Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLoRA-Guard: Parameter-Efficient Guardrail Adaptation for Content Moderation of Large Language Models
Guardrails have emerged as an alternative to safety alignment for content moderation of large language models (LLMs). Existing model-based guardrails have not been designed for resource-constrained computational portable devices, such as mobile phones, more and more of which are running LLM-based applications locally. We introduce LoRA-Guard, a parameter-efficient guardrail adaptation method that relies on knowledge sharing between LLMs and guardrail models. LoRA-Guard extracts language features from the LLMs and adapts them for the content moderation task using low-rank adapters, while a dual-path design prevents any performance degradation on the generative task. We show that LoRA-Guard outperforms existing approaches with 100-1000x lower parameter overhead while maintaining accuracy, enabling on-device content moderation.
SoK: Evaluating Jailbreak Guardrails for Large Language Models
Large Language Models (LLMs) have achieved remarkable progress, but their deployment has exposed critical vulnerabilities, particularly to jailbreak attacks that circumvent safety mechanisms. Guardrails--external defense mechanisms that monitor and control LLM interaction--have emerged as a promising solution. However, the current landscape of LLM guardrails is fragmented, lacking a unified taxonomy and comprehensive evaluation framework. In this Systematization of Knowledge (SoK) paper, we present the first holistic analysis of jailbreak guardrails for LLMs. We propose a novel, multi-dimensional taxonomy that categorizes guardrails along six key dimensions, and introduce a Security-Efficiency-Utility evaluation framework to assess their practical effectiveness. Through extensive analysis and experiments, we identify the strengths and limitations of existing guardrail approaches, explore their universality across attack types, and provide insights into optimizing defense combinations. Our work offers a structured foundation for future research and development, aiming to guide the principled advancement and deployment of robust LLM guardrails. The code is available at https://github.com/xunguangwang/SoK4JailbreakGuardrails.
Building Guardrails for Large Language Models
As Large Language Models (LLMs) become more integrated into our daily lives, it is crucial to identify and mitigate their risks, especially when the risks can have profound impacts on human users and societies. Guardrails, which filter the inputs or outputs of LLMs, have emerged as a core safeguarding technology. This position paper takes a deep look at current open-source solutions (Llama Guard, Nvidia NeMo, Guardrails AI), and discusses the challenges and the road towards building more complete solutions. Drawing on robust evidence from previous research, we advocate for a systematic approach to construct guardrails for LLMs, based on comprehensive consideration of diverse contexts across various LLMs applications. We propose employing socio-technical methods through collaboration with a multi-disciplinary team to pinpoint precise technical requirements, exploring advanced neural-symbolic implementations to embrace the complexity of the requirements, and developing verification and testing to ensure the utmost quality of the final product.
NeMo Guardrails: A Toolkit for Controllable and Safe LLM Applications with Programmable Rails
NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems. Guardrails (or rails for short) are a specific way of controlling the output of an LLM, such as not talking about topics considered harmful, following a predefined dialogue path, using a particular language style, and more. There are several mechanisms that allow LLM providers and developers to add guardrails that are embedded into a specific model at training, e.g. using model alignment. Differently, using a runtime inspired from dialogue management, NeMo Guardrails allows developers to add programmable rails to LLM applications - these are user-defined, independent of the underlying LLM, and interpretable. Our initial results show that the proposed approach can be used with several LLM providers to develop controllable and safe LLM applications using programmable rails.
A Flexible Large Language Models Guardrail Development Methodology Applied to Off-Topic Prompt Detection
Large Language Models are prone to off-topic misuse, where users may prompt these models to perform tasks beyond their intended scope. Current guardrails, which often rely on curated examples or custom classifiers, suffer from high false-positive rates, limited adaptability, and the impracticality of requiring real-world data that is not available in pre-production. In this paper, we introduce a flexible, data-free guardrail development methodology that addresses these challenges. By thoroughly defining the problem space qualitatively and passing this to an LLM to generate diverse prompts, we construct a synthetic dataset to benchmark and train off-topic guardrails that outperform heuristic approaches. Additionally, by framing the task as classifying whether the user prompt is relevant with respect to the system prompt, our guardrails effectively generalize to other misuse categories, including jailbreak and harmful prompts. Lastly, we further contribute to the field by open-sourcing both the synthetic dataset and the off-topic guardrail models, providing valuable resources for developing guardrails in pre-production environments and supporting future research and development in LLM safety.
BiasGuard: Guardrailing Fairness in Machine Learning Production Systems
As machine learning (ML) systems increasingly impact critical sectors such as hiring, financial risk assessments, and criminal justice, the imperative to ensure fairness has intensified due to potential negative implications. While much ML fairness research has focused on enhancing training data and processes, addressing the outputs of already deployed systems has received less attention. This paper introduces 'BiasGuard', a novel approach designed to act as a fairness guardrail in production ML systems. BiasGuard leverages Test-Time Augmentation (TTA) powered by Conditional Generative Adversarial Network (CTGAN), a cutting-edge generative AI model, to synthesize data samples conditioned on inverted protected attribute values, thereby promoting equitable outcomes across diverse groups. This method aims to provide equal opportunities for both privileged and unprivileged groups while significantly enhancing the fairness metrics of deployed systems without the need for retraining. Our comprehensive experimental analysis across diverse datasets reveals that BiasGuard enhances fairness by 31% while only reducing accuracy by 0.09% compared to non-mitigated benchmarks. Additionally, BiasGuard outperforms existing post-processing methods in improving fairness, positioning it as an effective tool to safeguard against biases when retraining the model is impractical.
Challenges in Guardrailing Large Language Models for Science
The rapid development in large language models (LLMs) has transformed the landscape of natural language processing and understanding (NLP/NLU), offering significant benefits across various domains. However, when applied to scientific research, these powerful models exhibit critical failure modes related to scientific integrity and trustworthiness. Existing general-purpose LLM guardrails are insufficient to address these unique challenges in the scientific domain. We provide comprehensive guidelines for deploying LLM guardrails in the scientific domain. We identify specific challenges -- including time sensitivity, knowledge contextualization, conflict resolution, and intellectual property concerns -- and propose a guideline framework for the guardrails that can align with scientific needs. These guardrail dimensions include trustworthiness, ethics & bias, safety, and legal aspects. We also outline in detail the implementation strategies that employ white-box, black-box, and gray-box methodologies that can be enforced within scientific contexts.
Current state of LLM Risks and AI Guardrails
Large language models (LLMs) have become increasingly sophisticated, leading to widespread deployment in sensitive applications where safety and reliability are paramount. However, LLMs have inherent risks accompanying them, including bias, potential for unsafe actions, dataset poisoning, lack of explainability, hallucinations, and non-reproducibility. These risks necessitate the development of "guardrails" to align LLMs with desired behaviors and mitigate potential harm. This work explores the risks associated with deploying LLMs and evaluates current approaches to implementing guardrails and model alignment techniques. We examine intrinsic and extrinsic bias evaluation methods and discuss the importance of fairness metrics for responsible AI development. The safety and reliability of agentic LLMs (those capable of real-world actions) are explored, emphasizing the need for testability, fail-safes, and situational awareness. Technical strategies for securing LLMs are presented, including a layered protection model operating at external, secondary, and internal levels. System prompts, Retrieval-Augmented Generation (RAG) architectures, and techniques to minimize bias and protect privacy are highlighted. Effective guardrail design requires a deep understanding of the LLM's intended use case, relevant regulations, and ethical considerations. Striking a balance between competing requirements, such as accuracy and privacy, remains an ongoing challenge. This work underscores the importance of continuous research and development to ensure the safe and responsible use of LLMs in real-world applications.
Bag of Tricks for Subverting Reasoning-based Safety Guardrails
Recent reasoning-based safety guardrails for Large Reasoning Models (LRMs), such as deliberative alignment, have shown strong defense against jailbreak attacks. By leveraging LRMs' reasoning ability, these guardrails help the models to assess the safety of user inputs before generating final responses. The powerful reasoning ability can analyze the intention of the input query and will refuse to assist once it detects the harmful intent hidden by the jailbreak methods. Such guardrails have shown a significant boost in defense, such as the near-perfect refusal rates on the open-source gpt-oss series. Unfortunately, we find that these powerful reasoning-based guardrails can be extremely vulnerable to subtle manipulation of the input prompts, and once hijacked, can lead to even more harmful results. Specifically, we first uncover a surprisingly fragile aspect of these guardrails: simply adding a few template tokens to the input prompt can successfully bypass the seemingly powerful guardrails and lead to explicit and harmful responses. To explore further, we introduce a bag of jailbreak methods that subvert the reasoning-based guardrails. Our attacks span white-, gray-, and black-box settings and range from effortless template manipulations to fully automated optimization. Along with the potential for scalable implementation, these methods also achieve alarmingly high attack success rates (e.g., exceeding 90% across 5 different benchmarks on gpt-oss series on both local host models and online API services). Evaluations across various leading open-source LRMs confirm that these vulnerabilities are systemic, underscoring the urgent need for stronger alignment techniques for open-sourced LRMs to prevent malicious misuse. Code is open-sourced at https://chenxshuo.github.io/bag-of-tricks.
ThinkGuard: Deliberative Slow Thinking Leads to Cautious Guardrails
Ensuring the safety of large language models (LLMs) is critical as they are deployed in real-world applications. Existing guardrails rely on rule-based filtering or single-pass classification, limiting their ability to handle nuanced safety violations. To address this, we propose ThinkGuard, a critique-augmented guardrail model that distills knowledge from high-capacity LLMs by generating structured critiques alongside safety labels. Fine-tuned on critique-augmented data, the captured deliberative thinking ability drastically enhances the guardrail's cautiousness and interpretability. Evaluated on multiple safety benchmarks, ThinkGuard achieves the highest average F1 and AUPRC, outperforming all baselines. Compared to LLaMA Guard 3, ThinkGuard improves accuracy by 16.1% and macro F1 by 27.0%. Moreover, it surpasses label-only fine-tuned models, confirming that structured critiques enhance both classification precision and nuanced safety reasoning while maintaining computational efficiency.
Protect: Towards Robust Guardrailing Stack for Trustworthy Enterprise LLM Systems
The increasing deployment of Large Language Models (LLMs) across enterprise and mission-critical domains has underscored the urgent need for robust guardrailing systems that ensure safety, reliability, and compliance. Existing solutions often struggle with real-time oversight, multi-modal data handling, and explainability -- limitations that hinder their adoption in regulated environments. Existing guardrails largely operate in isolation, focused on text alone making them inadequate for multi-modal, production-scale environments. We introduce Protect, natively multi-modal guardrailing model designed to operate seamlessly across text, image, and audio inputs, designed for enterprise-grade deployment. Protect integrates fine-tuned, category-specific adapters trained via Low-Rank Adaptation (LoRA) on an extensive, multi-modal dataset covering four safety dimensions: toxicity, sexism, data privacy, and prompt injection. Our teacher-assisted annotation pipeline leverages reasoning and explanation traces to generate high-fidelity, context-aware labels across modalities. Experimental results demonstrate state-of-the-art performance across all safety dimensions, surpassing existing open and proprietary models such as WildGuard, LlamaGuard-4, and GPT-4.1. Protect establishes a strong foundation for trustworthy, auditable, and production-ready safety systems capable of operating across text, image, and audio modalities.
Building a Foundational Guardrail for General Agentic Systems via Synthetic Data
While LLM agents can plan multi-step tasks, intervening at the planning stage-before any action is executed-is often the safest way to prevent harm, since certain risks can lead to severe consequences once carried out. However, existing guardrails mostly operate post-execution, which is difficult to scale and leaves little room for controllable supervision at the plan level. To address this challenge, we highlight three critical gaps in current research: data gap, model gap, and evaluation gap. To close the data gap, we introduce AuraGen, a controllable engine that (i) synthesizes benign trajectories, (ii) injects category-labeled risks with calibrated difficulty, and (iii) filters outputs via an automated reward model, producing large and reliable corpora for pre-execution safety. To close the guardian model gap, we propose a foundational guardrail Safiron, combining a cross-planner adapter with a compact guardian model. The adapter unifies different input formats, while Safiron flags risky cases, assigns risk types, and generates rationales; trained in two stages with a broadly explored data recipe, Safiron achieves robust transfer across settings. To close the evaluation gap, we release Pre-Exec Bench, a realistic benchmark covering diverse tools and branching trajectories, which measures detection, fine-grained categorization, explanation, and cross-planner generalization in human-verified scenarios. Extensive experiments demonstrate consistent gains of the proposed guardrail over strong baselines on Pre-Exec Bench, and ablations further distill actionable practices, providing a practical template for safer agentic systems.
DynaGuard: A Dynamic Guardrail Model With User-Defined Policies
Guardian models are used to supervise and moderate the outputs of user-facing chatbots, enforcing guardrails and detecting bad behaviors. Standard guardian models like LlamaGuard detect predefined, static categories of harms. We propose dynamic guardian models that evaluate text based on user-defined policies, making them useful for different application domains that are not addressed by standard guardian models. Our dynamic guardian models can be used for fast detection of policy violations or with chain-of-thought reasoning that articulates and justifies the model outputs. Our dynamic guardian models match static models in detection accuracy for static harm categories while identifying violations of free-form policies with accuracy comparable to frontier reasoning models in a fraction of the time.
When Models Outthink Their Safety: Mitigating Self-Jailbreak in Large Reasoning Models with Chain-of-Guardrails
Large Reasoning Models (LRMs) demonstrate remarkable capabilities on complex reasoning tasks but remain vulnerable to severe safety risks, including harmful content generation and jailbreak attacks. Existing mitigation strategies rely on injecting heuristic safety signals during training, which often suppress reasoning ability and fail to resolve the safety-reasoning trade-off. To systematically investigate this issue, we analyze the reasoning trajectories of diverse LRMs and uncover a phenomenon we term Self-Jailbreak, where models override their own risk assessments and justify responding to unsafe prompts. This finding reveals that LRMs inherently possess the ability to reject unsafe queries, but this ability is compromised, resulting in harmful outputs. Building on these insights, we propose the Chain-of-Guardrail (CoG), a training framework that recomposes or backtracks unsafe reasoning steps, steering the model back onto safe trajectories while preserving valid reasoning chains. Extensive experiments across multiple reasoning and safety benchmarks demonstrate that CoG substantially improves the safety of current LRMs while preserving comparable reasoning ability, significantly outperforming prior methods that suffer from severe safety-reasoning trade-offs.
Bypassing Prompt Injection and Jailbreak Detection in LLM Guardrails
Large Language Models (LLMs) guardrail systems are designed to protect against prompt injection and jailbreak attacks. However, they remain vulnerable to evasion techniques. We demonstrate two approaches for bypassing LLM prompt injection and jailbreak detection systems via traditional character injection methods and algorithmic Adversarial Machine Learning (AML) evasion techniques. Through testing against six prominent protection systems, including Microsoft's Azure Prompt Shield and Meta's Prompt Guard, we show that both methods can be used to evade detection while maintaining adversarial utility achieving in some instances up to 100% evasion success. Furthermore, we demonstrate that adversaries can enhance Attack Success Rates (ASR) against black-box targets by leveraging word importance ranking computed by offline white-box models. Our findings reveal vulnerabilities within current LLM protection mechanisms and highlight the need for more robust guardrail systems.
