Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGraph Parsing Networks
Graph pooling compresses graph information into a compact representation. State-of-the-art graph pooling methods follow a hierarchical approach, which reduces the graph size step-by-step. These methods must balance memory efficiency with preserving node information, depending on whether they use node dropping or node clustering. Additionally, fixed pooling ratios or numbers of pooling layers are predefined for all graphs, which prevents personalized pooling structures from being captured for each individual graph. In this work, inspired by bottom-up grammar induction, we propose an efficient graph parsing algorithm to infer the pooling structure, which then drives graph pooling. The resulting Graph Parsing Network (GPN) adaptively learns personalized pooling structure for each individual graph. GPN benefits from the discrete assignments generated by the graph parsing algorithm, allowing good memory efficiency while preserving node information intact. Experimental results on standard benchmarks demonstrate that GPN outperforms state-of-the-art graph pooling methods in graph classification tasks while being able to achieve competitive performance in node classification tasks. We also conduct a graph reconstruction task to show GPN's ability to preserve node information and measure both memory and time efficiency through relevant tests.
Graph Rationalization with Environment-based Augmentations
Rationale is defined as a subset of input features that best explains or supports the prediction by machine learning models. Rationale identification has improved the generalizability and interpretability of neural networks on vision and language data. In graph applications such as molecule and polymer property prediction, identifying representative subgraph structures named as graph rationales plays an essential role in the performance of graph neural networks. Existing graph pooling and/or distribution intervention methods suffer from lack of examples to learn to identify optimal graph rationales. In this work, we introduce a new augmentation operation called environment replacement that automatically creates virtual data examples to improve rationale identification. We propose an efficient framework that performs rationale-environment separation and representation learning on the real and augmented examples in latent spaces to avoid the high complexity of explicit graph decoding and encoding. Comparing against recent techniques, experiments on seven molecular and four polymer real datasets demonstrate the effectiveness and efficiency of the proposed augmentation-based graph rationalization framework.
Total Variation Graph Neural Networks
Recently proposed Graph Neural Networks (GNNs) for vertex clustering are trained with an unsupervised minimum cut objective, approximated by a Spectral Clustering (SC) relaxation. However, the SC relaxation is loose and, while it offers a closed-form solution, it also yields overly smooth cluster assignments that poorly separate the vertices. In this paper, we propose a GNN model that computes cluster assignments by optimizing a tighter relaxation of the minimum cut based on graph total variation (GTV). The cluster assignments can be used directly to perform vertex clustering or to implement graph pooling in a graph classification framework. Our model consists of two core components: i) a message-passing layer that minimizes the ell_1 distance in the features of adjacent vertices, which is key to achieving sharp transitions between clusters; ii) an unsupervised loss function that minimizes the GTV of the cluster assignments while ensuring balanced partitions. Experimental results show that our model outperforms other GNNs for vertex clustering and graph classification.
GENUINE: Graph Enhanced Multi-level Uncertainty Estimation for Large Language Models
Uncertainty estimation is essential for enhancing the reliability of Large Language Models (LLMs), particularly in high-stakes applications. Existing methods often overlook semantic dependencies, relying on token-level probability measures that fail to capture structural relationships within the generated text. We propose GENUINE: Graph ENhanced mUlti-level uncertaINty Estimation for Large Language Models, a structure-aware framework that leverages dependency parse trees and hierarchical graph pooling to refine uncertainty quantification. By incorporating supervised learning, GENUINE effectively models semantic and structural relationships, improving confidence assessments. Extensive experiments across NLP tasks show that GENUINE achieves up to 29% higher AUROC than semantic entropy-based approaches and reduces calibration errors by over 15%, demonstrating the effectiveness of graph-based uncertainty modeling. The code is available at https://github.com/ODYSSEYWT/GUQ.
