussian attributes, such as view-dependent color and covariance. To this end, we propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance. In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field rather than relying on spherical harmonics. Finally, we learn codebooks to compactly represent the geometric attributes of Gaussian by vector quantization. In our extensive experiments, we consistently show over 10times reduced storage and enhanced rendering speed, while maintaining the quality of the scene representation, compared to 3DGS. Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering. Our project page is available at https://maincold2.github.io/c3dgs/.
Flash-Splat: 3D Reflection Removal with Flash Cues and Gaussian Splats
We introduce a simple yet effective approach for separating transmitted and reflected light. Our key insight is that the powerful novel view synthesis capabilities provided by modern inverse rendering methods (e.g.,~3D Gaussian splatting) allow one to perform flash/no-flash reflection separation using unpaired measurements -- this relaxation dramatically simplifies image acquisition over conventional paired flash/no-flash reflection separation methods. Through extensive real-world experiments, we demonstrate our method, Flash-Splat, accurately reconstructs both transmitted and reflected scenes in 3D. Our method outperforms existing 3D reflection separation methods, which do not leverage illumination control, by a large margin. Our project webpage is at https://flash-splat.github.io/.
GauHuman: Articulated Gaussian Splatting from Monocular Human Videos
We present, GauHuman, a 3D human model with Gaussian Splatting for both fast training (1 ~ 2 minutes) and real-time rendering (up to 189 FPS), compared with existing NeRF-based implicit representation modelling frameworks demanding hours of training and seconds of rendering per frame. Specifically, GauHuman encodes Gaussian Splatting in the canonical space and transforms 3D Gaussians from canonical space to posed space with linear blend skinning (LBS), in which effective pose and LBS refinement modules are designed to learn fine details of 3D humans under negligible computational cost. Moreover, to enable fast optimization of GauHuman, we initialize and prune 3D Gaussians with 3D human prior, while splitting/cloning via KL divergence guidance, along with a novel merge operation for further speeding up. Extensive experiments on ZJU_Mocap and MonoCap datasets demonstrate that GauHuman achieves state-of-the-art performance quantitatively and qualitatively with fast training and real-time rendering speed. Notably, without sacrificing rendering quality, GauHuman can fast model the 3D human performer with ~13k 3D Gaussians.
FLoD: Integrating Flexible Level of Detail into 3D Gaussian Splatting for Customizable Rendering
3D Gaussian Splatting (3DGS) achieves fast and high-quality renderings by using numerous small Gaussians, which leads to significant memory consumption. This reliance on a large number of Gaussians restricts the application of 3DGS-based models on low-cost devices due to memory limitations. However, simply reducing the number of Gaussians to accommodate devices with less memory capacity leads to inferior quality compared to the quality that can be achieved on high-end hardware. To address this lack of scalability, we propose integrating a Flexible Level of Detail (FLoD) to 3DGS, to allow a scene to be rendered at varying levels of detail according to hardware capabilities. While existing 3DGSs with LoD focus on detailed reconstruction, our method provides reconstructions using a small number of Gaussians for reduced memory requirements, and a larger number of Gaussians for greater detail. Experiments demonstrate our various rendering options with tradeoffs between rendering quality and memory usage, thereby allowing real-time rendering across different memory constraints. Furthermore, we show that our method generalizes to different 3DGS frameworks, indicating its potential for integration into future state-of-the-art developments. Project page: https://3dgs-flod.github.io/flod.github.io/
Momentum-GS: Momentum Gaussian Self-Distillation for High-Quality Large Scene Reconstruction
3D Gaussian Splatting has demonstrated notable success in large-scale scene reconstruction, but challenges persist due to high training memory consumption and storage overhead. Hybrid representations that integrate implicit and explicit features offer a way to mitigate these limitations. However, when applied in parallelized block-wise training, two critical issues arise since reconstruction accuracy deteriorates due to reduced data diversity when training each block independently, and parallel training restricts the number of divided blocks to the available number of GPUs. To address these issues, we propose Momentum-GS, a novel approach that leverages momentum-based self-distillation to promote consistency and accuracy across the blocks while decoupling the number of blocks from the physical GPU count. Our method maintains a teacher Gaussian decoder updated with momentum, ensuring a stable reference during training. This teacher provides each block with global guidance in a self-distillation manner, promoting spatial consistency in reconstruction. To further ensure consistency across the blocks, we incorporate block weighting, dynamically adjusting each block's weight according to its reconstruction accuracy. Extensive experiments on large-scale scenes show that our method consistently outperforms existing techniques, achieving a 12.8% improvement in LPIPS over CityGaussian with much fewer divided blocks and establishing a new state of the art. Project page: https://jixuan-fan.github.io/Momentum-GS_Page/