SafeWatch: An Efficient Safety-Policy Following Video Guardrail Model with Transparent Explanations
With the rise of generative AI and rapid growth of high-quality video generation, video guardrails have become more crucial than ever to ensure safety and security across platforms. Current video guardrails, however, are either overly simplistic, relying on pure classification models trained on simple policies with limited unsafe categories, which lack detailed explanations, or prompting multimodal large language models (MLLMs) with long safety guidelines, which are inefficient and impractical for guardrailing real-world content. To bridge this gap, we propose SafeWatch, an efficient MLLM-based video guardrail model designed to follow customized safety policies and provide multi-label video guardrail outputs with content-specific explanations in a zero-shot manner. In particular, unlike traditional MLLM-based guardrails that encode all safety policies autoregressively, causing inefficiency and bias, SafeWatch uniquely encodes each policy chunk in parallel and eliminates their position bias such that all policies are attended simultaneously with equal importance. In addition, to improve efficiency and accuracy, SafeWatch incorporates a policy-aware visual token pruning algorithm that adaptively selects the most relevant video tokens for each policy, discarding noisy or irrelevant information. This allows for more focused, policy-compliant guardrail with significantly reduced computational overhead. Considering the limitations of existing video guardrail benchmarks, we propose SafeWatch-Bench, a large-scale video guardrail benchmark comprising over 2M videos spanning six safety categories which covers over 30 tasks to ensure a comprehensive coverage of all potential safety scenarios. SafeWatch outperforms SOTA by 28.2% on SafeWatch-Bench, 13.6% on benchmarks, cuts costs by 10%, and delivers top-tier explanations validated by LLM and human reviews.
RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content
Recent advancements in Large Language Models (LLMs) have showcased remarkable capabilities across various tasks in different domains. However, the emergence of biases and the potential for generating harmful content in LLMs, particularly under malicious inputs, pose significant challenges. Current mitigation strategies, while effective, are not resilient under adversarial attacks. This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently and effectively moderate harmful and unsafe inputs and outputs for LLMs. By employing a multi-faceted approach that includes energy-based training data augmentation through Langevin dynamics, optimizing a safe suffix for inputs via minimax optimization, and integrating a fusion-based model combining robust KNN with LLMs based on our data augmentation, RigorLLM offers a robust solution to harmful content moderation. Our experimental evaluations demonstrate that RigorLLM not only outperforms existing baselines like OpenAI API and Perspective API in detecting harmful content but also exhibits unparalleled resilience to jailbreaking attacks. The innovative use of constrained optimization and a fusion-based guardrail approach represents a significant step forward in developing more secure and reliable LLMs, setting a new standard for content moderation frameworks in the face of evolving digital threats.
Customize Multi-modal RAI Guardrails with Precedent-based predictions
A multi-modal guardrail must effectively filter image content based on user-defined policies, identifying material that may be hateful, reinforce harmful stereotypes, contain explicit material, or spread misinformation. Deploying such guardrails in real-world applications, however, poses significant challenges. Users often require varied and highly customizable policies and typically cannot provide abundant examples for each custom policy. Consequently, an ideal guardrail should be scalable to the multiple policies and adaptable to evolving user standards with minimal retraining. Existing fine-tuning methods typically condition predictions on pre-defined policies, restricting their generalizability to new policies or necessitating extensive retraining to adapt. Conversely, training-free methods struggle with limited context lengths, making it difficult to incorporate all the policies comprehensively. To overcome these limitations, we propose to condition model's judgment on "precedents", which are the reasoning processes of prior data points similar to the given input. By leveraging precedents instead of fixed policies, our approach greatly enhances the flexibility and adaptability of the guardrail. In this paper, we introduce a critique-revise mechanism for collecting high-quality precedents and two strategies that utilize precedents for robust prediction. Experimental results demonstrate that our approach outperforms previous methods across both few-shot and full-dataset scenarios and exhibits superior generalization to novel policies.
WebGuard: Building a Generalizable Guardrail for Web Agents
The rapid development of autonomous web agents powered by Large Language Models (LLMs), while greatly elevating efficiency, exposes the frontier risk of taking unintended or harmful actions. This situation underscores an urgent need for effective safety measures, akin to access controls for human users. To address this critical challenge, we introduce WebGuard, the first comprehensive dataset designed to support the assessment of web agent action risks and facilitate the development of guardrails for real-world online environments. In doing so, WebGuard specifically focuses on predicting the outcome of state-changing actions and contains 4,939 human-annotated actions from 193 websites across 22 diverse domains, including often-overlooked long-tail websites. These actions are categorized using a novel three-tier risk schema: SAFE, LOW, and HIGH. The dataset includes designated training and test splits to support evaluation under diverse generalization settings. Our initial evaluations reveal a concerning deficiency: even frontier LLMs achieve less than 60% accuracy in predicting action outcomes and less than 60% recall in lagging HIGH-risk actions, highlighting the risks of deploying current-generation agents without dedicated safeguards. We therefore investigate fine-tuning specialized guardrail models using WebGuard. We conduct comprehensive evaluations across multiple generalization settings and find that a fine-tuned Qwen2.5VL-7B model yields a substantial improvement in performance, boosting accuracy from 37% to 80% and HIGH-risk action recall from 20% to 76%. Despite these improvements, the performance still falls short of the reliability required for high-stakes deployment, where guardrails must approach near-perfect accuracy and recall.
CONSCENDI: A Contrastive and Scenario-Guided Distillation Approach to Guardrail Models for Virtual Assistants
A wave of new task-based virtual assistants has been fueled by increasingly powerful large language models, such as GPT-4. These conversational agents can be customized to serve customer-specific use cases, but ensuring that agent-generated text conforms to designer-specified rules included in prompt instructions alone is challenging. Therefore, chatbot designers often use another model, called a guardrail model, to verify that the agent output aligns with their rules and constraints. We explore using a distillation approach to guardrail models to monitor the output of the first model using training data from GPT-4. We find two crucial steps to our CONSCENDI process: scenario-augmented generation and contrastive training examples. When generating conversational data, we generate a set of rule-breaking scenarios, which enumerate a diverse set of high-level ways a rule can be violated. This scenario-guided approach produces a diverse training set of rule-violating conversations, and it provides chatbot designers greater control over the classification process. We also prompt GPT-4 to also generate contrastive examples by altering conversations with violations into acceptable conversations. This set of borderline, contrastive examples enables the distilled model to learn finer-grained distinctions between what is acceptable and what is not. We find that CONSCENDI results in guardrail models that improve over baselines.
SAEs $\textit{Can}$ Improve Unlearning: Dynamic Sparse Autoencoder Guardrails for Precision Unlearning in LLMs
Machine unlearning is a promising approach to improve LLM safety by removing unwanted knowledge from the model. However, prevailing gradient-based unlearning methods suffer from issues such as high computational costs, hyperparameter instability, poor sequential unlearning capability, vulnerability to relearning attacks, low data efficiency, and lack of interpretability. While Sparse Autoencoders are well-suited to improve these aspects by enabling targeted activation-based unlearning, prior approaches underperform gradient-based methods. This work demonstrates that, contrary to these earlier findings, SAEs can significantly improve unlearning when employed dynamically. We introduce Dynamic DAE Guardrails (DSG), a novel method for precision unlearning that leverages principled feature selection and a dynamic classifier. Our experiments show DSG substantially outperforms leading unlearning methods, achieving superior forget-utility trade-offs. DSG addresses key drawbacks of gradient-based approaches for unlearning -- offering enhanced computational efficiency and stability, robust performance in sequential unlearning, stronger resistance to relearning attacks, better data efficiency including zero-shot settings, and more interpretable unlearning.
A Causal Explainable Guardrails for Large Language Models
Large Language Models (LLMs) have shown impressive performance in natural language tasks, but their outputs can exhibit undesirable attributes or biases. Existing methods for steering LLMs toward desired attributes often assume unbiased representations and rely solely on steering prompts. However, the representations learned from pre-training can introduce semantic biases that influence the steering process, leading to suboptimal results. We propose LLMGuardrail, a novel framework that incorporates causal analysis and adversarial learning to obtain unbiased steering representations in LLMs. LLMGuardrail systematically identifies and blocks the confounding effects of biases, enabling the extraction of unbiased steering representations. Additionally, it includes an explainable component that provides insights into the alignment between the generated output and the desired direction. Experiments demonstrate LLMGuardrail's effectiveness in steering LLMs toward desired attributes while mitigating biases. Our work contributes to the development of safe and reliable LLMs that align with desired attributes.
Refining Input Guardrails: Enhancing LLM-as-a-Judge Efficiency Through Chain-of-Thought Fine-Tuning and Alignment
Large Language Models (LLMs) have demonstrated powerful capabilities that render them valuable in different applications, including conversational AI products. It is paramount to ensure the security and reliability of these products by mitigating their vulnerabilities towards malicious user interactions, which can lead to the exposure of great risks and reputational repercussions. In this work, we present a comprehensive study on the efficacy of fine-tuning and aligning Chain-of-Thought (CoT) responses of different LLMs that serve as input moderation guardrails. We systematically explore various tuning methods by leveraging a small set of training data to adapt these models as proxy defense mechanisms to detect malicious inputs and provide a reasoning for their verdicts, thereby preventing the exploitation of conversational agents. We rigorously evaluate the efficacy and robustness of different tuning strategies to generalize across diverse adversarial and malicious query types. Our experimental results outline the potential of alignment processes tailored to a varied range of harmful input queries, even with constrained data resources. These techniques significantly enhance the safety of conversational AI systems and provide a feasible framework for deploying more secure and trustworthy AI-driven interactions.
Guard Vector: Beyond English LLM Guardrails with Task-Vector Composition and Streaming-Aware Prefix SFT
We introduce Guard Vector, a safety task vector computed as the parameter difference between a guardrail model (Guard Model) and a same-architecture pretrained language model. Composing this vector with a target language model yields a Target Guard Model (TGM). We then adapt TGM with a streaming-aware approach that combines prefix-based training and evaluation with a classifier that produces a single-token output. With this composition alone, TGM improves classification quality over established Guard Models across standard safety suites and enables language extensibility to Chinese, Japanese, and Korean, requiring neither additional training nor target language labels. It also demonstrates model portability across two widely used public guardrail backbones, Llama and Gemma. With prefix SFT (supervised fine-tuning), TGM preserves classification quality under streaming by aligning the behavior between prefix inputs and full-text inputs. The single-token output design increases throughput and reduces latency. Together, these components reduce data and compute requirements while promoting streaming-aware evaluation practices, thereby contributing to a more responsible AI ecosystem.
Towards Policy-Compliant Agents: Learning Efficient Guardrails For Policy Violation Detection
Autonomous web agents need to operate under externally imposed or human-specified policies while generating long-horizon trajectories. However, little work has examined whether these trajectories comply with such policies, or whether policy violations persist across different contexts such as domains (e.g., shopping or coding websites) and subdomains (e.g., product search and order management in shopping). To address this gap, we introduce PolicyGuardBench, a benchmark of about 60k examples for detecting policy violations in agent trajectories. From diverse agent runs, we generate a broad set of policies and create both within subdomain and cross subdomain pairings with violation labels. In addition to full-trajectory evaluation, PolicyGuardBench also includes a prefix-based violation detection task where models must anticipate policy violations from truncated trajectory prefixes rather than complete sequences. Using this dataset, we train PolicyGuard-4B, a lightweight guardrail model that delivers strong detection accuracy across all tasks while keeping inference efficient. Notably, PolicyGuard-4B generalizes across domains and preserves high accuracy on unseen settings. Together, PolicyGuardBench and PolicyGuard-4B provide the first comprehensive framework for studying policy compliance in web agent trajectories, and show that accurate and generalizable guardrails are feasible at small scales.
PROMPTEVALS: A Dataset of Assertions and Guardrails for Custom Production Large Language Model Pipelines
Large language models (LLMs) are increasingly deployed in specialized production data processing pipelines across diverse domains -- such as finance, marketing, and e-commerce. However, when running them in production across many inputs, they often fail to follow instructions or meet developer expectations. To improve reliability in these applications, creating assertions or guardrails for LLM outputs to run alongside the pipelines is essential. Yet, determining the right set of assertions that capture developer requirements for a task is challenging. In this paper, we introduce PROMPTEVALS, a dataset of 2087 LLM pipeline prompts with 12623 corresponding assertion criteria, sourced from developers using our open-source LLM pipeline tools. This dataset is 5x larger than previous collections. Using a hold-out test split of PROMPTEVALS as a benchmark, we evaluated closed- and open-source models in generating relevant assertions. Notably, our fine-tuned Mistral and Llama 3 models outperform GPT-4o by 20.93% on average, offering both reduced latency and improved performance. We believe our dataset can spur further research in LLM reliability, alignment, and prompt engineering.
OpenGuardrails: An Open-Source Context-Aware AI Guardrails Platform
As large language models (LLMs) become increasingly integrated into real-world applications, safeguarding them against unsafe, malicious, or privacy-violating content is critically important. We present OpenGuardrails, the first open-source project to provide both a context-aware safety and manipulation detection model and a deployable platform for comprehensive AI guardrails. OpenGuardrails protects against content-safety risks, model-manipulation attacks (e.g., prompt injection, jailbreaking, code-interpreter abuse, and the generation/execution of malicious code), and data leakage. Content-safety and model-manipulation detection are implemented by a unified large model, while data-leakage identification and redaction are performed by a separate lightweight NER pipeline (e.g., Presidio-style models or regex-based detectors). The system can be deployed as a security gateway or an API-based service, with enterprise-grade, fully private deployment options. OpenGuardrails achieves state-of-the-art (SOTA) performance on safety benchmarks, excelling in both prompt and response classification across English, Chinese, and multilingual tasks. All models are released under the Apache 2.0 license for public use.
Adversarial Prompt Evaluation: Systematic Benchmarking of Guardrails Against Prompt Input Attacks on LLMs
As large language models (LLMs) become integrated into everyday applications, ensuring their robustness and security is increasingly critical. In particular, LLMs can be manipulated into unsafe behaviour by prompts known as jailbreaks. The variety of jailbreak styles is growing, necessitating the use of external defences known as guardrails. While many jailbreak defences have been proposed, not all defences are able to handle new out-of-distribution attacks due to the narrow segment of jailbreaks used to align them. Moreover, the lack of systematisation around defences has created significant gaps in their practical application. In this work, we perform systematic benchmarking across 15 different defences, considering a broad swathe of malicious and benign datasets. We find that there is significant performance variation depending on the style of jailbreak a defence is subject to. Additionally, we show that based on current datasets available for evaluation, simple baselines can display competitive out-of-distribution performance compared to many state-of-the-art defences. Code is available at https://github.com/IBM/Adversarial-Prompt-Evaluation.
Towards AI-Safety-by-Design: A Taxonomy of Runtime Guardrails in Foundation Model based Systems
The rapid advancement and widespread deployment of foundation model (FM) based systems have revolutionized numerous applications across various domains. However, the fast-growing capabilities and autonomy have also raised significant concerns about responsible AI and AI safety. Recently, there have been increasing attention toward implementing guardrails to ensure the runtime behavior of FM-based systems is safe and responsible. Given the early stage of FMs and their applications (such as agents), the design of guardrails have not yet been systematically studied. It remains underexplored which software qualities should be considered when designing guardrails and how these qualities can be ensured from a software architecture perspective. Therefore, in this paper, we present a taxonomy for guardrails to classify and compare the characteristics and design options of guardrails. Our taxonomy is organized into three main categories: the motivation behind adopting runtime guardrails, the quality attributes to consider, and the design options available. This taxonomy provides structured and concrete guidance for making architectural design decisions when designing guardrails and highlights trade-offs arising from the design decisions.