Neural Link Prediction with Walk Pooling
Graph neural networks achieve high accuracy in link prediction by jointly leveraging graph topology and node attributes. Topology, however, is represented indirectly; state-of-the-art methods based on subgraph classification label nodes with distance to the target link, so that, although topological information is present, it is tempered by pooling. This makes it challenging to leverage features like loops and motifs associated with network formation mechanisms. We propose a link prediction algorithm based on a new pooling scheme called WalkPool. WalkPool combines the expressivity of topological heuristics with the feature-learning ability of neural networks. It summarizes a putative link by random walk probabilities of adjacent paths. Instead of extracting transition probabilities from the original graph, it computes the transition matrix of a "predictive" latent graph by applying attention to learned features; this may be interpreted as feature-sensitive topology fingerprinting. WalkPool can leverage unsupervised node features or be combined with GNNs and trained end-to-end. It outperforms state-of-the-art methods on all common link prediction benchmarks, both homophilic and heterophilic, with and without node attributes. Applying WalkPool to a set of unsupervised GNNs significantly improves prediction accuracy, suggesting that it may be used as a general-purpose graph pooling scheme.
GNN-Coder: Boosting Semantic Code Retrieval with Combined GNNs and Transformer
Code retrieval is a crucial component in modern software development, particularly in large-scale projects. However, existing approaches relying on sequence-based models often fail to fully exploit the structural dependencies inherent in code, leading to suboptimal retrieval performance, particularly with structurally complex code fragments. In this paper, we introduce GNN-Coder, a novel framework based on Graph Neural Network (GNN) to utilize Abstract Syntax Tree (AST). We make the first attempt to study how GNN-integrated Transformer can promote the development of semantic retrieval tasks by capturing the structural and semantic features of code. We further propose an innovative graph pooling method tailored for AST, utilizing the number of child nodes as a key feature to highlight the intrinsic topological relationships within the AST. This design effectively integrates both sequential and hierarchical representations, enhancing the model's ability to capture code structure and semantics. Additionally, we introduce the Mean Angular Margin (MAM), a novel metric for quantifying the uniformity of code embedding distributions, providing a standardized measure of feature separability. The proposed method achieves a lower MAM, indicating a more discriminative feature representation. This underscores GNN-Coder's superior ability to distinguish between code snippets, thereby enhancing retrieval accuracy. Experimental results show that GNN-Coder significantly boosts retrieval performance, with a 1\%-10\% improvement in MRR on the CSN dataset, and a notable 20\% gain in zero-shot performance on the CosQA dataset.
Edge Representation Learning with Hypergraphs
Graph neural networks have recently achieved remarkable success in representing graph-structured data, with rapid progress in both the node embedding and graph pooling methods. Yet, they mostly focus on capturing information from the nodes considering their connectivity, and not much work has been done in representing the edges, which are essential components of a graph. However, for tasks such as graph reconstruction and generation, as well as graph classification tasks for which the edges are important for discrimination, accurately representing edges of a given graph is crucial to the success of the graph representation learning. To this end, we propose a novel edge representation learning framework based on Dual Hypergraph Transformation (DHT), which transforms the edges of a graph into the nodes of a hypergraph. This dual hypergraph construction allows us to apply message-passing techniques for node representations to edges. After obtaining edge representations from the hypergraphs, we then cluster or drop edges to obtain holistic graph-level edge representations. We validate our edge representation learning method with hypergraphs on diverse graph datasets for graph representation and generation performance, on which our method largely outperforms existing graph representation learning methods. Moreover, our edge representation learning and pooling method also largely outperforms state-of-the-art graph pooling methods on graph classification, not only because of its accurate edge representation learning, but also due to its lossless compression of the nodes and removal of irrelevant edges for effective message-passing.
Path Pooling: Training-Free Structure Enhancement for Efficient Knowledge Graph Retrieval-Augmented Generation
Although Large Language Models achieve strong success in many tasks, they still suffer from hallucinations and knowledge deficiencies in real-world applications. Many knowledge graph-based retrieval-augmented generation (KG-RAG) methods enhance the quality and credibility of LLMs by leveraging structure and semantic information in KGs as external knowledge bases. However, these methods struggle to effectively incorporate structure information, either incurring high computational costs or underutilizing available knowledge. Inspired by smoothing operations in graph representation learning, we propose path pooling, a simple, training-free strategy that introduces structure information through a novel path-centric pooling operation. It seamlessly integrates into existing KG-RAG methods in a plug-and-play manner, enabling richer structure information utilization. Extensive experiments demonstrate that incorporating the path pooling into the state-of-the-art KG-RAG method consistently improves performance across various settings while introducing negligible additional cost.