Accurate and Complete Surface Reconstruction from 3D Gaussians via Direct SDF Learning
3D Gaussian Splatting (3DGS) has recently emerged as a powerful paradigm for photorealistic view synthesis, representing scenes with spatially distributed Gaussian primitives. While highly effective for rendering, achieving accurate and complete surface reconstruction remains challenging due to the unstructured nature of the representation and the absence of explicit geometric supervision. In this work, we propose DiGS, a unified framework that embeds Signed Distance Field (SDF) learning directly into the 3DGS pipeline, thereby enforcing strong and interpretable surface priors. By associating each Gaussian with a learnable SDF value, DiGS explicitly aligns primitives with underlying geometry and improves cross-view consistency. To further ensure dense and coherent coverage, we design a geometry-guided grid growth strategy that adaptively distributes Gaussians along geometry-consistent regions under a multi-scale hierarchy. Extensive experiments on standard benchmarks, including DTU, Mip-NeRF 360, and Tanks& Temples, demonstrate that DiGS consistently improves reconstruction accuracy and completeness while retaining high rendering fidelity.
FlexGS: Train Once, Deploy Everywhere with Many-in-One Flexible 3D Gaussian Splatting
3D Gaussian splatting (3DGS) has enabled various applications in 3D scene representation and novel view synthesis due to its efficient rendering capabilities. However, 3DGS demands relatively significant GPU memory, limiting its use on devices with restricted computational resources. Previous approaches have focused on pruning less important Gaussians, effectively compressing 3DGS but often requiring a fine-tuning stage and lacking adaptability for the specific memory needs of different devices. In this work, we present an elastic inference method for 3DGS. Given an input for the desired model size, our method selects and transforms a subset of Gaussians, achieving substantial rendering performance without additional fine-tuning. We introduce a tiny learnable module that controls Gaussian selection based on the input percentage, along with a transformation module that adjusts the selected Gaussians to complement the performance of the reduced model. Comprehensive experiments on ZipNeRF, MipNeRF and Tanks\&Temples scenes demonstrate the effectiveness of our approach. Code is available at https://flexgs.github.io.
Learning Unified Representation of 3D Gaussian Splatting
A well-designed vectorized representation is crucial for the learning systems natively based on 3D Gaussian Splatting. While 3DGS enables efficient and explicit 3D reconstruction, its parameter-based representation remains hard to learn as features, especially for neural-network-based models. Directly feeding raw Gaussian parameters into learning frameworks fails to address the non-unique and heterogeneous nature of the Gaussian parameterization, yielding highly data-dependent models. This challenge motivates us to explore a more principled approach to represent 3D Gaussian Splatting in neural networks that preserves the underlying color and geometric structure while enforcing unique mapping and channel homogeneity. In this paper, we propose an embedding representation of 3DGS based on continuous submanifold fields that encapsulate the intrinsic information of Gaussian primitives, thereby benefiting the learning of 3DGS.
FlowR: Flowing from Sparse to Dense 3D Reconstructions
3D Gaussian splatting enables high-quality novel view synthesis (NVS) at real-time frame rates. However, its quality drops sharply as we depart from the training views. Thus, dense captures are needed to match the high-quality expectations of some applications, e.g. Virtual Reality (VR). However, such dense captures are very laborious and expensive to obtain. Existing works have explored using 2D generative models to alleviate this requirement by distillation or generating additional training views. These methods are often conditioned only on a handful of reference input views and thus do not fully exploit the available 3D information, leading to inconsistent generation results and reconstruction artifacts. To tackle this problem, we propose a multi-view, flow matching model that learns a flow to connect novel view renderings from possibly sparse reconstructions to renderings that we expect from dense reconstructions. This enables augmenting scene captures with novel, generated views to improve reconstruction quality. Our model is trained on a novel dataset of 3.6M image pairs and can process up to 45 views at 540x960 resolution (91K tokens) on one H100 GPU in a single forward pass. Our pipeline consistently improves NVS in sparse- and dense-view scenarios, leading to higher-quality reconstructions than prior works across multiple, widely-used NVS benchmarks.