Breaking Free: How to Hack Safety Guardrails in Black-Box Diffusion Models!
Deep neural networks can be exploited using natural adversarial samples, which do not impact human perception. Current approaches often rely on deep neural networks' white-box nature to generate these adversarial samples or synthetically alter the distribution of adversarial samples compared to the training distribution. In contrast, we propose EvoSeed, a novel evolutionary strategy-based algorithmic framework for generating photo-realistic natural adversarial samples. Our EvoSeed framework uses auxiliary Conditional Diffusion and Classifier models to operate in a black-box setting. We employ CMA-ES to optimize the search for an initial seed vector, which, when processed by the Conditional Diffusion Model, results in the natural adversarial sample misclassified by the Classifier Model. Experiments show that generated adversarial images are of high image quality, raising concerns about generating harmful content bypassing safety classifiers. Our research opens new avenues to understanding the limitations of current safety mechanisms and the risk of plausible attacks against classifier systems using image generation. Project Website can be accessed at: https://shashankkotyan.github.io/EvoSeed.
DuoGuard: A Two-Player RL-Driven Framework for Multilingual LLM Guardrails
The rapid advancement of large language models (LLMs) has increased the need for guardrail models to ensure responsible use, particularly in detecting unsafe and illegal content. While substantial safety data exist in English, multilingual guardrail modeling remains underexplored due to the scarcity of open-source safety data in other languages. To address this gap, we propose a novel two-player Reinforcement Learning (RL) framework, where a generator and a guardrail model co-evolve adversarially to produce high-quality synthetic data for multilingual guardrail training. We theoretically formalize this interaction as a two-player game, proving convergence to a Nash equilibrium. Empirical evaluations show that our model \ours outperforms state-of-the-art models, achieving nearly 10% improvement over LlamaGuard3 (8B) on English benchmarks while being 4.5x faster at inference with a significantly smaller model (0.5B). We achieve substantial advancements in multilingual safety tasks, particularly in addressing the imbalance for lower-resource languages in a collected real dataset. Ablation studies emphasize the critical role of synthetic data generation in bridging the imbalance in open-source data between English and other languages. These findings establish a scalable and efficient approach to synthetic data generation, paving the way for improved multilingual guardrail models to enhance LLM safety. Code, model, and data will be open-sourced at https://github.com/yihedeng9/DuoGuard.
Virus: Harmful Fine-tuning Attack for Large Language Models Bypassing Guardrail Moderation
Recent research shows that Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks -- models lose their safety alignment ability after fine-tuning on a few harmful samples. For risk mitigation, a guardrail is typically used to filter out harmful samples before fine-tuning. By designing a new red-teaming method, we in this paper show that purely relying on the moderation guardrail for data filtration is not reliable. Our proposed attack method, dubbed Virus, easily bypasses the guardrail moderation by slightly modifying the harmful data. Experimental results show that the harmful data optimized by Virus is not detectable by the guardrail with up to 100\% leakage ratio, and can simultaneously achieve superior attack performance. Finally, the key message we want to convey through this paper is that: it is reckless to consider guardrail moderation as a clutch at straws towards harmful fine-tuning attack, as it cannot solve the inherent safety issue of the pre-trained LLMs. Our code is available at https://github.com/git-disl/Virus
InjecGuard: Benchmarking and Mitigating Over-defense in Prompt Injection Guardrail Models
Prompt injection attacks pose a critical threat to large language models (LLMs), enabling goal hijacking and data leakage. Prompt guard models, though effective in defense, suffer from over-defense -- falsely flagging benign inputs as malicious due to trigger word bias. To address this issue, we introduce NotInject, an evaluation dataset that systematically measures over-defense across various prompt guard models. NotInject contains 339 benign samples enriched with trigger words common in prompt injection attacks, enabling fine-grained evaluation. Our results show that state-of-the-art models suffer from over-defense issues, with accuracy dropping close to random guessing levels (60%). To mitigate this, we propose InjecGuard, a novel prompt guard model that incorporates a new training strategy, Mitigating Over-defense for Free (MOF), which significantly reduces the bias on trigger words. InjecGuard demonstrates state-of-the-art performance on diverse benchmarks including NotInject, surpassing the existing best model by 30.8%, offering a robust and open-source solution for detecting prompt injection attacks. The code and datasets are released at https://github.com/SaFoLab-WISC/InjecGuard.
SafeRoute: Adaptive Model Selection for Efficient and Accurate Safety Guardrails in Large Language Models
Deploying large language models (LLMs) in real-world applications requires robust safety guard models to detect and block harmful user prompts. While large safety guard models achieve strong performance, their computational cost is substantial. To mitigate this, smaller distilled models are used, but they often underperform on "hard" examples where the larger model provides accurate predictions. We observe that many inputs can be reliably handled by the smaller model, while only a small fraction require the larger model's capacity. Motivated by this, we propose SafeRoute, a binary router that distinguishes hard examples from easy ones. Our method selectively applies the larger safety guard model to the data that the router considers hard, improving efficiency while maintaining accuracy compared to solely using the larger safety guard model. Experimental results on multiple benchmark datasets demonstrate that our adaptive model selection significantly enhances the trade-off between computational cost and safety performance, outperforming relevant baselines.
ALMGuard: Safety Shortcuts and Where to Find Them as Guardrails for Audio-Language Models
Recent advances in Audio-Language Models (ALMs) have significantly improved multimodal understanding capabilities. However, the introduction of the audio modality also brings new and unique vulnerability vectors. Previous studies have proposed jailbreak attacks that specifically target ALMs, revealing that defenses directly transferred from traditional audio adversarial attacks or text-based Large Language Model (LLM) jailbreaks are largely ineffective against these ALM-specific threats. To address this issue, we propose ALMGuard, the first defense framework tailored to ALMs. Based on the assumption that safety-aligned shortcuts naturally exist in ALMs, we design a method to identify universal Shortcut Activation Perturbations (SAPs) that serve as triggers that activate the safety shortcuts to safeguard ALMs at inference time. To better sift out effective triggers while preserving the model's utility on benign tasks, we further propose Mel-Gradient Sparse Mask (M-GSM), which restricts perturbations to Mel-frequency bins that are sensitive to jailbreaks but insensitive to speech understanding. Both theoretical analyses and empirical results demonstrate the robustness of our method against both seen and unseen attacks. Overall, \MethodName reduces the average success rate of advanced ALM-specific jailbreak attacks to 4.6% across four models, while maintaining comparable utility on benign benchmarks, establishing it as the new state of the art. Our code and data are available at https://github.com/WeifeiJin/ALMGuard.
An indicator for effectiveness of text-to-image guardrails utilizing the Single-Turn Crescendo Attack (STCA)
The Single-Turn Crescendo Attack (STCA), first introduced in Aqrawi and Abbasi [2024], is an innovative method designed to bypass the ethical safeguards of text-to-text AI models, compelling them to generate harmful content. This technique leverages a strategic escalation of context within a single prompt, combined with trust-building mechanisms, to subtly deceive the model into producing unintended outputs. Extending the application of STCA to text-to-image models, we demonstrate its efficacy by compromising the guardrails of a widely-used model, DALL-E 3, achieving outputs comparable to outputs from the uncensored model Flux Schnell, which served as a baseline control. This study provides a framework for researchers to rigorously evaluate the robustness of guardrails in text-to-image models and benchmark their resilience against adversarial attacks.
Aegis2.0: A Diverse AI Safety Dataset and Risks Taxonomy for Alignment of LLM Guardrails
As Large Language Models (LLMs) and generative AI become increasingly widespread, concerns about content safety have grown in parallel. Currently, there is a clear lack of high-quality, human-annotated datasets that address the full spectrum of LLM-related safety risks and are usable for commercial applications. To bridge this gap, we propose a comprehensive and adaptable taxonomy for categorizing safety risks, structured into 12 top-level hazard categories with an extension to 9 fine-grained subcategories. This taxonomy is designed to meet the diverse requirements of downstream users, offering more granular and flexible tools for managing various risk types. Using a hybrid data generation pipeline that combines human annotations with a multi-LLM "jury" system to assess the safety of responses, we obtain Aegis 2.0, a carefully curated collection of 34,248 samples of human-LLM interactions, annotated according to our proposed taxonomy. To validate its effectiveness, we demonstrate that several lightweight models, trained using parameter-efficient techniques on Aegis 2.0, achieve performance competitive with leading safety models fully fine-tuned on much larger, non-commercial datasets. In addition, we introduce a novel training blend that combines safety with topic following data.This approach enhances the adaptability of guard models, enabling them to generalize to new risk categories defined during inference. We plan to open-source Aegis 2.0 data and models to the research community to aid in the safety guardrailing of LLMs.
How (un)ethical are instruction-centric responses of LLMs? Unveiling the vulnerabilities of safety guardrails to harmful queries
In this study, we tackle a growing concern around the safety and ethical use of large language models (LLMs). Despite their potential, these models can be tricked into producing harmful or unethical content through various sophisticated methods, including 'jailbreaking' techniques and targeted manipulation. Our work zeroes in on a specific issue: to what extent LLMs can be led astray by asking them to generate responses that are instruction-centric such as a pseudocode, a program or a software snippet as opposed to vanilla text. To investigate this question, we introduce TechHazardQA, a dataset containing complex queries which should be answered in both text and instruction-centric formats (e.g., pseudocodes), aimed at identifying triggers for unethical responses. We query a series of LLMs -- Llama-2-13b, Llama-2-7b, Mistral-V2 and Mistral 8X7B -- and ask them to generate both text and instruction-centric responses. For evaluation we report the harmfulness score metric as well as judgements from GPT-4 and humans. Overall, we observe that asking LLMs to produce instruction-centric responses enhances the unethical response generation by ~2-38% across the models. As an additional objective, we investigate the impact of model editing using the ROME technique, which further increases the propensity for generating undesirable content. In particular, asking edited LLMs to generate instruction-centric responses further increases the unethical response generation by ~3-16% across the different models.
Qwen3Guard Technical Report
As large language models (LLMs) become more capable and widely used, ensuring the safety of their outputs is increasingly critical. Existing guardrail models, though useful in static evaluation settings, face two major limitations in real-world applications: (1) they typically output only binary "safe/unsafe" labels, which can be interpreted inconsistently across diverse safety policies, rendering them incapable of accommodating varying safety tolerances across domains; and (2) they require complete model outputs before performing safety checks, making them fundamentally incompatible with streaming LLM inference, thereby preventing timely intervention during generation and increasing exposure to harmful partial outputs. To address these challenges, we present Qwen3Guard, a series of multilingual safety guardrail models with two specialized variants: Generative Qwen3Guard, which casts safety classification as an instruction-following task to enable fine-grained tri-class judgments (safe, controversial, unsafe); and Stream Qwen3Guard, which introduces a token-level classification head for real-time safety monitoring during incremental text generation. Both variants are available in three sizes (0.6B, 4B, and 8B parameters) and support up to 119 languages and dialects, providing comprehensive, scalable, and low-latency safety moderation for global LLM deployments. Evaluated across English, Chinese, and multilingual benchmarks, Qwen3Guard achieves state-of-the-art performance in both prompt and response safety classification. All models are released under the Apache 2.0 license for public use.
Typhoon 2: A Family of Open Text and Multimodal Thai Large Language Models
This paper introduces Typhoon 2, a series of text and multimodal large language models optimized for the Thai language. The series includes models for text, vision, and audio. Typhoon2-Text builds on state-of-the-art open models, such as Llama 3 and Qwen2, and we perform continual pre-training on a mixture of English and Thai data. We employ post-training techniques to enhance Thai language performance while preserving the base models' original capabilities. We release text models across a range of sizes, from 1 to 70 billion parameters, available in both base and instruction-tuned variants. To guardrail text generation, we release Typhoon2-Safety, a classifier enhanced for Thai cultures and language. Typhoon2-Vision improves Thai document understanding while retaining general visual capabilities, such as image captioning. Typhoon2-Audio introduces an end-to-end speech-to-speech model architecture capable of processing audio, speech, and text inputs and generating both text and speech outputs.
Security Steerability is All You Need
The adoption of Generative AI (GenAI) in various applications inevitably comes with expanding the attack surface, combining new security threats along with the traditional ones. Consequently, numerous research and industrial initiatives aim to mitigate these security threats in GenAI by developing metrics and designing defenses. However, while most of the GenAI security work focuses on universal threats (e.g. manipulating the LLM to generate forbidden content), there is significantly less discussion on application-level security and how to mitigate it. Thus, in this work we adopt an application-centric approach to GenAI security, and show that while LLMs cannot protect against ad-hoc application specific threats, they can provide the framework for applications to protect themselves against such threats. Our first contribution is defining Security Steerability - a novel security measure for LLMs, assessing the model's capability to adhere to strict guardrails that are defined in the system prompt ('Refrain from discussing about politics'). These guardrails, in case effective, can stop threats in the presence of malicious users who attempt to circumvent the application and cause harm to its providers. Our second contribution is a methodology to measure the security steerability of LLMs, utilizing two newly-developed datasets: VeganRibs assesses the LLM behavior in forcing specific guardrails that are not security per se in the presence of malicious user that uses attack boosters (jailbreaks and perturbations), and ReverseText takes this approach further and measures the LLM ability to force specific treatment of the user input as plain text while do user try to give it additional meanings...
Shape it Up! Restoring LLM Safety during Finetuning
Finetuning large language models (LLMs) enables user-specific customization but introduces critical safety risks: even a few harmful examples can compromise safety alignment. A common mitigation strategy is to update the model more strongly on examples deemed safe, while downweighting or excluding those flagged as unsafe. However, because safety context can shift within a single example, updating the model equally on both harmful and harmless parts of a response is suboptimal-a coarse treatment we term static safety shaping. In contrast, we propose dynamic safety shaping (DSS), a framework that uses fine-grained safety signals to reinforce learning from safe segments of a response while suppressing unsafe content. To enable such fine-grained control during finetuning, we introduce a key insight: guardrail models, traditionally used for filtering, can be repurposed to evaluate partial responses, tracking how safety risk evolves throughout the response, segment by segment. This leads to the Safety Trajectory Assessment of Response (STAR), a token-level signal that enables shaping to operate dynamically over the training sequence. Building on this, we present STAR-DSS, guided by STAR scores, that robustly mitigates finetuning risks and delivers substantial safety improvements across diverse threats, datasets, and model families-all without compromising capability on intended tasks. We encourage future safety research to build on dynamic shaping principles for stronger mitigation against evolving finetuning risks.