From Relational Pooling to Subgraph GNNs: A Universal Framework for More Expressive Graph Neural Networks
Relational pooling is a framework for building more expressive and permutation-invariant graph neural networks. However, there is limited understanding of the exact enhancement in the expressivity of RP and its connection with the Weisfeiler Lehman hierarchy. Starting from RP, we propose to explicitly assign labels to nodes as additional features to improve expressive power of message passing neural networks. The method is then extended to higher dimensional WL, leading to a novel k,l-WL algorithm, a more general framework than k-WL. Theoretically, we analyze the expressivity of k,l-WL with respect to k and l and unifies it with a great number of subgraph GNNs. Complexity reduction methods are also systematically discussed to build powerful and practical k,l-GNN instances. We theoretically and experimentally prove that our method is universally compatible and capable of improving the expressivity of any base GNN model. Our k,l-GNNs achieve superior performance on many synthetic and real-world datasets, which verifies the effectiveness of our framework.
Learning to Pool in Graph Neural Networks for Extrapolation
Graph neural networks (GNNs) are one of the most popular approaches to using deep learning on graph-structured data, and they have shown state-of-the-art performances on a variety of tasks. However, according to a recent study, a careful choice of pooling functions, which are used for the aggregation and readout operations in GNNs, is crucial for enabling GNNs to extrapolate. Without proper choices of pooling functions, which varies across tasks, GNNs completely fail to generalize to out-of-distribution data, while the number of possible choices grows exponentially with the number of layers. In this paper, we present GNP, a L^p norm-like pooling function that is trainable end-to-end for any given task. Notably, GNP generalizes most of the widely-used pooling functions. We verify experimentally that simply using GNP for every aggregation and readout operation enables GNNs to extrapolate well on many node-level, graph-level, and set-related tasks; and GNP sometimes performs even better than the best-performing choices among existing pooling functions.
Graph Neural Prompting with Large Language Models
Large Language Models (LLMs) have shown remarkable generalization capability with exceptional performance in various language modeling tasks. However, they still exhibit inherent limitations in precisely capturing and returning grounded knowledge. While existing work has explored utilizing knowledge graphs to enhance language modeling via joint training and customized model architectures, applying this to LLMs is problematic owing to their large number of parameters and high computational cost. In addition, how to leverage the pre-trained LLMs and avoid training a customized model from scratch remains an open question. In this work, we propose Graph Neural Prompting (GNP), a novel plug-and-play method to assist pre-trained LLMs in learning beneficial knowledge from KGs. GNP encompasses various designs, including a standard graph neural network encoder, a cross-modality pooling module, a domain projector, and a self-supervised link prediction objective. Extensive experiments on multiple datasets demonstrate the superiority of GNP on both commonsense and biomedical reasoning tasks across different LLM sizes and settings.
Graph Neural Networks for Jamming Source Localization
Graph-based learning has emerged as a transformative approach for modeling complex relationships across diverse domains, yet its potential in wireless security remains largely unexplored. In this work, we introduce the first application of graph-based learning for jamming source localization, addressing the imminent threat of jamming attacks in wireless networks. Unlike geometric optimization techniques that struggle under environmental uncertainties and dense interference, we reformulate localization as an inductive graph regression task. Our approach integrates structured node representations that encode local and global signal aggregation, ensuring spatial coherence and adaptive signal fusion. To enhance robustness, we incorporate an attention-based graph neural network that adaptively refines neighborhood influence and introduces a confidence-guided estimation mechanism that dynamically balances learned predictions with domain-informed priors. We evaluate our approach under complex radio frequency environments with varying sampling densities and signal propagation conditions, conducting comprehensive ablation studies on graph construction, feature selection, and pooling strategies. Results demonstrate that our novel graph-based learning framework significantly outperforms established localization baselines, particularly in challenging scenarios with sparse and obfuscated signal information. Code is available at [https://github.com/daniaherzalla/gnn-jamming-source-localization](https://github.com/daniaherzalla/gnn-jamming-source-localization).
Event Detection in Football using Graph Convolutional Networks
The massive growth of data collection in sports has opened numerous avenues for professional teams and media houses to gain insights from this data. The data collected includes per frame player and ball trajectories, and event annotations such as passes, fouls, cards, goals, etc. Graph Convolutional Networks (GCNs) have recently been employed to process this highly unstructured tracking data which can be otherwise difficult to model because of lack of clarity on how to order players in a sequence and how to handle missing objects of interest. In this thesis, we focus on the goal of automatic event detection from football videos. We show how to model the players and the ball in each frame of the video sequence as a graph, and present the results for graph convolutional layers and pooling methods that can be used to model the temporal context present around each action.