Wonderland: Navigating 3D Scenes from a Single Image
This paper addresses a challenging question: How can we efficiently create high-quality, wide-scope 3D scenes from a single arbitrary image? Existing methods face several constraints, such as requiring multi-view data, time-consuming per-scene optimization, low visual quality in backgrounds, and distorted reconstructions in unseen areas. We propose a novel pipeline to overcome these limitations. Specifically, we introduce a large-scale reconstruction model that uses latents from a video diffusion model to predict 3D Gaussian Splattings for the scenes in a feed-forward manner. The video diffusion model is designed to create videos precisely following specified camera trajectories, allowing it to generate compressed video latents that contain multi-view information while maintaining 3D consistency. We train the 3D reconstruction model to operate on the video latent space with a progressive training strategy, enabling the efficient generation of high-quality, wide-scope, and generic 3D scenes. Extensive evaluations across various datasets demonstrate that our model significantly outperforms existing methods for single-view 3D scene generation, particularly with out-of-domain images. For the first time, we demonstrate that a 3D reconstruction model can be effectively built upon the latent space of a diffusion model to realize efficient 3D scene generation.
Enhancing Monocular 3D Scene Completion with Diffusion Model
3D scene reconstruction is essential for applications in virtual reality, robotics, and autonomous driving, enabling machines to understand and interact with complex environments. Traditional 3D Gaussian Splatting techniques rely on images captured from multiple viewpoints to achieve optimal performance, but this dependence limits their use in scenarios where only a single image is available. In this work, we introduce FlashDreamer, a novel approach for reconstructing a complete 3D scene from a single image, significantly reducing the need for multi-view inputs. Our approach leverages a pre-trained vision-language model to generate descriptive prompts for the scene, guiding a diffusion model to produce images from various perspectives, which are then fused to form a cohesive 3D reconstruction. Extensive experiments show that our method effectively and robustly expands single-image inputs into a comprehensive 3D scene, extending monocular 3D reconstruction capabilities without further training. Our code is available https://github.com/CharlieSong1999/FlashDreamer/tree/main.
RaGS: Unleashing 3D Gaussian Splatting from 4D Radar and Monocular Cues for 3D Object Detection
4D millimeter-wave radar has emerged as a promising sensor for autonomous driving, but effective 3D object detection from both 4D radar and monocular images remains a challenge. Existing fusion approaches typically rely on either instance-based proposals or dense BEV grids, which either lack holistic scene understanding or are limited by rigid grid structures. To address these, we propose RaGS, the first framework to leverage 3D Gaussian Splatting (GS) as representation for fusing 4D radar and monocular cues in 3D object detection. 3D GS naturally suits 3D object detection by modeling the scene as a field of Gaussians, dynamically allocating resources on foreground objects and providing a flexible, resource-efficient solution. RaGS uses a cascaded pipeline to construct and refine the Gaussian field. It starts with the Frustum-based Localization Initiation (FLI), which unprojects foreground pixels to initialize coarse 3D Gaussians positions. Then, the Iterative Multimodal Aggregation (IMA) fuses semantics and geometry, refining the limited Gaussians to the regions of interest. Finally, the Multi-level Gaussian Fusion (MGF) renders the Gaussians into multi-level BEV features for 3D object detection. By dynamically focusing on sparse objects within scenes, RaGS enable object concentrating while offering comprehensive scene perception. Extensive experiments on View-of-Delft, TJ4DRadSet, and OmniHD-Scenes benchmarks demonstrate its state-of-the-art performance. Code will be released.