Solar System Experiments in the Search for Dark Energy and Dark Matter
We reassess the realistic discovery reach of Solar-System experiments for dark energy (DE) and dark matter (DM), making explicit the bridge from cosmology-level linear responses to local, screened residuals. In scalar-tensor frameworks with a universal conformal coupling A(phi) and chameleon/Vainshtein screening, we map cosmological responses {mu(z,k),Sigma(z,k)} inferred by DESI and Euclid to thin-shell or Vainshtein residuals in deep Solar potentials Phi_N. We emphasize a two-branch strategy. In a detection-first branch, a verified local anomaly -- an Einstein equivalence principle (EEP) violation, a Shapiro-delay signal with |gamma-1|simfewtimes 10^{-6}, an AU-scale Yukawa tail, or a ultralight DM (ULDM) line in clocks/atom interferometers in space (AIS) -- triggers a joint refit of cosmology and Solar-System data under a common microphysical parameterization {V(phi),A(phi)}. In a guardrail branch, Solar-System tests enforce constraints (EEP; PPN parameters gamma,beta; and dot G/G) and close unscreened or weakly screened corners indicated by cosmology. We forecast, per conjunction, |gamma-1|lesssim (2-5)times 10^{-6} (Ka-/X-band or optical Shapiro), eta_{EEP}sim (1--10)times 10^{-17} (drag-free AIS), |dot G/G|sim(3-5)times10^{-15},yr^{-1} (sub-mm-class LLR), a uniform ~2x tightening of AU-scale Yukawa/DM-density bounds, and (3-10)times improved ULDM-coupling reach from clocks. For a conformal benchmark, mu_{ lin,0}=0.10 implies chisimeq mu_{lin,0/2} and a Sun thin shell Delta R/Rlesssim (1/3chi)|gamma-1|/2=2.4times 10^{-3} at |gamma-1|=5times 10^{-6}; Vainshtein screening at 1 AU yields |gamma-1|lesssim 10^{-11}, naturally below near-term reach. We recommend a cost-effective guardrail+discovery portfolio with explicit triggers for escalation to dedicated missions.
Computing Power and the Governance of Artificial Intelligence
Computing power, or "compute," is crucial for the development and deployment of artificial intelligence (AI) capabilities. As a result, governments and companies have started to leverage compute as a means to govern AI. For example, governments are investing in domestic compute capacity, controlling the flow of compute to competing countries, and subsidizing compute access to certain sectors. However, these efforts only scratch the surface of how compute can be used to govern AI development and deployment. Relative to other key inputs to AI (data and algorithms), AI-relevant compute is a particularly effective point of intervention: it is detectable, excludable, and quantifiable, and is produced via an extremely concentrated supply chain. These characteristics, alongside the singular importance of compute for cutting-edge AI models, suggest that governing compute can contribute to achieving common policy objectives, such as ensuring the safety and beneficial use of AI. More precisely, policymakers could use compute to facilitate regulatory visibility of AI, allocate resources to promote beneficial outcomes, and enforce restrictions against irresponsible or malicious AI development and usage. However, while compute-based policies and technologies have the potential to assist in these areas, there is significant variation in their readiness for implementation. Some ideas are currently being piloted, while others are hindered by the need for fundamental research. Furthermore, naive or poorly scoped approaches to compute governance carry significant risks in areas like privacy, economic impacts, and centralization of power. We end by suggesting guardrails to minimize these risks from compute governance.
SpeechGuard: Exploring the Adversarial Robustness of Multimodal Large Language Models
Integrated Speech and Large Language Models (SLMs) that can follow speech instructions and generate relevant text responses have gained popularity lately. However, the safety and robustness of these models remains largely unclear. In this work, we investigate the potential vulnerabilities of such instruction-following speech-language models to adversarial attacks and jailbreaking. Specifically, we design algorithms that can generate adversarial examples to jailbreak SLMs in both white-box and black-box attack settings without human involvement. Additionally, we propose countermeasures to thwart such jailbreaking attacks. Our models, trained on dialog data with speech instructions, achieve state-of-the-art performance on spoken question-answering task, scoring over 80% on both safety and helpfulness metrics. Despite safety guardrails, experiments on jailbreaking demonstrate the vulnerability of SLMs to adversarial perturbations and transfer attacks, with average attack success rates of 90% and 10% respectively when evaluated on a dataset of carefully designed harmful questions spanning 12 different toxic categories. However, we demonstrate that our proposed countermeasures reduce the attack success significantly.
Guardians of the Agentic System: Preventing Many Shots Jailbreak with Agentic System
The autonomous AI agents using large language models can create undeniable values in all span of the society but they face security threats from adversaries that warrants immediate protective solutions because trust and safety issues arise. Considering the many-shot jailbreaking and deceptive alignment as some of the main advanced attacks, that cannot be mitigated by the static guardrails used during the supervised training, points out a crucial research priority for real world robustness. The combination of static guardrails in dynamic multi-agent system fails to defend against those attacks. We intend to enhance security for LLM-based agents through the development of new evaluation frameworks which identify and counter threats for safe operational deployment. Our work uses three examination methods to detect rogue agents through a Reverse Turing Test and analyze deceptive alignment through multi-agent simulations and develops an anti-jailbreaking system by testing it with GEMINI 1.5 pro and llama-3.3-70B, deepseek r1 models using tool-mediated adversarial scenarios. The detection capabilities are strong such as 94\% accuracy for GEMINI 1.5 pro yet the system suffers persistent vulnerabilities when under long attacks as prompt length increases attack success rates (ASR) and diversity metrics become ineffective in prediction while revealing multiple complex system faults. The findings demonstrate the necessity of adopting flexible security systems based on active monitoring that can be performed by the agents themselves together with adaptable interventions by system admin as the current models can create vulnerabilities that can lead to the unreliable and vulnerable system. So, in our work, we try to address such situations and propose a comprehensive framework to counteract the security issues.
PrimeGuard: Safe and Helpful LLMs through Tuning-Free Routing
Deploying language models (LMs) necessitates outputs to be both high-quality and compliant with safety guidelines. Although Inference-Time Guardrails (ITG) offer solutions that shift model output distributions towards compliance, we find that current methods struggle in balancing safety with helpfulness. ITG Methods that safely address non-compliant queries exhibit lower helpfulness while those that prioritize helpfulness compromise on safety. We refer to this trade-off as the guardrail tax, analogous to the alignment tax. To address this, we propose PrimeGuard, a novel ITG method that utilizes structured control flow. PrimeGuard routes requests to different self-instantiations of the LM with varying instructions, leveraging its inherent instruction-following capabilities and in-context learning. Our tuning-free approach dynamically compiles system-designer guidelines for each query. We construct and release safe-eval, a diverse red-team safety benchmark. Extensive evaluations demonstrate that PrimeGuard, without fine-tuning, overcomes the guardrail tax by (1) significantly increasing resistance to iterative jailbreak attacks and (2) achieving state-of-the-art results in safety guardrailing while (3) matching helpfulness scores of alignment-tuned models. Extensive evaluations demonstrate that PrimeGuard, without fine-tuning, outperforms all competing baselines and overcomes the guardrail tax by improving the fraction of safe responses from 61% to 97% and increasing average helpfulness scores from 4.17 to 4.29 on the largest models, while reducing attack success rate from 100% to 8%. PrimeGuard implementation is available at https://github.com/dynamofl/PrimeGuard and safe-eval dataset is available at https://huggingface.co/datasets/dynamoai/safe_eval.
Rethinking Autonomy: Preventing Failures in AI-Driven Software Engineering
The integration of Large Language Models (LLMs) into software engineering has revolutionized code generation, enabling unprecedented productivity through promptware and autonomous AI agents. However, this transformation introduces significant risks, including insecure code generation, hallucinated outputs, irreversible actions, and a lack of transparency and accountability. Incidents like the Replit database deletion underscore the urgent need for robust safety and governance mechanisms. This paper comprehensively analyzes the inherent challenges of LLM-assisted code generation, such as vulnerability inheritance, overtrust, misinterpretation, and the absence of standardized validation and rollback protocols. To address these, we propose the SAFE-AI Framework, a holistic approach emphasizing Safety, Auditability, Feedback, and Explainability. The framework integrates guardrails, sandboxing, runtime verification, risk-aware logging, human-in-the-loop systems, and explainable AI techniques to mitigate risks while fostering trust and compliance. We introduce a novel taxonomy of AI behaviors categorizing suggestive, generative, autonomous, and destructive actions to guide risk assessment and oversight. Additionally, we identify open problems, including the lack of standardized benchmarks for code specific hallucinations and autonomy levels, and propose future research directions for hybrid verification, semantic guardrails, and proactive governance tools. Through detailed comparisons of autonomy control, prompt engineering, explainability, and governance frameworks, this paper provides a roadmap for responsible AI integration in software engineering, aligning with emerging regulations like the EU AI Act and Canada's AIDA to ensure safe, transparent, and accountable AI-driven development.
AutoDev: Automated AI-Driven Development
The landscape of software development has witnessed a paradigm shift with the advent of AI-powered assistants, exemplified by GitHub Copilot. However, existing solutions are not leveraging all the potential capabilities available in an IDE such as building, testing, executing code, git operations, etc. Therefore, they are constrained by their limited capabilities, primarily focusing on suggesting code snippets and file manipulation within a chat-based interface. To fill this gap, we present AutoDev, a fully automated AI-driven software development framework, designed for autonomous planning and execution of intricate software engineering tasks. AutoDev enables users to define complex software engineering objectives, which are assigned to AutoDev's autonomous AI Agents to achieve. These AI agents can perform diverse operations on a codebase, including file editing, retrieval, build processes, execution, testing, and git operations. They also have access to files, compiler output, build and testing logs, static analysis tools, and more. This enables the AI Agents to execute tasks in a fully automated manner with a comprehensive understanding of the contextual information required. Furthermore, AutoDev establishes a secure development environment by confining all operations within Docker containers. This framework incorporates guardrails to ensure user privacy and file security, allowing users to define specific permitted or restricted commands and operations within AutoDev. In our evaluation, we tested AutoDev on the HumanEval dataset, obtaining promising results with 91.5% and 87.8% of Pass@1 for code generation and test generation respectively, demonstrating its effectiveness in automating software engineering tasks while maintaining a secure and user-controlled development environment.
Language Model Unalignment: Parametric Red-Teaming to Expose Hidden Harms and Biases
Red-teaming has been a widely adopted way to evaluate the harmfulness of Large Language Models (LLMs). It aims to jailbreak a model's safety behavior to make it act as a helpful agent disregarding the harmfulness of the query. Existing methods are primarily based on input text-based red-teaming such as adversarial prompts, low-resource prompts, or contextualized prompts to condition the model in a way to bypass its safe behavior. Bypassing the guardrails uncovers hidden harmful information and biases in the model that are left untreated or newly introduced by its safety training. However, prompt-based attacks fail to provide such a diagnosis owing to their low attack success rate, and applicability to specific models. In this paper, we present a new perspective on LLM safety research i.e., parametric red-teaming through Unalignment. It simply (instruction) tunes the model parameters to break model guardrails that are not deeply rooted in the model's behavior. Unalignment using as few as 100 examples can significantly bypass commonly referred to as CHATGPT, to the point where it responds with an 88% success rate to harmful queries on two safety benchmark datasets. On open-source models such as VICUNA-7B and LLAMA-2-CHAT 7B AND 13B, it shows an attack success rate of more than 91%. On bias evaluations, Unalignment exposes inherent biases in safety-aligned models such as CHATGPT and LLAMA- 2-CHAT where the model's responses are strongly biased and opinionated 64% of the time.
The Jailbreak Tax: How Useful are Your Jailbreak Outputs?
Jailbreak attacks bypass the guardrails of large language models to produce harmful outputs. In this paper, we ask whether the model outputs produced by existing jailbreaks are actually useful. For example, when jailbreaking a model to give instructions for building a bomb, does the jailbreak yield good instructions? Since the utility of most unsafe answers (e.g., bomb instructions) is hard to evaluate rigorously, we build new jailbreak evaluation sets with known ground truth answers, by aligning models to refuse questions related to benign and easy-to-evaluate topics (e.g., biology or math). Our evaluation of eight representative jailbreaks across five utility benchmarks reveals a consistent drop in model utility in jailbroken responses, which we term the jailbreak tax. For example, while all jailbreaks we tested bypass guardrails in models aligned to refuse to answer math, this comes at the expense of a drop of up to 92% in accuracy. Overall, our work proposes the jailbreak tax as a new important metric in AI safety, and introduces benchmarks to evaluate existing and future jailbreaks. We make the benchmark available at https://github.com/ethz-spylab/jailbreak-tax
RealHarm: A Collection of Real-World Language Model Application Failures
Language model deployments in consumer-facing applications introduce numerous risks. While existing research on harms and hazards of such applications follows top-down approaches derived from regulatory frameworks and theoretical analyses, empirical evidence of real-world failure modes remains underexplored. In this work, we introduce RealHarm, a dataset of annotated problematic interactions with AI agents built from a systematic review of publicly reported incidents. Analyzing harms, causes, and hazards specifically from the deployer's perspective, we find that reputational damage constitutes the predominant organizational harm, while misinformation emerges as the most common hazard category. We empirically evaluate state-of-the-art guardrails and content moderation systems to probe whether such systems would have prevented the incidents, revealing a significant gap in the protection of AI applications.
The Gradient of Generative AI Release: Methods and Considerations
As increasingly powerful generative AI systems are developed, the release method greatly varies. We propose a framework to assess six levels of access to generative AI systems: fully closed; gradual or staged access; hosted access; cloud-based or API access; downloadable access; and fully open. Each level, from fully closed to fully open, can be viewed as an option along a gradient. We outline key considerations across this gradient: release methods come with tradeoffs, especially around the tension between concentrating power and mitigating risks. Diverse and multidisciplinary perspectives are needed to examine and mitigate risk in generative AI systems from conception to deployment. We show trends in generative system release over time, noting closedness among large companies for powerful systems and openness among organizations founded on principles of openness. We also enumerate safety controls and guardrails for generative systems and necessary investments to improve future releases.
The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense
The vulnerability of Vision Large Language Models (VLLMs) to jailbreak attacks appears as no surprise. However, recent defense mechanisms against these attacks have reached near-saturation performance on benchmark evaluations, often with minimal effort. This dual high performance in both attack and defense raises a fundamental and perplexing paradox. To gain a deep understanding of this issue and thus further help strengthen the trustworthiness of VLLMs, this paper makes three key contributions: i) One tentative explanation for VLLMs being prone to jailbreak attacks--inclusion of vision inputs, as well as its in-depth analysis. ii) The recognition of a largely ignored problem in existing defense mechanisms--over-prudence. The problem causes these defense methods to exhibit unintended abstention, even in the presence of benign inputs, thereby undermining their reliability in faithfully defending against attacks. iii) A simple safety-aware method--LLM-Pipeline. Our method repurposes the more advanced guardrails of LLMs on the shelf, serving as an effective alternative detector prior to VLLM response. Last but not least, we find that the two representative evaluation methods for jailbreak often exhibit chance agreement. This limitation makes it potentially misleading when evaluating attack strategies or defense mechanisms. We believe the findings from this paper offer useful insights to rethink the foundational development of VLLM safety with respect to benchmark datasets, defense strategies, and evaluation methods.