Towards Sparse Hierarchical Graph Classifiers
Recent advances in representation learning on graphs, mainly leveraging graph convolutional networks, have brought a substantial improvement on many graph-based benchmark tasks. While novel approaches to learning node embeddings are highly suitable for node classification and link prediction, their application to graph classification (predicting a single label for the entire graph) remains mostly rudimentary, typically using a single global pooling step to aggregate node features or a hand-designed, fixed heuristic for hierarchical coarsening of the graph structure. An important step towards ameliorating this is differentiable graph coarsening---the ability to reduce the size of the graph in an adaptive, data-dependent manner within a graph neural network pipeline, analogous to image downsampling within CNNs. However, the previous prominent approach to pooling has quadratic memory requirements during training and is therefore not scalable to large graphs. Here we combine several recent advances in graph neural network design to demonstrate that competitive hierarchical graph classification results are possible without sacrificing sparsity. Our results are verified on several established graph classification benchmarks, and highlight an important direction for future research in graph-based neural networks.
VLG-Net: Video-Language Graph Matching Network for Video Grounding
Grounding language queries in videos aims at identifying the time interval (or moment) semantically relevant to a language query. The solution to this challenging task demands understanding videos' and queries' semantic content and the fine-grained reasoning about their multi-modal interactions. Our key idea is to recast this challenge into an algorithmic graph matching problem. Fueled by recent advances in Graph Neural Networks, we propose to leverage Graph Convolutional Networks to model video and textual information as well as their semantic alignment. To enable the mutual exchange of information across the modalities, we design a novel Video-Language Graph Matching Network (VLG-Net) to match video and query graphs. Core ingredients include representation graphs built atop video snippets and query tokens separately and used to model intra-modality relationships. A Graph Matching layer is adopted for cross-modal context modeling and multi-modal fusion. Finally, moment candidates are created using masked moment attention pooling by fusing the moment's enriched snippet features. We demonstrate superior performance over state-of-the-art grounding methods on three widely used datasets for temporal localization of moments in videos with language queries: ActivityNet-Captions, TACoS, and DiDeMo.
Rayleigh Quotient Graph Neural Networks for Graph-level Anomaly Detection
Graph-level anomaly detection has gained significant attention as it finds applications in various domains, such as cancer diagnosis and enzyme prediction. However, existing methods fail to capture the spectral properties of graph anomalies, resulting in unexplainable framework design and unsatisfying performance. In this paper, we re-investigate the spectral differences between anomalous and normal graphs. Our main observation shows a significant disparity in the accumulated spectral energy between these two classes. Moreover, we prove that the accumulated spectral energy of the graph signal can be represented by its Rayleigh Quotient, indicating that the Rayleigh Quotient is a driving factor behind the anomalous properties of graphs. Motivated by this, we propose Rayleigh Quotient Graph Neural Network (RQGNN), the first spectral GNN that explores the inherent spectral features of anomalous graphs for graph-level anomaly detection. Specifically, we introduce a novel framework with two components: the Rayleigh Quotient learning component (RQL) and Chebyshev Wavelet GNN with RQ-pooling (CWGNN-RQ). RQL explicitly captures the Rayleigh Quotient of graphs and CWGNN-RQ implicitly explores the spectral space of graphs. Extensive experiments on 10 real-world datasets show that RQGNN outperforms the best rival by 6.74% in Macro-F1 score and 1.44% in AUC, demonstrating the effectiveness of our framework. Our code is available at https://github.com/xydong127/RQGNN.