Animatable Gaussians: Learning Pose-dependent Gaussian Maps for High-fidelity Human Avatar Modeling
Modeling animatable human avatars from RGB videos is a long-standing and challenging problem. Recent works usually adopt MLP-based neural radiance fields (NeRF) to represent 3D humans, but it remains difficult for pure MLPs to regress pose-dependent garment details. To this end, we introduce Animatable Gaussians, a new avatar representation that leverages powerful 2D CNNs and 3D Gaussian splatting to create high-fidelity avatars. To associate 3D Gaussians with the animatable avatar, we learn a parametric template from the input videos, and then parameterize the template on two front \& back canonical Gaussian maps where each pixel represents a 3D Gaussian. The learned template is adaptive to the wearing garments for modeling looser clothes like dresses. Such template-guided 2D parameterization enables us to employ a powerful StyleGAN-based CNN to learn the pose-dependent Gaussian maps for modeling detailed dynamic appearances. Furthermore, we introduce a pose projection strategy for better generalization given novel poses. Overall, our method can create lifelike avatars with dynamic, realistic and generalized appearances. Experiments show that our method outperforms other state-of-the-art approaches. Code: https://github.com/lizhe00/AnimatableGaussians
LiftImage3D: Lifting Any Single Image to 3D Gaussians with Video Generation Priors
Single-image 3D reconstruction remains a fundamental challenge in computer vision due to inherent geometric ambiguities and limited viewpoint information. Recent advances in Latent Video Diffusion Models (LVDMs) offer promising 3D priors learned from large-scale video data. However, leveraging these priors effectively faces three key challenges: (1) degradation in quality across large camera motions, (2) difficulties in achieving precise camera control, and (3) geometric distortions inherent to the diffusion process that damage 3D consistency. We address these challenges by proposing LiftImage3D, a framework that effectively releases LVDMs' generative priors while ensuring 3D consistency. Specifically, we design an articulated trajectory strategy to generate video frames, which decomposes video sequences with large camera motions into ones with controllable small motions. Then we use robust neural matching models, i.e. MASt3R, to calibrate the camera poses of generated frames and produce corresponding point clouds. Finally, we propose a distortion-aware 3D Gaussian splatting representation, which can learn independent distortions between frames and output undistorted canonical Gaussians. Extensive experiments demonstrate that LiftImage3D achieves state-of-the-art performance on two challenging datasets, i.e. LLFF, DL3DV, and Tanks and Temples, and generalizes well to diverse in-the-wild images, from cartoon illustrations to complex real-world scenes.
DreamGaussian4D: Generative 4D Gaussian Splatting
Remarkable progress has been made in 4D content generation recently. However, existing methods suffer from long optimization time, lack of motion controllability, and a low level of detail. In this paper, we introduce DreamGaussian4D, an efficient 4D generation framework that builds on 4D Gaussian Splatting representation. Our key insight is that the explicit modeling of spatial transformations in Gaussian Splatting makes it more suitable for the 4D generation setting compared with implicit representations. DreamGaussian4D reduces the optimization time from several hours to just a few minutes, allows flexible control of the generated 3D motion, and produces animated meshes that can be efficiently rendered in 3D engines.
GFreeDet: Exploiting Gaussian Splatting and Foundation Models for Model-free Unseen Object Detection in the BOP Challenge 2024
In this report, we provide the technical details of the submitted method GFreeDet, which exploits Gaussian splatting and vision Foundation models for the model-free unseen object Detection track in the BOP 2024 Challenge.
LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS
Recent advancements in real-time neural rendering using point-based techniques have paved the way for the widespread adoption of 3D representations. However, foundational approaches like 3D Gaussian Splatting come with a substantial storage overhead caused by growing the SfM points to millions, often demanding gigabyte-level disk space for a single unbounded scene, posing significant scalability challenges and hindering the splatting efficiency. To address this challenge, we introduce LightGaussian, a novel method designed to transform 3D Gaussians into a more efficient and compact format. Drawing inspiration from the concept of Network Pruning, LightGaussian identifies Gaussians that are insignificant in contributing to the scene reconstruction and adopts a pruning and recovery process, effectively reducing redundancy in Gaussian counts while preserving visual effects. Additionally, LightGaussian employs distillation and pseudo-view augmentation to distill spherical harmonics to a lower degree, allowing knowledge transfer to more compact representations while maintaining reflectance. Furthermore, we propose a hybrid scheme, VecTree Quantization, to quantize all attributes, resulting in lower bitwidth representations with minimal accuracy losses. In summary, LightGaussian achieves an averaged compression rate over 15x while boosting the FPS from 139 to 215, enabling an efficient representation of complex scenes on Mip-NeRF 360, Tank and Temple datasets. Project website: https://lightgaussian.github.io/
GaussianImage: 1000 FPS Image Representation and Compression by 2D Gaussian Splatting
Implicit neural representations (INRs) recently achieved great success in image representation and compression, offering high visual quality and fast rendering speeds with 10-1000 FPS, assuming sufficient GPU resources are available. However, this requirement often hinders their use on low-end devices with limited memory. In response, we propose a groundbreaking paradigm of image representation and compression by 2D Gaussian Splatting, named GaussianImage. We first introduce 2D Gaussian to represent the image, where each Gaussian has 8 parameters including position, covariance and color. Subsequently, we unveil a novel rendering algorithm based on accumulated summation. Remarkably, our method with a minimum of 3times lower GPU memory usage and 5times faster fitting time not only rivals INRs (e.g., WIRE, I-NGP) in representation performance, but also delivers a faster rendering speed of 1500-2000 FPS regardless of parameter size. Furthermore, we integrate existing vector quantization technique to build an image codec. Experimental results demonstrate that our codec attains rate-distortion performance comparable to compression-based INRs such as COIN and COIN++, while facilitating decoding speeds of approximately 1000 FPS. Additionally, preliminary proof of concept shows that our codec surpasses COIN and COIN++ in performance when using partial bits-back coding.
Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting
The recent advancements in 3D Gaussian splatting (3D-GS) have not only facilitated real-time rendering through modern GPU rasterization pipelines but have also attained state-of-the-art rendering quality. Nevertheless, despite its exceptional rendering quality and performance on standard datasets, 3D-GS frequently encounters difficulties in accurately modeling specular and anisotropic components. This issue stems from the limited ability of spherical harmonics (SH) to represent high-frequency information. To overcome this challenge, we introduce Spec-Gaussian, an approach that utilizes an anisotropic spherical Gaussian (ASG) appearance field instead of SH for modeling the view-dependent appearance of each 3D Gaussian. Additionally, we have developed a coarse-to-fine training strategy to improve learning efficiency and eliminate floaters caused by overfitting in real-world scenes. Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality. Thanks to ASG, we have significantly improved the ability of 3D-GS to model scenes with specular and anisotropic components without increasing the number of 3D Gaussians. This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
GaussianForest: Hierarchical-Hybrid 3D Gaussian Splatting for Compressed Scene Modeling
The field of novel-view synthesis has recently witnessed the emergence of 3D Gaussian Splatting, which represents scenes in a point-based manner and renders through rasterization. This methodology, in contrast to Radiance Fields that rely on ray tracing, demonstrates superior rendering quality and speed. However, the explicit and unstructured nature of 3D Gaussians poses a significant storage challenge, impeding its broader application. To address this challenge, we introduce the Gaussian-Forest modeling framework, which hierarchically represents a scene as a forest of hybrid 3D Gaussians. Each hybrid Gaussian retains its unique explicit attributes while sharing implicit ones with its sibling Gaussians, thus optimizing parameterization with significantly fewer variables. Moreover, adaptive growth and pruning strategies are designed, ensuring detailed representation in complex regions and a notable reduction in the number of required Gaussians. Extensive experiments demonstrate that Gaussian-Forest not only maintains comparable speed and quality but also achieves a compression rate surpassing 10 times, marking a significant advancement in efficient scene modeling. Codes will be available at https://github.com/Xian-Bei/GaussianForest.