GuardReasoner: Towards Reasoning-based LLM Safeguards
As LLMs increasingly impact safety-critical applications, ensuring their safety using guardrails remains a key challenge. This paper proposes GuardReasoner, a new safeguard for LLMs, by guiding the guard model to learn to reason. Concretely, we first create the GuardReasonerTrain dataset, which consists of 127K samples with 460K detailed reasoning steps. Then, we introduce reasoning SFT to unlock the reasoning capability of guard models. In addition, we present hard sample DPO to further strengthen their reasoning ability. In this manner, GuardReasoner achieves better performance, explainability, and generalizability. Extensive experiments and analyses on 13 benchmarks of 3 guardrail tasks demonstrate its superiority. Remarkably, GuardReasoner 8B surpasses GPT-4o+CoT by 5.74% and LLaMA Guard 3 8B by 20.84% F1 score on average. We release the training data, code, and models with different scales (1B, 3B, 8B) of GuardReasoner : https://github.com/yueliu1999/GuardReasoner/.
A Contextual Quality Reward Model for Reliable and Efficient Best-of-N Sampling
Modern preference alignment techniques, such as Best-of-N (BoN) sampling, rely on reward models trained with pairwise comparison data. While effective at learning relative preferences, this paradigm fails to capture a signal of response acceptability, leaving systems vulnerable to selecting the least bad of many unacceptable options. This is particularly problematic for hard prompts, where the risk of such false acceptances increases with the number of samples. In this paper, we address this critical reliability gap by introducing a new data collection and modeling framework. By augmenting preference data with an outside option, inspired by discrete choice models, we train a reward model that can distinguish not just what is better, but what is good enough. We leverage this capability to create an adaptive inference strategy, best of mini-N in-loop, which partitions the generation budget into sequential loops with a calibrated, early-exit condition. Our experiments show that when tuned as an alignment guardrail, it reduces reliability failures by 70\%, and when tuned as an inference accelerator, it improves average inference speed by over 22\% in IMDB-sentiment setting. We thus provide a principled and flexible framework for practitioners to explicitly manage the trade-off between reliability and computational efficiency.
RabakBench: Scaling Human Annotations to Construct Localized Multilingual Safety Benchmarks for Low-Resource Languages
Large language models (LLMs) and their safety classifiers often perform poorly on low-resource languages due to limited training data and evaluation benchmarks. This paper introduces RabakBench, a new multilingual safety benchmark localized to Singapore's unique linguistic context, covering Singlish, Chinese, Malay, and Tamil. RabakBench is constructed through a scalable three-stage pipeline: (i) Generate - adversarial example generation by augmenting real Singlish web content with LLM-driven red teaming; (ii) Label - semi-automated multi-label safety annotation using majority-voted LLM labelers aligned with human judgments; and (iii) Translate - high-fidelity translation preserving linguistic nuance and toxicity across languages. The final dataset comprises over 5,000 safety-labeled examples across four languages and six fine-grained safety categories with severity levels. Evaluations of 11 popular open-source and closed-source guardrail classifiers reveal significant performance degradation. RabakBench not only enables robust safety evaluation in Southeast Asian multilingual settings but also offers a reproducible framework for building localized safety datasets in low-resource environments. The benchmark dataset, including the human-verified translations, and evaluation code are publicly available.
ShieldAgent: Shielding Agents via Verifiable Safety Policy Reasoning
Autonomous agents powered by foundation models have seen widespread adoption across various real-world applications. However, they remain highly vulnerable to malicious instructions and attacks, which can result in severe consequences such as privacy breaches and financial losses. More critically, existing guardrails for LLMs are not applicable due to the complex and dynamic nature of agents. To tackle these challenges, we propose ShieldAgent, the first guardrail agent designed to enforce explicit safety policy compliance for the action trajectory of other protected agents through logical reasoning. Specifically, ShieldAgent first constructs a safety policy model by extracting verifiable rules from policy documents and structuring them into a set of action-based probabilistic rule circuits. Given the action trajectory of the protected agent, ShieldAgent retrieves relevant rule circuits and generates a shielding plan, leveraging its comprehensive tool library and executable code for formal verification. In addition, given the lack of guardrail benchmarks for agents, we introduce ShieldAgent-Bench, a dataset with 3K safety-related pairs of agent instructions and action trajectories, collected via SOTA attacks across 6 web environments and 7 risk categories. Experiments show that ShieldAgent achieves SOTA on ShieldAgent-Bench and three existing benchmarks, outperforming prior methods by 11.3% on average with a high recall of 90.1%. Additionally, ShieldAgent reduces API queries by 64.7% and inference time by 58.2%, demonstrating its high precision and efficiency in safeguarding agents.
Representation noising effectively prevents harmful fine-tuning on LLMs
Releasing open-source large language models (LLMs) presents a dual-use risk since bad actors can easily fine-tune these models for harmful purposes. Even without the open release of weights, weight stealing and fine-tuning APIs make closed models vulnerable to harmful fine-tuning attacks (HFAs). While safety measures like preventing jailbreaks and improving safety guardrails are important, such measures can easily be reversed through fine-tuning. In this work, we propose Representation Noising (RepNoise), a defence mechanism that is effective even when attackers have access to the weights and the defender no longer has any control. RepNoise works by removing information about harmful representations such that it is difficult to recover them during fine-tuning. Importantly, our defence is also able to generalize across different subsets of harm that have not been seen during the defence process. Our method does not degrade the general capability of LLMs and retains the ability to train the model on harmless tasks. We provide empirical evidence that the effectiveness of our defence lies in its "depth": the degree to which information about harmful representations is removed across all layers of the LLM.
Involuntary Jailbreak
In this study, we disclose a worrying new vulnerability in Large Language Models (LLMs), which we term involuntary jailbreak. Unlike existing jailbreak attacks, this weakness is distinct in that it does not involve a specific attack objective, such as generating instructions for building a bomb. Prior attack methods predominantly target localized components of the LLM guardrail. In contrast, involuntary jailbreaks may potentially compromise the entire guardrail structure, which our method reveals to be surprisingly fragile. We merely employ a single universal prompt to achieve this goal. In particular, we instruct LLMs to generate several questions that would typically be rejected, along with their corresponding in-depth responses (rather than a refusal). Remarkably, this simple prompt strategy consistently jailbreaks the majority of leading LLMs, including Claude Opus 4.1, Grok 4, Gemini 2.5 Pro, and GPT 4.1. We hope this problem can motivate researchers and practitioners to re-evaluate the robustness of LLM guardrails and contribute to stronger safety alignment in future.
Jailbreaking Safeguarded Text-to-Image Models via Large Language Models
Text-to-Image models may generate harmful content, such as pornographic images, particularly when unsafe prompts are submitted. To address this issue, safety filters are often added on top of text-to-image models, or the models themselves are aligned to reduce harmful outputs. However, these defenses remain vulnerable when an attacker strategically designs adversarial prompts to bypass these safety guardrails. In this work, we propose PromptTune, a method to jailbreak text-to-image models with safety guardrails using a fine-tuned large language model. Unlike other query-based jailbreak attacks that require repeated queries to the target model, our attack generates adversarial prompts efficiently after fine-tuning our AttackLLM. We evaluate our method on three datasets of unsafe prompts and against five safety guardrails. Our results demonstrate that our approach effectively bypasses safety guardrails, outperforms existing no-box attacks, and also facilitates other query-based attacks.
Emerging Vulnerabilities in Frontier Models: Multi-Turn Jailbreak Attacks
Large language models (LLMs) are improving at an exceptional rate. However, these models are still susceptible to jailbreak attacks, which are becoming increasingly dangerous as models become increasingly powerful. In this work, we introduce a dataset of jailbreaks where each example can be input in both a single or a multi-turn format. We show that while equivalent in content, they are not equivalent in jailbreak success: defending against one structure does not guarantee defense against the other. Similarly, LLM-based filter guardrails also perform differently depending on not just the input content but the input structure. Thus, vulnerabilities of frontier models should be studied in both single and multi-turn settings; this dataset provides a tool to do so.
Alignment For Performance Improvement in Conversation Bots
This paper shows that alignment methods can achieve superior adherence to guardrails compared to instruction fine-tuning alone in conversational agents, also known as bots, within predefined guidelines or 'guardrails'. It examines traditional training approaches such as instruction fine-tuning and the recent advancements in direct alignment methods like Identity Preference Optimization (IPO), and Kahneman-Tversky Optimization (KTO). The effectiveness of alignment techniques both pre and post-instruction tuning is highlighted, illustrating their potential to optimize conversational bots in domains that require strict adherence to specified rules, such as customer care.
Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks
Safety, security, and compliance are essential requirements when aligning large language models (LLMs). However, many seemingly aligned LLMs are soon shown to be susceptible to jailbreak attacks. These attacks aim to circumvent the models' safety guardrails and security mechanisms by introducing jailbreak prompts into malicious queries. In response to these challenges, this paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism specifically designed to protect LLMs against such sophisticated jailbreak strategies. Unlike previous approaches, which have often compromised the utility of the model for the sake of safety, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs. Our method uses strategically designed interpretable suffix prompts that effectively thwart a wide range of standard and adaptive jailbreak techniques. Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP, showing significant reductions in ASR with negligible impact on utility. Our approach not only outperforms existing defense strategies in balancing safety and functionality, but also provides a scalable and interpretable solution applicable to various LLM platforms.
Safe RLHF-V: Safe Reinforcement Learning from Human Feedback in Multimodal Large Language Models
Multimodal large language models (MLLMs) are critical for developing general-purpose AI assistants, yet they face growing safety risks. How can we ensure that MLLMs are safely aligned to prevent undesired behaviors such as discrimination, misinformation, or violations of ethical standards? In a further step, we need to explore how to fine-tune MLLMs to enhance reasoning performance while ensuring they satisfy safety constraints. Fundamentally, this can be formulated as a min-max optimization problem. In this study, we propose Safe RLHF-V, the first multimodal safety alignment framework that jointly optimizes helpfulness and safety using separate multimodal reward and cost models within a Lagrangian-based constrained optimization framework. Given that there is a lack of preference datasets that separate helpfulness and safety in multimodal scenarios, we introduce BeaverTails-V, the first open-source dataset with dual preference annotations for helpfulness and safety, along with multi-level safety labels (minor, moderate, severe). Additionally, we design a Multi-level Guardrail System to proactively defend against unsafe queries and adversarial attacks. By applying the Beaver-Guard-V moderation for 5 rounds of filtering and re-generation on the precursor model, the overall safety of the upstream model is significantly improved by an average of 40.9%. Experimental results demonstrate that fine-tuning different MLLMs with Safe RLHF can effectively enhance model helpfulness while ensuring improved safety. Specifically, Safe RLHF-V improves model safety by 34.2% and helpfulness by 34.3%. All of datasets, models, and code can be found at https://github.com/SafeRLHF-V to support the safety development of MLLMs and reduce potential societal risks.
CoBia: Constructed Conversations Can Trigger Otherwise Concealed Societal Biases in LLMs
Improvements in model construction, including fortified safety guardrails, allow Large language models (LLMs) to increasingly pass standard safety checks. However, LLMs sometimes slip into revealing harmful behavior, such as expressing racist viewpoints, during conversations. To analyze this systematically, we introduce CoBia, a suite of lightweight adversarial attacks that allow us to refine the scope of conditions under which LLMs depart from normative or ethical behavior in conversations. CoBia creates a constructed conversation where the model utters a biased claim about a social group. We then evaluate whether the model can recover from the fabricated bias claim and reject biased follow-up questions. We evaluate 11 open-source as well as proprietary LLMs for their outputs related to six socio-demographic categories that are relevant to individual safety and fair treatment, i.e., gender, race, religion, nationality, sex orientation, and others. Our evaluation is based on established LLM-based bias metrics, and we compare the results against human judgments to scope out the LLMs' reliability and alignment. The results suggest that purposefully constructed conversations reliably reveal bias amplification and that LLMs often fail to reject biased follow-up questions during dialogue. This form of stress-testing highlights deeply embedded biases that can be surfaced through interaction. Code and artifacts are available at https://github.com/nafisenik/CoBia.
Assessing the Brittleness of Safety Alignment via Pruning and Low-Rank Modifications
Large language models (LLMs) show inherent brittleness in their safety mechanisms, as evidenced by their susceptibility to jailbreaking and even non-malicious fine-tuning. This study explores this brittleness of safety alignment by leveraging pruning and low-rank modifications. We develop methods to identify critical regions that are vital for safety guardrails, and that are disentangled from utility-relevant regions at both the neuron and rank levels. Surprisingly, the isolated regions we find are sparse, comprising about 3% at the parameter level and 2.5% at the rank level. Removing these regions compromises safety without significantly impacting utility, corroborating the inherent brittleness of the model's safety mechanisms. Moreover, we show that LLMs remain vulnerable to low-cost fine-tuning attacks even when modifications to the safety-critical regions are restricted. These findings underscore the urgent need for more robust safety strategies in LLMs.
Verifying International Agreements on AI: Six Layers of Verification for Rules on Large-Scale AI Development and Deployment
The risks of frontier AI may require international cooperation, which in turn may require verification: checking that all parties follow agreed-on rules. For instance, states might need to verify that powerful AI models are widely deployed only after their risks to international security have been evaluated and deemed manageable. However, research on AI verification could benefit from greater clarity and detail. To address this, this report provides an in-depth overview of AI verification, intended for both policy professionals and technical researchers. We present novel conceptual frameworks, detailed implementation options, and key R&D challenges. These draw on existing literature, expert interviews, and original analysis, all within the scope of confidentially overseeing AI development and deployment that uses thousands of high-end AI chips. We find that states could eventually verify compliance by using six largely independent verification approaches with substantial redundancy: (1) built-in security features in AI chips; (2-3) separate monitoring devices attached to AI chips; and (4-6) personnel-based mechanisms, such as whistleblower programs. While promising, these approaches require guardrails to protect against abuse and power concentration, and many of these technologies have yet to be built or stress-tested. To enable states to confidently verify compliance with rules on large-scale AI development and deployment, the R&D challenges we list need significant progress.
BayesLoRA: Task-Specific Uncertainty in Low-Rank Adapters
We propose BayesLoRA, a task-specific uncertainty quantification framework that integrates MC-Dropout into Low-Rank Adapters (LoRA). Unlike general-purpose transformer uncertainty methods, BayesLoRA provides guardrails tailored to downstream workflows, enabling agents to introspect and modulate behavior under uncertainty. We demonstrate mathematically and empirically that LoRA adapters exhibit amplified variance outside fine-tuning distributions, yielding reliable confidence estimates for agentic decision-making.
How Alignment and Jailbreak Work: Explain LLM Safety through Intermediate Hidden States
Large language models (LLMs) rely on safety alignment to avoid responding to malicious user inputs. Unfortunately, jailbreak can circumvent safety guardrails, resulting in LLMs generating harmful content and raising concerns about LLM safety. Due to language models with intensive parameters often regarded as black boxes, the mechanisms of alignment and jailbreak are challenging to elucidate. In this paper, we employ weak classifiers to explain LLM safety through the intermediate hidden states. We first confirm that LLMs learn ethical concepts during pre-training rather than alignment and can identify malicious and normal inputs in the early layers. Alignment actually associates the early concepts with emotion guesses in the middle layers and then refines them to the specific reject tokens for safe generations. Jailbreak disturbs the transformation of early unethical classification into negative emotions. We conduct experiments on models from 7B to 70B across various model families to prove our conclusion. Overall, our paper indicates the intrinsical mechanism of LLM safety and how jailbreaks circumvent safety guardrails, offering a new perspective on LLM safety and reducing concerns. Our code is available at https://github.com/ydyjya/LLM-IHS-Explanation.
Efficient Adversarial Training in LLMs with Continuous Attacks
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial training has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on four models from different families (Gemma, Phi3, Mistral, Zephyr) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.