ProteinRPN: Towards Accurate Protein Function Prediction with Graph-Based Region Proposals
Protein function prediction is a crucial task in bioinformatics, with significant implications for understanding biological processes and disease mechanisms. While the relationship between sequence and function has been extensively explored, translating protein structure to function continues to present substantial challenges. Various models, particularly, CNN and graph-based deep learning approaches that integrate structural and functional data, have been proposed to address these challenges. However, these methods often fall short in elucidating the functional significance of key residues essential for protein functionality, as they predominantly adopt a retrospective perspective, leading to suboptimal performance. Inspired by region proposal networks in computer vision, we introduce the Protein Region Proposal Network (ProteinRPN) for accurate protein function prediction. Specifically, the region proposal module component of ProteinRPN identifies potential functional regions (anchors) which are refined through the hierarchy-aware node drop pooling layer favoring nodes with defined secondary structures and spatial proximity. The representations of the predicted functional nodes are enriched using attention mechanisms and subsequently fed into a Graph Multiset Transformer, which is trained with supervised contrastive (SupCon) and InfoNCE losses on perturbed protein structures. Our model demonstrates significant improvements in predicting Gene Ontology (GO) terms, effectively localizing functional residues within protein structures. The proposed framework provides a robust, scalable solution for protein function annotation, advancing the understanding of protein structure-function relationships in computational biology.
InvGC: Robust Cross-Modal Retrieval by Inverse Graph Convolution
Over recent decades, significant advancements in cross-modal retrieval are mainly driven by breakthroughs in visual and linguistic modeling. However, a recent study shows that multi-modal data representations tend to cluster within a limited convex cone (as representation degeneration problem), which hinders retrieval performance due to the inseparability of these representations. In our study, we first empirically validate the presence of the representation degeneration problem across multiple cross-modal benchmarks and methods. Next, to address it, we introduce a novel method, called InvGC, a post-processing technique inspired by graph convolution and average pooling. Specifically, InvGC defines the graph topology within the datasets and then applies graph convolution in a subtractive manner. This method effectively separates representations by increasing the distances between data points. To improve the efficiency and effectiveness of InvGC, we propose an advanced graph topology, LocalAdj, which only aims to increase the distances between each data point and its nearest neighbors. To understand why InvGC works, we present a detailed theoretical analysis, proving that the lower bound of recall will be improved after deploying InvGC. Extensive empirical results show that InvGC and InvGC w/LocalAdj significantly mitigate the representation degeneration problem, thereby enhancing retrieval performance. Our code is available at https://github.com/yimuwangcs/Better_Cross_Modal_Retrieval
FastJAM: a Fast Joint Alignment Model for Images
Joint Alignment (JA) of images aims to align a collection of images into a unified coordinate frame, such that semantically-similar features appear at corresponding spatial locations. Most existing approaches often require long training times, large-capacity models, and extensive hyperparameter tuning. We introduce FastJAM, a rapid, graph-based method that drastically reduces the computational complexity of joint alignment tasks. FastJAM leverages pairwise matches computed by an off-the-shelf image matcher, together with a rapid nonparametric clustering, to construct a graph representing intra- and inter-image keypoint relations. A graph neural network propagates and aggregates these correspondences, efficiently predicting per-image homography parameters via image-level pooling. Utilizing an inverse-compositional loss, that eliminates the need for a regularization term over the predicted transformations (and thus also obviates the hyperparameter tuning associated with such terms), FastJAM performs image JA quickly and effectively. Experimental results on several benchmarks demonstrate that FastJAM achieves results better than existing modern JA methods in terms of alignment quality, while reducing computation time from hours or minutes to mere seconds. Our code is available at our project webpage, https://bgu-cs-vil.github.io/FastJAM/
ParaFormer: Parallel Attention Transformer for Efficient Feature Matching
Heavy computation is a bottleneck limiting deep-learningbased feature matching algorithms to be applied in many realtime applications. However, existing lightweight networks optimized for Euclidean data cannot address classical feature matching tasks, since sparse keypoint based descriptors are expected to be matched. This paper tackles this problem and proposes two concepts: 1) a novel parallel attention model entitled ParaFormer and 2) a graph based U-Net architecture with attentional pooling. First, ParaFormer fuses features and keypoint positions through the concept of amplitude and phase, and integrates self- and cross-attention in a parallel manner which achieves a win-win performance in terms of accuracy and efficiency. Second, with U-Net architecture and proposed attentional pooling, the ParaFormer-U variant significantly reduces computational complexity, and minimize performance loss caused by downsampling. Sufficient experiments on various applications, including homography estimation, pose estimation, and image matching, demonstrate that ParaFormer achieves state-of-the-art performance while maintaining high efficiency. The efficient ParaFormer-U variant achieves comparable performance with less than 50% FLOPs of the existing attention-based models.