SplatFlow: Multi-View Rectified Flow Model for 3D Gaussian Splatting Synthesis
Text-based generation and editing of 3D scenes hold significant potential for streamlining content creation through intuitive user interactions. While recent advances leverage 3D Gaussian Splatting (3DGS) for high-fidelity and real-time rendering, existing methods are often specialized and task-focused, lacking a unified framework for both generation and editing. In this paper, we introduce SplatFlow, a comprehensive framework that addresses this gap by enabling direct 3DGS generation and editing. SplatFlow comprises two main components: a multi-view rectified flow (RF) model and a Gaussian Splatting Decoder (GSDecoder). The multi-view RF model operates in latent space, generating multi-view images, depths, and camera poses simultaneously, conditioned on text prompts, thus addressing challenges like diverse scene scales and complex camera trajectories in real-world settings. Then, the GSDecoder efficiently translates these latent outputs into 3DGS representations through a feed-forward 3DGS method. Leveraging training-free inversion and inpainting techniques, SplatFlow enables seamless 3DGS editing and supports a broad range of 3D tasks-including object editing, novel view synthesis, and camera pose estimation-within a unified framework without requiring additional complex pipelines. We validate SplatFlow's capabilities on the MVImgNet and DL3DV-7K datasets, demonstrating its versatility and effectiveness in various 3D generation, editing, and inpainting-based tasks.
LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors
We aim to address sparse-view reconstruction of a 3D scene by leveraging priors from large-scale vision models. While recent advancements such as 3D Gaussian Splatting (3DGS) have demonstrated remarkable successes in 3D reconstruction, these methods typically necessitate hundreds of input images that densely capture the underlying scene, making them time-consuming and impractical for real-world applications. However, sparse-view reconstruction is inherently ill-posed and under-constrained, often resulting in inferior and incomplete outcomes. This is due to issues such as failed initialization, overfitting on input images, and a lack of details. To mitigate these challenges, we introduce LM-Gaussian, a method capable of generating high-quality reconstructions from a limited number of images. Specifically, we propose a robust initialization module that leverages stereo priors to aid in the recovery of camera poses and the reliable point clouds. Additionally, a diffusion-based refinement is iteratively applied to incorporate image diffusion priors into the Gaussian optimization process to preserve intricate scene details. Finally, we utilize video diffusion priors to further enhance the rendered images for realistic visual effects. Overall, our approach significantly reduces the data acquisition requirements compared to previous 3DGS methods. We validate the effectiveness of our framework through experiments on various public datasets, demonstrating its potential for high-quality 360-degree scene reconstruction. Visual results are on our website.
Light4GS: Lightweight Compact 4D Gaussian Splatting Generation via Context Model
3D Gaussian Splatting (3DGS) has emerged as an efficient and high-fidelity paradigm for novel view synthesis. To adapt 3DGS for dynamic content, deformable 3DGS incorporates temporally deformable primitives with learnable latent embeddings to capture complex motions. Despite its impressive performance, the high-dimensional embeddings and vast number of primitives lead to substantial storage requirements. In this paper, we introduce a Lightweight 4DGS framework, called Light4GS, that employs significance pruning with a deep context model to provide a lightweight storage-efficient dynamic 3DGS representation. The proposed Light4GS is based on 4DGS that is a typical representation of deformable 3DGS. Specifically, our framework is built upon two core components: (1) a spatio-temporal significance pruning strategy that eliminates over 64\% of the deformable primitives, followed by an entropy-constrained spherical harmonics compression applied to the remainder; and (2) a deep context model that integrates intra- and inter-prediction with hyperprior into a coarse-to-fine context structure to enable efficient multiscale latent embedding compression. Our approach achieves over 120x compression and increases rendering FPS up to 20\% compared to the baseline 4DGS, and also superior to frame-wise state-of-the-art 3DGS compression methods, revealing the effectiveness of our Light4GS in terms of both intra- and inter-prediction methods without sacrificing rendering quality.