A Framework to Assess (Dis)agreement Among Diverse Rater Groups
Recent advancements in conversational AI have created an urgent need for safety guardrails that prevent users from being exposed to offensive and dangerous content. Much of this work relies on human ratings and feedback, but does not account for the fact that perceptions of offense and safety are inherently subjective and that there may be systematic disagreements between raters that align with their socio-demographic identities. Instead, current machine learning approaches largely ignore rater subjectivity and use gold standards that obscure disagreements (e.g., through majority voting). In order to better understand the socio-cultural leanings of such tasks, we propose a comprehensive disagreement analysis framework to measure systematic diversity in perspectives among different rater subgroups. We then demonstrate its utility by applying this framework to a dataset of human-chatbot conversations rated by a demographically diverse pool of raters. Our analysis reveals specific rater groups that have more diverse perspectives than the rest, and informs demographic axes that are crucial to consider for safety annotations.
Superintelligent Agents Pose Catastrophic Risks: Can Scientist AI Offer a Safer Path?
The leading AI companies are increasingly focused on building generalist AI agents -- systems that can autonomously plan, act, and pursue goals across almost all tasks that humans can perform. Despite how useful these systems might be, unchecked AI agency poses significant risks to public safety and security, ranging from misuse by malicious actors to a potentially irreversible loss of human control. We discuss how these risks arise from current AI training methods. Indeed, various scenarios and experiments have demonstrated the possibility of AI agents engaging in deception or pursuing goals that were not specified by human operators and that conflict with human interests, such as self-preservation. Following the precautionary principle, we see a strong need for safer, yet still useful, alternatives to the current agency-driven trajectory. Accordingly, we propose as a core building block for further advances the development of a non-agentic AI system that is trustworthy and safe by design, which we call Scientist AI. This system is designed to explain the world from observations, as opposed to taking actions in it to imitate or please humans. It comprises a world model that generates theories to explain data and a question-answering inference machine. Both components operate with an explicit notion of uncertainty to mitigate the risks of overconfident predictions. In light of these considerations, a Scientist AI could be used to assist human researchers in accelerating scientific progress, including in AI safety. In particular, our system can be employed as a guardrail against AI agents that might be created despite the risks involved. Ultimately, focusing on non-agentic AI may enable the benefits of AI innovation while avoiding the risks associated with the current trajectory. We hope these arguments will motivate researchers, developers, and policymakers to favor this safer path.
Responsible AI Technical Report
KT developed a Responsible AI (RAI) assessment methodology and risk mitigation technologies to ensure the safety and reliability of AI services. By analyzing the Basic Act on AI implementation and global AI governance trends, we established a unique approach for regulatory compliance and systematically identify and manage all potential risk factors from AI development to operation. We present a reliable assessment methodology that systematically verifies model safety and robustness based on KT's AI risk taxonomy tailored to the domestic environment. We also provide practical tools for managing and mitigating identified AI risks. With the release of this report, we also release proprietary Guardrail : SafetyGuard that blocks harmful responses from AI models in real-time, supporting the enhancement of safety in the domestic AI development ecosystem. We also believe these research outcomes provide valuable insights for organizations seeking to develop Responsible AI.
sudoLLM : On Multi-role Alignment of Language Models
User authorization-based access privileges are a key feature in many safety-critical systems, but have thus far been absent from the large language model (LLM) realm. In this work, drawing inspiration from such access control systems, we introduce sudoLLM, a novel framework that results in multi-role aligned LLMs, i.e., LLMs that account for, and behave in accordance with, user access rights. sudoLLM injects subtle user-based biases into queries and trains an LLM to utilize this bias signal in order to produce sensitive information if and only if the user is authorized. We present empirical results demonstrating that this approach shows substantially improved alignment, generalization, and resistance to prompt-based jailbreaking attacks. The persistent tension between the language modeling objective and safety alignment, which is often exploited to jailbreak LLMs, is somewhat resolved with the aid of the injected bias signal. Our framework is meant as an additional security layer, and complements existing guardrail mechanisms for enhanced end-to-end safety with LLMs.
Can a large language model be a gaslighter?
Large language models (LLMs) have gained human trust due to their capabilities and helpfulness. However, this in turn may allow LLMs to affect users' mindsets by manipulating language. It is termed as gaslighting, a psychological effect. In this work, we aim to investigate the vulnerability of LLMs under prompt-based and fine-tuning-based gaslighting attacks. Therefore, we propose a two-stage framework DeepCoG designed to: 1) elicit gaslighting plans from LLMs with the proposed DeepGaslighting prompting template, and 2) acquire gaslighting conversations from LLMs through our Chain-of-Gaslighting method. The gaslighting conversation dataset along with a corresponding safe dataset is applied to fine-tuning-based attacks on open-source LLMs and anti-gaslighting safety alignment on these LLMs. Experiments demonstrate that both prompt-based and fine-tuning-based attacks transform three open-source LLMs into gaslighters. In contrast, we advanced three safety alignment strategies to strengthen (by 12.05%) the safety guardrail of LLMs. Our safety alignment strategies have minimal impacts on the utility of LLMs. Empirical studies indicate that an LLM may be a potential gaslighter, even if it passed the harmfulness test on general dangerous queries.
Challenges in Trustworthy Human Evaluation of Chatbots
Open community-driven platforms like Chatbot Arena that collect user preference data from site visitors have gained a reputation as one of the most trustworthy publicly available benchmarks for LLM performance. While now standard, it is tricky to implement effective guardrails to collect high-quality annotations from humans. In this paper, we demonstrate that three sources of bad annotations, both malicious and otherwise, can corrupt the reliability of open leaderboard rankings. In particular, we show that only 10\% of poor quality votes by apathetic (site visitors not appropriately incentivized to give correct votes) or adversarial (bad actors seeking to inflate the ranking of a target model) annotators can change the rankings of models by up to 5 places on the leaderboard. Finally, we discuss open challenges in ensuring high-quality human annotations.
\texttt{R$^\textbf{2}$AI}: Towards Resistant and Resilient AI in an Evolving World
In this position paper, we address the persistent gap between rapidly growing AI capabilities and lagging safety progress. Existing paradigms divide into ``Make AI Safe'', which applies post-hoc alignment and guardrails but remains brittle and reactive, and ``Make Safe AI'', which emphasizes intrinsic safety but struggles to address unforeseen risks in open-ended environments. We therefore propose safe-by-coevolution as a new formulation of the ``Make Safe AI'' paradigm, inspired by biological immunity, in which safety becomes a dynamic, adversarial, and ongoing learning process. To operationalize this vision, we introduce R^2AI -- Resistant and Resilient AI -- as a practical framework that unites resistance against known threats with resilience to unforeseen risks. R^2AI integrates fast and slow safe models, adversarial simulation and verification through a safety wind tunnel, and continual feedback loops that guide safety and capability to coevolve. We argue that this framework offers a scalable and proactive path to maintain continual safety in dynamic environments, addressing both near-term vulnerabilities and long-term existential risks as AI advances toward AGI and ASI.
DeepInception: Hypnotize Large Language Model to Be Jailbreaker
Large language models (LLMs) have succeeded significantly in various applications but remain susceptible to adversarial jailbreaks that void their safety guardrails. Previous attempts to exploit these vulnerabilities often rely on high-cost computational extrapolations, which may not be practical or efficient. In this paper, inspired by the authority influence demonstrated in the Milgram experiment, we present a lightweight method to take advantage of the LLMs' personification capabilities to construct a virtual, nested scene, allowing it to realize an adaptive way to escape the usage control in a normal scenario. Empirically, the contents induced by our approach can achieve leading harmfulness rates with previous counterparts and realize a continuous jailbreak in subsequent interactions, which reveals the critical weakness of self-losing on both open-source and closed-source LLMs, e.g., Llama-2, Llama-3, GPT-3.5, GPT-4, and GPT-4o. The code and data are available at: https://github.com/tmlr-group/DeepInception.
Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!
Optimizing large language models (LLMs) for downstream use cases often involves the customization of pre-trained LLMs through further fine-tuning. Meta's open release of Llama models and OpenAI's APIs for fine-tuning GPT-3.5 Turbo on custom datasets also encourage this practice. But, what are the safety costs associated with such custom fine-tuning? We note that while existing safety alignment infrastructures can restrict harmful behaviors of LLMs at inference time, they do not cover safety risks when fine-tuning privileges are extended to end-users. Our red teaming studies find that the safety alignment of LLMs can be compromised by fine-tuning with only a few adversarially designed training examples. For instance, we jailbreak GPT-3.5 Turbo's safety guardrails by fine-tuning it on only 10 such examples at a cost of less than $0.20 via OpenAI's APIs, making the model responsive to nearly any harmful instructions. Disconcertingly, our research also reveals that, even without malicious intent, simply fine-tuning with benign and commonly used datasets can also inadvertently degrade the safety alignment of LLMs, though to a lesser extent. These findings suggest that fine-tuning aligned LLMs introduces new safety risks that current safety infrastructures fall short of addressing -- even if a model's initial safety alignment is impeccable, it is not necessarily to be maintained after custom fine-tuning. We outline and critically analyze potential mitigations and advocate for further research efforts toward reinforcing safety protocols for the custom fine-tuning of aligned LLMs.
AlignGuard: Scalable Safety Alignment for Text-to-Image Generation
Text-to-image (T2I) models are widespread, but their limited safety guardrails expose end users to harmful content and potentially allow for model misuse. Current safety measures are typically limited to text-based filtering or concept removal strategies, able to remove just a few concepts from the model's generative capabilities. In this work, we introduce AlignGuard, a method for safety alignment of T2I models. We enable the application of Direct Preference Optimization (DPO) for safety purposes in T2I models by synthetically generating a dataset of harmful and safe image-text pairs, which we call CoProV2. Using a custom DPO strategy and this dataset, we train safety experts, in the form of low-rank adaptation (LoRA) matrices, able to guide the generation process away from specific safety-related concepts. Then, we merge the experts into a single LoRA using a novel merging strategy for optimal scaling performance. This expert-based approach enables scalability, allowing us to remove 7x more harmful concepts from T2I models compared to baselines. AlignGuard consistently outperforms the state-of-the-art on many benchmarks and establishes new practices for safety alignment in T2I networks. Code and data will be shared at https://safetydpo.github.io/.
GenTel-Safe: A Unified Benchmark and Shielding Framework for Defending Against Prompt Injection Attacks
Large Language Models (LLMs) like GPT-4, LLaMA, and Qwen have demonstrated remarkable success across a wide range of applications. However, these models remain inherently vulnerable to prompt injection attacks, which can bypass existing safety mechanisms, highlighting the urgent need for more robust attack detection methods and comprehensive evaluation benchmarks. To address these challenges, we introduce GenTel-Safe, a unified framework that includes a novel prompt injection attack detection method, GenTel-Shield, along with a comprehensive evaluation benchmark, GenTel-Bench, which compromises 84812 prompt injection attacks, spanning 3 major categories and 28 security scenarios. To prove the effectiveness of GenTel-Shield, we evaluate it together with vanilla safety guardrails against the GenTel-Bench dataset. Empirically, GenTel-Shield can achieve state-of-the-art attack detection success rates, which reveals the critical weakness of existing safeguarding techniques against harmful prompts. For reproducibility, we have made the code and benchmarking dataset available on the project page at https://gentellab.github.io/gentel-safe.github.io/.
Hallucination-minimized Data-to-answer Framework for Financial Decision-makers
Large Language Models (LLMs) have been applied to build several automation and personalized question-answering prototypes so far. However, scaling such prototypes to robust products with minimized hallucinations or fake responses still remains an open challenge, especially in niche data-table heavy domains such as financial decision making. In this work, we present a novel Langchain-based framework that transforms data tables into hierarchical textual data chunks to enable a wide variety of actionable question answering. First, the user-queries are classified by intention followed by automated retrieval of the most relevant data chunks to generate customized LLM prompts per query. Next, the custom prompts and their responses undergo multi-metric scoring to assess for hallucinations and response confidence. The proposed system is optimized with user-query intention classification, advanced prompting, data scaling capabilities and it achieves over 90% confidence scores for a variety of user-queries responses ranging from {What, Where, Why, How, predict, trend, anomalies, exceptions} that are crucial for financial decision making applications. The proposed data to answers framework can be extended to other analytical domains such as sales and payroll to ensure optimal hallucination control guardrails.
Certifying LLM Safety against Adversarial Prompting
Large language models (LLMs) are vulnerable to adversarial attacks that add malicious tokens to an input prompt to bypass the safety guardrails of an LLM and cause it to produce harmful content. In this work, we introduce erase-and-check, the first framework for defending against adversarial prompts with certifiable safety guarantees. Given a prompt, our procedure erases tokens individually and inspects the resulting subsequences using a safety filter. Our safety certificate guarantees that harmful prompts are not mislabeled as safe due to an adversarial attack up to a certain size. We implement the safety filter in two ways, using Llama 2 and DistilBERT, and compare the performance of erase-and-check for the two cases. We defend against three attack modes: i) adversarial suffix, where an adversarial sequence is appended at the end of a harmful prompt; ii) adversarial insertion, where the adversarial sequence is inserted anywhere in the middle of the prompt; and iii) adversarial infusion, where adversarial tokens are inserted at arbitrary positions in the prompt, not necessarily as a contiguous block. Our experimental results demonstrate that this procedure can obtain strong certified safety guarantees on harmful prompts while maintaining good empirical performance on safe prompts. Additionally, we propose three efficient empirical defenses: i) RandEC, a randomized subsampling version of erase-and-check; ii) GreedyEC, which greedily erases tokens that maximize the softmax score of the harmful class; and iii) GradEC, which uses gradient information to optimize tokens to erase. We demonstrate their effectiveness against adversarial prompts generated by the Greedy Coordinate Gradient (GCG) attack algorithm. The code for our experiments is available at https://github.com/aounon/certified-llm-safety.
Toxicity in ChatGPT: Analyzing Persona-assigned Language Models
Large language models (LLMs) have shown incredible capabilities and transcended the natural language processing (NLP) community, with adoption throughout many services like healthcare, therapy, education, and customer service. Since users include people with critical information needs like students or patients engaging with chatbots, the safety of these systems is of prime importance. Therefore, a clear understanding of the capabilities and limitations of LLMs is necessary. To this end, we systematically evaluate toxicity in over half a million generations of ChatGPT, a popular dialogue-based LLM. We find that setting the system parameter of ChatGPT by assigning it a persona, say that of the boxer Muhammad Ali, significantly increases the toxicity of generations. Depending on the persona assigned to ChatGPT, its toxicity can increase up to 6x, with outputs engaging in incorrect stereotypes, harmful dialogue, and hurtful opinions. This may be potentially defamatory to the persona and harmful to an unsuspecting user. Furthermore, we find concerning patterns where specific entities (e.g., certain races) are targeted more than others (3x more) irrespective of the assigned persona, that reflect inherent discriminatory biases in the model. We hope that our findings inspire the broader AI community to rethink the efficacy of current safety guardrails and develop better techniques that lead to robust, safe, and trustworthy AI systems.
