new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 5

Toward Efficient Language Model Pretraining and Downstream Adaptation via Self-Evolution: A Case Study on SuperGLUE

This technical report briefly describes our JDExplore d-team's Vega v2 submission on the SuperGLUE leaderboard. SuperGLUE is more challenging than the widely used general language understanding evaluation (GLUE) benchmark, containing eight difficult language understanding tasks, including question answering, natural language inference, word sense disambiguation, coreference resolution, and reasoning. [Method] Instead of arbitrarily increasing the size of a pretrained language model (PLM), our aim is to 1) fully extract knowledge from the input pretraining data given a certain parameter budget, e.g., 6B, and 2) effectively transfer this knowledge to downstream tasks. To achieve goal 1), we propose self-evolution learning for PLMs to wisely predict the informative tokens that should be masked, and supervise the masked language modeling (MLM) process with rectified smooth labels. For goal 2), we leverage the prompt transfer technique to improve the low-resource tasks by transferring the knowledge from the foundation model and related downstream tasks to the target task. [Results] According to our submission record (Oct. 2022), with our optimized pretraining and fine-tuning strategies, our 6B Vega method achieved new state-of-the-art performance on 4/8 tasks, sitting atop the SuperGLUE leaderboard on Oct. 8, 2022, with an average score of 91.3.

  • 14 authors
·
Dec 4, 2022

MindVL: Towards Efficient and Effective Training of Multimodal Large Language Models on Ascend NPUs

We propose MindVL, a multimodal large langauge model trained on Ascend NPUs. Similar to Qwen2.5-VL, MindVL adopts native-resolution Vision Transformers, which enables it to process images at their original variable resolutions. This design avoids the degradation caused by fixed-resolution tiling while preserving fine-grained details and global layouts, which is crucial for visually dense content such as complex charts and diagrams. To ensure the smooth training of MindVL on Ascend NPUs, we develop Mindspeed-MLLM, a distributed multimodal training framework tailored for Ascend NPUs. To maintain training accuracy, we implement equivalent replacements for certain operators. MindVL undergoes a three-phase training process, namely the warm-up phase, multitask training phase, and supervised instruction tuning phase, to gradually enhance its capabilities. This process starts with basic visual and multimodal pre-training, followed by large-scale multiask trainging and instruction tuning. We also adopt multimodal data packaging and hybrid parallelism techniques, which significantly improve end-to-end training speed. To further boost model performance, we specifically introduce test-time resolution search and model weight averaging. Notably, despite using about 1/10 of the training data required by Qwen2.5-VL, MindVL achieves performance on par with Qwen2.5-VL in evaluations of general multimodal understanding and document/table comprehension. Beyond overall scores, MindVL also delivers leading performance in OCR assessments.

  • 8 authors
·
Sep 15

AU-Harness: An Open-Source Toolkit for Holistic Evaluation of Audio LLMs

Large Audio Language Models (LALMs) are rapidly advancing, but evaluating them remains challenging due to inefficient toolkits that limit fair comparison and systematic assessment. Current frameworks suffer from three critical issues: slow processing that bottlenecks large-scale studies, inconsistent prompting that hurts reproducibility, and narrow task coverage that misses important audio reasoning capabilities. We introduce AU-Harness, an efficient and comprehensive evaluation framework for LALMs. Our system achieves a speedup of up to 127% over existing toolkits through optimized batch processing and parallel execution, enabling large-scale evaluations previously impractical. We provide standardized prompting protocols and flexible configurations for fair model comparison across diverse scenarios. Additionally, we introduce two new evaluation categories: LLM-Adaptive Diarization for temporal audio understanding and Spoken Language Reasoning for complex audio-based cognitive tasks. Through evaluation across 380+ tasks, we reveal significant gaps in current LALMs, particularly in temporal understanding and complex spoken language reasoning tasks. Our findings also highlight a lack of standardization in instruction modality existent across audio benchmarks, which can lead up performance differences up to 9.5 absolute points on the challenging complex instruction following downstream tasks. AU-Harness provides both practical evaluation tools and insights into model limitations, advancing systematic LALM development.

  • 8 authors
·
Sep 9 3

Advancing Content Moderation: Evaluating Large Language Models for Detecting Sensitive Content Across Text, Images, and Videos

The widespread dissemination of hate speech, harassment, harmful and sexual content, and violence across websites and media platforms presents substantial challenges and provokes widespread concern among different sectors of society. Governments, educators, and parents are often at odds with media platforms about how to regulate, control, and limit the spread of such content. Technologies for detecting and censoring the media contents are a key solution to addressing these challenges. Techniques from natural language processing and computer vision have been used widely to automatically identify and filter out sensitive content such as offensive languages, violence, nudity, and addiction in both text, images, and videos, enabling platforms to enforce content policies at scale. However, existing methods still have limitations in achieving high detection accuracy with fewer false positives and false negatives. Therefore, more sophisticated algorithms for understanding the context of both text and image may open rooms for improvement in content censorship to build a more efficient censorship system. In this paper, we evaluate existing LLM-based content moderation solutions such as OpenAI moderation model and Llama-Guard3 and study their capabilities to detect sensitive contents. Additionally, we explore recent LLMs such as GPT, Gemini, and Llama in identifying inappropriate contents across media outlets. Various textual and visual datasets like X tweets, Amazon reviews, news articles, human photos, cartoons, sketches, and violence videos have been utilized for evaluation and comparison. The results demonstrate that LLMs outperform traditional techniques by achieving higher accuracy and lower false positive and false negative rates. This highlights the potential to integrate LLMs into websites, social media platforms, and video-sharing services for regulatory and content moderation purposes.