Feature Splatting: Language-Driven Physics-Based Scene Synthesis and Editing
Scene representations using 3D Gaussian primitives have produced excellent results in modeling the appearance of static and dynamic 3D scenes. Many graphics applications, however, demand the ability to manipulate both the appearance and the physical properties of objects. We introduce Feature Splatting, an approach that unifies physics-based dynamic scene synthesis with rich semantics from vision language foundation models that are grounded by natural language. Our first contribution is a way to distill high-quality, object-centric vision-language features into 3D Gaussians, that enables semi-automatic scene decomposition using text queries. Our second contribution is a way to synthesize physics-based dynamics from an otherwise static scene using a particle-based simulator, in which material properties are assigned automatically via text queries. We ablate key techniques used in this pipeline, to illustrate the challenge and opportunities in using feature-carrying 3D Gaussians as a unified format for appearance, geometry, material properties and semantics grounded on natural language. Project website: https://feature-splatting.github.io/
ZDySS -- Zero-Shot Dynamic Scene Stylization using Gaussian Splatting
Stylizing a dynamic scene based on an exemplar image is critical for various real-world applications, including gaming, filmmaking, and augmented and virtual reality. However, achieving consistent stylization across both spatial and temporal dimensions remains a significant challenge. Most existing methods are designed for static scenes and often require an optimization process for each style image, limiting their adaptability. We introduce ZDySS, a zero-shot stylization framework for dynamic scenes, allowing our model to generalize to previously unseen style images at inference. Our approach employs Gaussian splatting for scene representation, linking each Gaussian to a learned feature vector that renders a feature map for any given view and timestamp. By applying style transfer on the learned feature vectors instead of the rendered feature map, we enhance spatio-temporal consistency across frames. Our method demonstrates superior performance and coherence over state-of-the-art baselines in tests on real-world dynamic scenes, making it a robust solution for practical applications.
GoMAvatar: Efficient Animatable Human Modeling from Monocular Video Using Gaussians-on-Mesh
We introduce GoMAvatar, a novel approach for real-time, memory-efficient, high-quality animatable human modeling. GoMAvatar takes as input a single monocular video to create a digital avatar capable of re-articulation in new poses and real-time rendering from novel viewpoints, while seamlessly integrating with rasterization-based graphics pipelines. Central to our method is the Gaussians-on-Mesh representation, a hybrid 3D model combining rendering quality and speed of Gaussian splatting with geometry modeling and compatibility of deformable meshes. We assess GoMAvatar on ZJU-MoCap data and various YouTube videos. GoMAvatar matches or surpasses current monocular human modeling algorithms in rendering quality and significantly outperforms them in computational efficiency (43 FPS) while being memory-efficient (3.63 MB per subject).
HybridGS: Decoupling Transients and Statics with 2D and 3D Gaussian Splatting
Generating high-quality novel view renderings of 3D Gaussian Splatting (3DGS) in scenes featuring transient objects is challenging. We propose a novel hybrid representation, termed as HybridGS, using 2D Gaussians for transient objects per image and maintaining traditional 3D Gaussians for the whole static scenes. Note that, the 3DGS itself is better suited for modeling static scenes that assume multi-view consistency, but the transient objects appear occasionally and do not adhere to the assumption, thus we model them as planar objects from a single view, represented with 2D Gaussians. Our novel representation decomposes the scene from the perspective of fundamental viewpoint consistency, making it more reasonable. Additionally, we present a novel multi-view regulated supervision method for 3DGS that leverages information from co-visible regions, further enhancing the distinctions between the transients and statics. Then, we propose a straightforward yet effective multi-stage training strategy to ensure robust training and high-quality view synthesis across various settings. Experiments on benchmark datasets show our state-of-the-art performance of novel view synthesis in both indoor and outdoor scenes, even in the presence of distracting elements.
Swift4D:Adaptive divide-and-conquer Gaussian Splatting for compact and efficient reconstruction of dynamic scene
Novel view synthesis has long been a practical but challenging task, although the introduction of numerous methods to solve this problem, even combining advanced representations like 3D Gaussian Splatting, they still struggle to recover high-quality results and often consume too much storage memory and training time. In this paper we propose Swift4D, a divide-and-conquer 3D Gaussian Splatting method that can handle static and dynamic primitives separately, achieving a good trade-off between rendering quality and efficiency, motivated by the fact that most of the scene is the static primitive and does not require additional dynamic properties. Concretely, we focus on modeling dynamic transformations only for the dynamic primitives which benefits both efficiency and quality. We first employ a learnable decomposition strategy to separate the primitives, which relies on an additional parameter to classify primitives as static or dynamic. For the dynamic primitives, we employ a compact multi-resolution 4D Hash mapper to transform these primitives from canonical space into deformation space at each timestamp, and then mix the static and dynamic primitives to produce the final output. This divide-and-conquer method facilitates efficient training and reduces storage redundancy. Our method not only achieves state-of-the-art rendering quality while being 20X faster in training than previous SOTA methods with a minimum storage requirement of only 30MB on real-world datasets. Code is available at https://github.com/WuJH2001/swift4d.