From Judgment to Interference: Early Stopping LLM Harmful Outputs via Streaming Content Monitoring
Though safety alignment has been applied to most large language models (LLMs), LLM service providers generally deploy a subsequent moderation as the external safety guardrail in real-world products. Existing moderators mainly practice a conventional full detection, which determines the harmfulness based on the complete LLM output, causing high service latency. Recent works pay more attention to partial detection where moderators oversee the generation midway and early stop the output if harmfulness is detected, but they directly apply moderators trained with the full detection paradigm to incomplete outputs, introducing a training-inference gap that lowers the performance. In this paper, we explore how to form a data-and-model solution that natively supports partial detection. For the data, we construct FineHarm, a dataset consisting of 29K prompt-response pairs with fine-grained annotations to provide reasonable supervision for token-level training. Then, we propose the streaming content monitor, which is trained with dual supervision of response- and token-level labels and can follow the output stream of LLM to make a timely judgment of harmfulness. Experiments show that SCM gains 0.95+ in macro F1 score that is comparable to full detection, by only seeing the first 18% of tokens in responses on average. Moreover, the SCM can serve as a pseudo-harmfulness annotator for improving safety alignment and lead to a higher harmlessness score than DPO.
Guarded Query Routing for Large Language Models
Query routing, the task to route user queries to different large language model (LLM) endpoints, can be considered as a text classification problem. However, out-of-distribution queries must be handled properly, as those could be about unrelated domains, queries in other languages, or even contain unsafe text. Here, we thus study a guarded query routing problem, for which we first introduce the Guarded Query Routing Benchmark (GQR-Bench, released as Python package gqr), covers three exemplary target domains (law, finance, and healthcare), and seven datasets to test robustness against out-of-distribution queries. We then use GQR-Bench to contrast the effectiveness and efficiency of LLM-based routing mechanisms (GPT-4o-mini, Llama-3.2-3B, and Llama-3.1-8B), standard LLM-based guardrail approaches (LlamaGuard and NVIDIA NeMo Guardrails), continuous bag-of-words classifiers (WideMLP, fastText), and traditional machine learning models (SVM, XGBoost). Our results show that WideMLP, enhanced with out-of-domain detection capabilities, yields the best trade-off between accuracy (88%) and speed (<4ms). The embedding-based fastText excels at speed (<1ms) with acceptable accuracy (80%), whereas LLMs yield the highest accuracy (91%) but are comparatively slow (62ms for local Llama-3.1:8B and 669ms for remote GPT-4o-mini calls). Our findings challenge the automatic reliance on LLMs for (guarded) query routing and provide concrete recommendations for practical applications. Source code is available: https://github.com/williambrach/gqr.
Data and AI governance: Promoting equity, ethics, and fairness in large language models
In this paper, we cover approaches to systematically govern, assess and quantify bias across the complete life cycle of machine learning models, from initial development and validation to ongoing production monitoring and guardrail implementation. Building upon our foundational work on the Bias Evaluation and Assessment Test Suite (BEATS) for Large Language Models, the authors share prevalent bias and fairness related gaps in Large Language Models (LLMs) and discuss data and AI governance framework to address Bias, Ethics, Fairness, and Factuality within LLMs. The data and AI governance approach discussed in this paper is suitable for practical, real-world applications, enabling rigorous benchmarking of LLMs prior to production deployment, facilitating continuous real-time evaluation, and proactively governing LLM generated responses. By implementing the data and AI governance across the life cycle of AI development, organizations can significantly enhance the safety and responsibility of their GenAI systems, effectively mitigating risks of discrimination and protecting against potential reputational or brand-related harm. Ultimately, through this article, we aim to contribute to advancement of the creation and deployment of socially responsible and ethically aligned generative artificial intelligence powered applications.
FlipAttack: Jailbreak LLMs via Flipping
This paper proposes a simple yet effective jailbreak attack named FlipAttack against black-box LLMs. First, from the autoregressive nature, we reveal that LLMs tend to understand the text from left to right and find that they struggle to comprehend the text when noise is added to the left side. Motivated by these insights, we propose to disguise the harmful prompt by constructing left-side noise merely based on the prompt itself, then generalize this idea to 4 flipping modes. Second, we verify the strong ability of LLMs to perform the text-flipping task, and then develop 4 variants to guide LLMs to denoise, understand, and execute harmful behaviors accurately. These designs keep FlipAttack universal, stealthy, and simple, allowing it to jailbreak black-box LLMs within only 1 query. Experiments on 8 LLMs demonstrate the superiority of FlipAttack. Remarkably, it achieves sim98\% attack success rate on GPT-4o, and sim98\% bypass rate against 5 guardrail models on average. The codes are available at GitHubhttps://github.com/yueliu1999/FlipAttack.
JADE: A Linguistics-based Safety Evaluation Platform for Large Language Models
In this paper, we present JADE, a targeted linguistic fuzzing platform which strengthens the linguistic complexity of seed questions to simultaneously and consistently break a wide range of widely-used LLMs categorized in three groups: eight open-sourced Chinese, six commercial Chinese and four commercial English LLMs. JADE generates three safety benchmarks for the three groups of LLMs, which contain unsafe questions that are highly threatening: the questions simultaneously trigger harmful generation of multiple LLMs, with an average unsafe generation ratio of 70% (please see the table below), while are still natural questions, fluent and preserving the core unsafe semantics. We release the benchmark demos generated for commercial English LLMs and open-sourced English LLMs in the following link: https://github.com/whitzard-ai/jade-db. For readers who are interested in evaluating on more questions generated by JADE, please contact us. JADE is based on Noam Chomsky's seminal theory of transformational-generative grammar. Given a seed question with unsafe intention, JADE invokes a sequence of generative and transformational rules to increment the complexity of the syntactic structure of the original question, until the safety guardrail is broken. Our key insight is: Due to the complexity of human language, most of the current best LLMs can hardly recognize the invariant evil from the infinite number of different syntactic structures which form an unbound example space that can never be fully covered. Technically, the generative/transformative rules are constructed by native speakers of the languages, and, once developed, can be used to automatically grow and transform the parse tree of a given question, until the guardrail is broken. For more evaluation results and demo, please check our website: https://whitzard-ai.github.io/jade.html.
How Realistic Is Your Synthetic Data? Constraining Deep Generative Models for Tabular Data
Deep Generative Models (DGMs) have been shown to be powerful tools for generating tabular data, as they have been increasingly able to capture the complex distributions that characterize them. However, to generate realistic synthetic data, it is often not enough to have a good approximation of their distribution, as it also requires compliance with constraints that encode essential background knowledge on the problem at hand. In this paper, we address this limitation and show how DGMs for tabular data can be transformed into Constrained Deep Generative Models (C-DGMs), whose generated samples are guaranteed to be compliant with the given constraints. This is achieved by automatically parsing the constraints and transforming them into a Constraint Layer (CL) seamlessly integrated with the DGM. Our extensive experimental analysis with various DGMs and tasks reveals that standard DGMs often violate constraints, some exceeding 95% non-compliance, while their corresponding C-DGMs are never non-compliant. Then, we quantitatively demonstrate that, at training time, C-DGMs are able to exploit the background knowledge expressed by the constraints to outperform their standard counterparts with up to 6.5% improvement in utility and detection. Further, we show how our CL does not necessarily need to be integrated at training time, as it can be also used as a guardrail at inference time, still producing some improvements in the overall performance of the models. Finally, we show that our CL does not hinder the sample generation time of the models.
Adapting Safe-for-Work Classifier for Malaysian Language Text: Enhancing Alignment in LLM-Ops Framework
As large language models (LLMs) become increasingly integrated into operational workflows (LLM-Ops), there is a pressing need for effective guardrails to ensure safe and aligned interactions, including the ability to detect potentially unsafe or inappropriate content across languages. However, existing safe-for-work classifiers are primarily focused on English text. To address this gap for the Malaysian language, we present a novel safe-for-work text classifier tailored specifically for Malaysian language content. By curating and annotating a first-of-its-kind dataset of Malaysian text spanning multiple content categories, we trained a classification model capable of identifying potentially unsafe material using state-of-the-art natural language processing techniques. This work represents an important step in enabling safer interactions and content filtering to mitigate potential risks and ensure responsible deployment of LLMs. To maximize accessibility and promote further research towards enhancing alignment in LLM-Ops for the Malaysian context, the model is publicly released at https://huggingface.co/malaysia-ai/malaysian-sfw-classifier.
Hallucinating AI Hijacking Attack: Large Language Models and Malicious Code Recommenders
The research builds and evaluates the adversarial potential to introduce copied code or hallucinated AI recommendations for malicious code in popular code repositories. While foundational large language models (LLMs) from OpenAI, Google, and Anthropic guard against both harmful behaviors and toxic strings, previous work on math solutions that embed harmful prompts demonstrate that the guardrails may differ between expert contexts. These loopholes would appear in mixture of expert's models when the context of the question changes and may offer fewer malicious training examples to filter toxic comments or recommended offensive actions. The present work demonstrates that foundational models may refuse to propose destructive actions correctly when prompted overtly but may unfortunately drop their guard when presented with a sudden change of context, like solving a computer programming challenge. We show empirical examples with trojan-hosting repositories like GitHub, NPM, NuGet, and popular content delivery networks (CDN) like jsDelivr which amplify the attack surface. In the LLM's directives to be helpful, example recommendations propose application programming interface (API) endpoints which a determined domain-squatter could acquire and setup attack mobile infrastructure that triggers from the naively copied code. We compare this attack to previous work on context-shifting and contrast the attack surface as a novel version of "living off the land" attacks in the malware literature. In the latter case, foundational language models can hijack otherwise innocent user prompts to recommend actions that violate their owners' safety policies when posed directly without the accompanying coding support request.
Sowing the Wind, Reaping the Whirlwind: The Impact of Editing Language Models
In the rapidly advancing field of artificial intelligence, the concept of Red-Teaming or Jailbreaking large language models (LLMs) has emerged as a crucial area of study. This approach is especially significant in terms of assessing and enhancing the safety and robustness of these models. This paper investigates the intricate consequences of such modifications through model editing, uncovering a complex relationship between enhancing model accuracy and preserving its ethical integrity. Our in-depth analysis reveals a striking paradox: while injecting accurate information is crucial for model reliability, it can paradoxically destabilize the model's foundational framework, resulting in unpredictable and potentially unsafe behaviors. Additionally, we propose a benchmark dataset NicheHazardQA to investigate this unsafe behavior both within the same and cross topical domain. This aspect of our research sheds light on how the edits, impact the model's safety metrics and guardrails. Our findings show that model editing serves as a cost-effective tool for topical red-teaming by methodically applying targeted edits and evaluating the resultant model behavior
ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming
When building Large Language Models (LLMs), it is paramount to bear safety in mind and protect them with guardrails. Indeed, LLMs should never generate content promoting or normalizing harmful, illegal, or unethical behavior that may contribute to harm to individuals or society. This principle applies to both normal and adversarial use. In response, we introduce ALERT, a large-scale benchmark to assess safety based on a novel fine-grained risk taxonomy. It is designed to evaluate the safety of LLMs through red teaming methodologies and consists of more than 45k instructions categorized using our novel taxonomy. By subjecting LLMs to adversarial testing scenarios, ALERT aims to identify vulnerabilities, inform improvements, and enhance the overall safety of the language models. Furthermore, the fine-grained taxonomy enables researchers to perform an in-depth evaluation that also helps one to assess the alignment with various policies. In our experiments, we extensively evaluate 10 popular open- and closed-source LLMs and demonstrate that many of them still struggle to attain reasonable levels of safety.
LionGuard: Building a Contextualized Moderation Classifier to Tackle Localized Unsafe Content
As large language models (LLMs) become increasingly prevalent in a wide variety of applications, concerns about the safety of their outputs have become more significant. Most efforts at safety-tuning or moderation today take on a predominantly Western-centric view of safety, especially for toxic, hateful, or violent speech. In this paper, we describe LionGuard, a Singapore-contextualized moderation classifier that can serve as guardrails against unsafe LLM outputs. When assessed on Singlish data, LionGuard outperforms existing widely-used moderation APIs, which are not finetuned for the Singapore context, by 14% (binary) and up to 51% (multi-label). Our work highlights the benefits of localization for moderation classifiers and presents a practical and scalable approach for low-resource languages.
garak: A Framework for Security Probing Large Language Models
As Large Language Models (LLMs) are deployed and integrated into thousands of applications, the need for scalable evaluation of how models respond to adversarial attacks grows rapidly. However, LLM security is a moving target: models produce unpredictable output, are constantly updated, and the potential adversary is highly diverse: anyone with access to the internet and a decent command of natural language. Further, what constitutes a security weak in one context may not be an issue in a different context; one-fits-all guardrails remain theoretical. In this paper, we argue that it is time to rethink what constitutes ``LLM security'', and pursue a holistic approach to LLM security evaluation, where exploration and discovery of issues are central. To this end, this paper introduces garak (Generative AI Red-teaming and Assessment Kit), a framework which can be used to discover and identify vulnerabilities in a target LLM or dialog system. garak probes an LLM in a structured fashion to discover potential vulnerabilities. The outputs of the framework describe a target model's weaknesses, contribute to an informed discussion of what composes vulnerabilities in unique contexts, and can inform alignment and policy discussions for LLM deployment.
Running in CIRCLE? A Simple Benchmark for LLM Code Interpreter Security
As large language models (LLMs) increasingly integrate native code interpreters, they enable powerful real-time execution capabilities, substantially expanding their utility. However, such integrations introduce potential system-level cybersecurity threats, fundamentally different from prompt-based vulnerabilities. To systematically evaluate these interpreter-specific risks, we propose CIRCLE (Code-Interpreter Resilience Check for LLM Exploits), a simple benchmark comprising 1,260 prompts targeting CPU, memory, and disk resource exhaustion. Each risk category includes explicitly malicious ("direct") and plausibly benign ("indirect") prompt variants. Our automated evaluation framework assesses not only whether LLMs refuse or generates risky code, but also executes the generated code within the interpreter environment to evaluate code correctness, simplifications made by the LLM to make the code safe, or execution timeouts. Evaluating 7 commercially available models from OpenAI and Google, we uncover significant and inconsistent vulnerabilities. For instance, evaluations show substantial disparities even within providers - OpenAI's o4-mini correctly refuses risky requests at 7.1%, notably higher rates compared to GPT-4.1 at 0.5%. Results particularly underscore that indirect, socially-engineered prompts substantially weaken model defenses. This highlights an urgent need for interpreter-specific cybersecurity benchmarks, dedicated mitigation tools (e.g., guardrails), and clear industry standards to guide safe and responsible deployment of LLM interpreter integrations. The benchmark dataset and evaluation code are publicly released to foster further research.
One-Shot is Enough: Consolidating Multi-Turn Attacks into Efficient Single-Turn Prompts for LLMs
Despite extensive safety enhancements in large language models (LLMs), multi-turn "jailbreak" conversations crafted by skilled human adversaries can still breach even the most sophisticated guardrails. However, these multi-turn attacks demand considerable manual effort, limiting their scalability. In this work, we introduce a novel approach called Multi-turn-to-Single-turn (M2S) that systematically converts multi-turn jailbreak prompts into single-turn attacks. Specifically, we propose three conversion strategies - Hyphenize, Numberize, and Pythonize - each preserving sequential context yet packaging it in a single query. Our experiments on the Multi-turn Human Jailbreak (MHJ) dataset show that M2S often increases or maintains high Attack Success Rates (ASRs) compared to original multi-turn conversations. Notably, using a StrongREJECT-based evaluation of harmfulness, M2S achieves up to 95.9% ASR on Mistral-7B and outperforms original multi-turn prompts by as much as 17.5% in absolute improvement on GPT-4o. Further analysis reveals that certain adversarial tactics, when consolidated into a single prompt, exploit structural formatting cues to evade standard policy checks. These findings underscore that single-turn attacks - despite being simpler and cheaper to conduct - can be just as potent, if not more, than their multi-turn counterparts. Our findings underscore the urgent need to reevaluate and reinforce LLM safety strategies, given how adversarial queries can be compacted into a single prompt while still retaining sufficient complexity to bypass existing safety measures.