  • 4 authors
·
Nov 26, 2024

Video-Panda: Parameter-efficient Alignment for Encoder-free Video-Language Models

We present an efficient encoder-free approach for video-language understanding that achieves competitive performance while significantly reducing computational overhead. Current video-language models typically rely on heavyweight image encoders (300M-1.1B parameters) or video encoders (1B-1.4B parameters), creating a substantial computational burden when processing multi-frame videos. Our method introduces a novel Spatio-Temporal Alignment Block (STAB) that directly processes video inputs without requiring pre-trained encoders while using only 45M parameters for visual processing - at least a 6.5times reduction compared to traditional approaches. The STAB architecture combines Local Spatio-Temporal Encoding for fine-grained feature extraction, efficient spatial downsampling through learned attention and separate mechanisms for modeling frame-level and video-level relationships. Our model achieves comparable or superior performance to encoder-based approaches for open-ended video question answering on standard benchmarks. The fine-grained video question-answering evaluation demonstrates our model's effectiveness, outperforming the encoder-based approaches Video-ChatGPT and Video-LLaVA in key aspects like correctness and temporal understanding. Extensive ablation studies validate our architectural choices and demonstrate the effectiveness of our spatio-temporal modeling approach while achieving 3-4times faster processing speeds than previous methods. Code is available at https://github.com/jh-yi/Video-Panda.

  • 5 authors
·
Dec 24, 2024 2

How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models

Binary code analysis plays a pivotal role in various software security applications, such as software maintenance, malware detection, software vulnerability discovery, patch analysis, etc. However, unlike source code, understanding binary code is challenging for reverse engineers due to the absence of semantic information. Therefore, automated tools are needed to assist human players in interpreting binary code. In recent years, two groups of technologies have shown promising prospects: (1) Deep learning-based technologies have demonstrated competitive results in tasks related to binary code understanding, furthermore, (2) Large Language Models (LLMs) have been extensively pre-trained at the source-code level for tasks such as code understanding and generation. This makes participants wonder about the ability of LLMs in binary code understanding. In this work, we propose a benchmark to evaluate the effectiveness of LLMs in real-world reverse engineering scenarios. The benchmark covers two key binary code understanding tasks, including function name recovery and binary code summarization. We gain valuable insights into their capabilities and limitations through extensive evaluations of popular LLMs using our benchmark. Our evaluations reveal that existing LLMs can understand binary code to a certain extent, thereby improving the efficiency of binary code analysis. Our results highlight the great potential of the LLMs in advancing the field of binary code understanding.

  • 9 authors
·
Apr 15, 2024

CoreMatching: A Co-adaptive Sparse Inference Framework with Token and Neuron Pruning for Comprehensive Acceleration of Vision-Language Models

Vision-Language Models (VLMs) excel across diverse tasks but suffer from high inference costs in time and memory. Token sparsity mitigates inefficiencies in token usage, while neuron sparsity reduces high-dimensional computations, both offering promising solutions to enhance efficiency. Recently, these two sparsity paradigms have evolved largely in parallel, fostering the prevailing assumption that they function independently. However, a fundamental yet underexplored question remains: Do they truly operate in isolation, or is there a deeper underlying interplay that has yet to be uncovered? In this paper, we conduct the first comprehensive investigation into this question. By introducing and analyzing the matching mechanism between Core Neurons and Core Tokens, we found that key neurons and tokens for inference mutually influence and reinforce each other. Building on this insight, we propose CoreMatching, a co-adaptive sparse inference framework, which leverages the synergy between token and neuron sparsity to enhance inference efficiency. Through theoretical analysis and efficiency evaluations, we demonstrate that the proposed method surpasses state-of-the-art baselines on ten image understanding tasks and three hardware devices. Notably, on the NVIDIA Titan Xp, it achieved 5x FLOPs reduction and a 10x overall speedup. Code is released at https://github.com/wangqinsi1/2025-ICML-CoreMatching/tree/main.

  • 9 authors
·
May 25 1

CodeScope: An Execution-based Multilingual Multitask Multidimensional Benchmark for Evaluating LLMs on Code Understanding and Generation

Large Language Models (LLMs) have demonstrated remarkable performance on coding related tasks, particularly on assisting humans in programming and facilitating programming automation. However, existing benchmarks for evaluating the code understanding and generation capacities of LLMs suffer from severe limitations. First, most benchmarks are deficient as they focus on a narrow range of popular programming languages and specific tasks, whereas the real-world software development scenarios show dire need to implement systems with multilingual programming environments to satisfy diverse requirements. Practical programming practices also strongly expect multi-task settings for testing coding capabilities of LLMs comprehensively and robustly. Second, most benchmarks also fail to consider the actual executability and the consistency of execution results of the generated code. To bridge these gaps between existing benchmarks and expectations from practical applications, we introduce CodeScope, an execution-based, multilingual, multi-task, multi-dimensional evaluation benchmark for comprehensively gauging LLM capabilities on coding tasks. CodeScope covers 43 programming languages and 8 coding tasks. It evaluates the coding performance of LLMs from three dimensions (perspectives): difficulty, efficiency, and length. To facilitate execution-based evaluations of code generation, we develop MultiCodeEngine, an automated code execution engine that supports 14 programming languages. Finally, we systematically evaluate and analyze 8 mainstream LLMs on CodeScope tasks and demonstrate the superior breadth and challenges of CodeScope for evaluating LLMs on code understanding and generation tasks compared to other benchmarks. The CodeScope benchmark and datasets are publicly available at https://github.com/WeixiangYAN/CodeScope.

  • 11 authors
·
Nov 14, 2023