OverThink: Slowdown Attacks on Reasoning LLMs
We increase overhead for applications that rely on reasoning LLMs-we force models to spend an amplified number of reasoning tokens, i.e., "overthink", to respond to the user query while providing contextually correct answers. The adversary performs an OVERTHINK attack by injecting decoy reasoning problems into the public content that is used by the reasoning LLM (e.g., for RAG applications) during inference time. Due to the nature of our decoy problems (e.g., a Markov Decision Process), modified texts do not violate safety guardrails. We evaluated our attack across closed-(OpenAI o1, o1-mini, o3-mini) and open-(DeepSeek R1) weights reasoning models on the FreshQA and SQuAD datasets. Our results show up to 18x slowdown on FreshQA dataset and 46x slowdown on SQuAD dataset. The attack also shows high transferability across models. To protect applications, we discuss and implement defenses leveraging LLM-based and system design approaches. Finally, we discuss societal, financial, and energy impacts of OVERTHINK attack which could amplify the costs for third-party applications operating reasoning models.
On the Role of Attention Heads in Large Language Model Safety
Large language models (LLMs) achieve state-of-the-art performance on multiple language tasks, yet their safety guardrails can be circumvented, leading to harmful generations. In light of this, recent research on safety mechanisms has emerged, revealing that when safety representations or component are suppressed, the safety capability of LLMs are compromised. However, existing research tends to overlook the safety impact of multi-head attention mechanisms, despite their crucial role in various model functionalities. Hence, in this paper, we aim to explore the connection between standard attention mechanisms and safety capability to fill this gap in the safety-related mechanistic interpretability. We propose a novel metric which tailored for multi-head attention, the Safety Head ImPortant Score (Ships), to assess the individual heads' contributions to model safety. Based on this, we generalize Ships to the dataset level and further introduce the Safety Attention Head AttRibution Algorithm (Sahara) to attribute the critical safety attention heads inside the model. Our findings show that the special attention head has a significant impact on safety. Ablating a single safety head allows aligned model (e.g., Llama-2-7b-chat) to respond to 16 times more harmful queries, while only modifying 0.006% of the parameters, in contrast to the ~ 5% modification required in previous studies. More importantly, we demonstrate that attention heads primarily function as feature extractors for safety and models fine-tuned from the same base model exhibit overlapping safety heads through comprehensive experiments. Together, our attribution approach and findings provide a novel perspective for unpacking the black box of safety mechanisms within large models.
Fantastic Copyrighted Beasts and How (Not) to Generate Them
Recent studies show that image and video generation models can be prompted to reproduce copyrighted content from their training data, raising serious legal concerns around copyright infringement. Copyrighted characters, in particular, pose a difficult challenge for image generation services, with at least one lawsuit already awarding damages based on the generation of these characters. Yet, little research has empirically examined this issue. We conduct a systematic evaluation to fill this gap. First, we build CopyCat, an evaluation suite consisting of diverse copyrighted characters and a novel evaluation pipeline. Our evaluation considers both the detection of similarity to copyrighted characters and generated image's consistency with user input. Our evaluation systematically shows that both image and video generation models can still generate characters even if characters' names are not explicitly mentioned in the prompt, sometimes with only two generic keywords (e.g., prompting with "videogame, plumber" consistently generates Nintendo's Mario character). We then introduce techniques to semi-automatically identify such keywords or descriptions that trigger character generation. Using our evaluation suite, we study runtime mitigation strategies, including both existing methods and new strategies we propose. Our findings reveal that commonly employed strategies, such as prompt rewriting in the DALL-E system, are not sufficient as standalone guardrails. These strategies must be coupled with other approaches, like negative prompting, to effectively reduce the unintended generation of copyrighted characters. Our work provides empirical grounding to the discussion of copyright mitigation strategies and offers actionable insights for model deployers actively implementing them.
CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion
The rapid advancement of Large Language Models (LLMs) has brought about remarkable generative capabilities but also raised concerns about their potential misuse. While strategies like supervised fine-tuning and reinforcement learning from human feedback have enhanced their safety, these methods primarily focus on natural languages, which may not generalize to other domains. This paper introduces CodeAttack, a framework that transforms natural language inputs into code inputs, presenting a novel environment for testing the safety generalization of LLMs. Our comprehensive studies on state-of-the-art LLMs including GPT-4, Claude-2, and Llama-2 series reveal a new and universal safety vulnerability of these models against code input: CodeAttack bypasses the safety guardrails of all models more than 80\% of the time. We find that a larger distribution gap between CodeAttack and natural language leads to weaker safety generalization, such as encoding natural language input with data structures. Furthermore, we give our hypotheses about the success of CodeAttack: the misaligned bias acquired by LLMs during code training, prioritizing code completion over avoiding the potential safety risk. Finally, we analyze potential mitigation measures. These findings highlight new safety risks in the code domain and the need for more robust safety alignment algorithms to match the code capabilities of LLMs.
Securing AI Agents: Implementing Role-Based Access Control for Industrial Applications
The emergence of Large Language Models (LLMs) has significantly advanced solutions across various domains, from political science to software development. However, these models are constrained by their training data, which is static and limited to information available up to a specific date. Additionally, their generalized nature often necessitates fine-tuning -- whether for classification or instructional purposes -- to effectively perform specific downstream tasks. AI agents, leveraging LLMs as their core, mitigate some of these limitations by accessing external tools and real-time data, enabling applications such as live weather reporting and data analysis. In industrial settings, AI agents are transforming operations by enhancing decision-making, predictive maintenance, and process optimization. For example, in manufacturing, AI agents enable near-autonomous systems that boost productivity and support real-time decision-making. Despite these advancements, AI agents remain vulnerable to security threats, including prompt injection attacks, which pose significant risks to their integrity and reliability. To address these challenges, this paper proposes a framework for integrating Role-Based Access Control (RBAC) into AI agents, providing a robust security guardrail. This framework aims to support the effective and scalable deployment of AI agents, with a focus on on-premises implementations.
Steering MoE LLMs via Expert (De)Activation
Mixture-of-Experts (MoE) in Large Language Models (LLMs) routes each token through a subset of specialized Feed-Forward Networks (FFN), known as experts. We present SteerMoE, a framework for steering MoE models by detecting and controlling behavior-linked experts. Our detection method identifies experts with distinct activation patterns across paired inputs exhibiting contrasting behaviors. By selectively (de)activating such experts during inference, we control behaviors like faithfulness and safety without retraining or modifying weights. Across 11 benchmarks and 6 LLMs, our steering raises safety by up to +20% and faithfulness by +27%. In adversarial attack mode, it drops safety by -41% alone, and -100% when combined with existing jailbreak methods, bypassing all safety guardrails and exposing a new dimension of alignment faking hidden within experts.
Amazon Nova AI Challenge -- Trusted AI: Advancing secure, AI-assisted software development
AI systems for software development are rapidly gaining prominence, yet significant challenges remain in ensuring their safety. To address this, Amazon launched the Trusted AI track of the Amazon Nova AI Challenge, a global competition among 10 university teams to drive advances in secure AI. In the challenge, five teams focus on developing automated red teaming bots, while the other five create safe AI assistants. This challenge provides teams with a unique platform to evaluate automated red-teaming and safety alignment methods through head-to-head adversarial tournaments where red teams have multi-turn conversations with the competing AI coding assistants to test their safety alignment. Along with this, the challenge provides teams with a feed of high quality annotated data to fuel iterative improvement. Throughout the challenge, teams developed state-of-the-art techniques, introducing novel approaches in reasoning-based safety alignment, robust model guardrails, multi-turn jail-breaking, and efficient probing of large language models (LLMs). To support these efforts, the Amazon Nova AI Challenge team made substantial scientific and engineering investments, including building a custom baseline coding specialist model for the challenge from scratch, developing a tournament orchestration service, and creating an evaluation harness. This paper outlines the advancements made by university teams and the Amazon Nova AI Challenge team in addressing the safety challenges of AI for software development, highlighting this collaborative effort to raise the bar for AI safety.
Measuring What Matters: A Framework for Evaluating Safety Risks in Real-World LLM Applications
Most safety testing efforts for large language models (LLMs) today focus on evaluating foundation models. However, there is a growing need to evaluate safety at the application level, as components such as system prompts, retrieval pipelines, and guardrails introduce additional factors that significantly influence the overall safety of LLM applications. In this paper, we introduce a practical framework for evaluating application-level safety in LLM systems, validated through real-world deployment across multiple use cases within our organization. The framework consists of two parts: (1) principles for developing customized safety risk taxonomies, and (2) practices for evaluating safety risks in LLM applications. We illustrate how the proposed framework was applied in our internal pilot, providing a reference point for organizations seeking to scale their safety testing efforts. This work aims to bridge the gap between theoretical concepts in AI safety and the operational realities of safeguarding LLM applications in practice, offering actionable guidance for safe and scalable deployment.
RealSafe-R1: Safety-Aligned DeepSeek-R1 without Compromising Reasoning Capability
Large Reasoning Models (LRMs), such as OpenAI o1 and DeepSeek-R1, have been rapidly progressing and achieving breakthrough performance on complex reasoning tasks such as mathematics and coding. However, the open-source R1 models have raised safety concerns in wide applications, such as the tendency to comply with malicious queries, which greatly impacts the utility of these powerful models in their applications. In this paper, we introduce RealSafe-R1 as safety-aligned versions of DeepSeek-R1 distilled models. To train these models, we construct a dataset of 15k safety-aware reasoning trajectories generated by DeepSeek-R1, under explicit instructions for expected refusal behavior. Both quantitative experiments and qualitative case studies demonstrate the models' improvements, which are shown in their safety guardrails against both harmful queries and jailbreak attacks. Importantly, unlike prior safety alignment efforts that often compromise reasoning performance, our method preserves the models' reasoning capabilities by maintaining the training data within the original distribution of generation. Model weights of RealSafe-R1 are open-source at https://huggingface.co/RealSafe.
PolyGuard: A Multilingual Safety Moderation Tool for 17 Languages
Truly multilingual safety moderation efforts for Large Language Models (LLMs) have been hindered by a narrow focus on a small set of languages (e.g., English, Chinese) as well as a limited scope of safety definition, resulting in significant gaps in moderation capabilities. To bridge these gaps, we release POLYGUARD, a new state-of-the-art multilingual safety model for safeguarding LLM generations, and the corresponding training and evaluation datasets. POLYGUARD is trained on POLYGUARDMIX, the largest multilingual safety training corpus to date containing 1.91M samples across 17 languages (e.g., Chinese, Czech, English, Hindi). We also introduce POLYGUARDPROMPTS, a high quality multilingual benchmark with 29K samples for the evaluation of safety guardrails. Created by combining naturally occurring multilingual human-LLM interactions and human-verified machine translations of an English-only safety dataset (WildGuardMix; Han et al., 2024), our datasets contain prompt-output pairs with labels of prompt harmfulness, response harmfulness, and response refusal. Through extensive evaluations across multiple safety and toxicity benchmarks, we demonstrate that POLYGUARD outperforms existing state-of-the-art open-weight and commercial safety classifiers by 5.5%. Our contributions advance efforts toward safer multilingual LLMs for all global users.
Playing the Fool: Jailbreaking LLMs and Multimodal LLMs with Out-of-Distribution Strategy
Despite the remarkable versatility of Large Language Models (LLMs) and Multimodal LLMs (MLLMs) to generalize across both language and vision tasks, LLMs and MLLMs have shown vulnerability to jailbreaking, generating textual outputs that undermine safety, ethical, and bias standards when exposed to harmful or sensitive inputs. With the recent advancement of safety alignment via preference-tuning from human feedback, LLMs and MLLMs have been equipped with safety guardrails to yield safe, ethical, and fair responses with regard to harmful inputs. However, despite the significance of safety alignment, research on the vulnerabilities remains largely underexplored. In this paper, we investigate the unexplored vulnerability of the safety alignment, examining its ability to consistently provide safety guarantees for out-of-distribution(OOD)-ifying harmful inputs that may fall outside the aligned data distribution. Our key observation is that OOD-ifying the vanilla harmful inputs highly increases the uncertainty of the model to discern the malicious intent within the input, leading to a higher chance of being jailbroken. Exploiting this vulnerability, we propose JOOD, a new Jailbreak framework via OOD-ifying inputs beyond the safety alignment. We explore various off-the-shelf visual and textual transformation techniques for OOD-ifying the harmful inputs. Notably, we observe that even simple mixing-based techniques such as image mixup prove highly effective in increasing the uncertainty of the model, thereby facilitating the bypass of the safety alignment. Experiments across diverse jailbreak scenarios demonstrate that JOOD effectively jailbreaks recent proprietary LLMs and MLLMs such as GPT-4 and o1 with high attack success rate, which previous attack approaches have consistently struggled to jailbreak. Code is available at https://github.com/naver-ai/JOOD.
JBShield: Defending Large Language Models from Jailbreak Attacks through Activated Concept Analysis and Manipulation
Despite the implementation of safety alignment strategies, large language models (LLMs) remain vulnerable to jailbreak attacks, which undermine these safety guardrails and pose significant security threats. Some defenses have been proposed to detect or mitigate jailbreaks, but they are unable to withstand the test of time due to an insufficient understanding of jailbreak mechanisms. In this work, we investigate the mechanisms behind jailbreaks based on the Linear Representation Hypothesis (LRH), which states that neural networks encode high-level concepts as subspaces in their hidden representations. We define the toxic semantics in harmful and jailbreak prompts as toxic concepts and describe the semantics in jailbreak prompts that manipulate LLMs to comply with unsafe requests as jailbreak concepts. Through concept extraction and analysis, we reveal that LLMs can recognize the toxic concepts in both harmful and jailbreak prompts. However, unlike harmful prompts, jailbreak prompts activate the jailbreak concepts and alter the LLM output from rejection to compliance. Building on our analysis, we propose a comprehensive jailbreak defense framework, JBShield, consisting of two key components: jailbreak detection JBShield-D and mitigation JBShield-M. JBShield-D identifies jailbreak prompts by determining whether the input activates both toxic and jailbreak concepts. When a jailbreak prompt is detected, JBShield-M adjusts the hidden representations of the target LLM by enhancing the toxic concept and weakening the jailbreak concept, ensuring LLMs produce safe content. Extensive experiments demonstrate the superior performance of JBShield, achieving an average detection accuracy of 0.95 and reducing the average attack success rate of various jailbreak attacks to 2% from 61% across distinct LLMs.
Ensuring Safety and Trust: Analyzing the Risks of Large Language Models in Medicine
The remarkable capabilities of Large Language Models (LLMs) make them increasingly compelling for adoption in real-world healthcare applications. However, the risks associated with using LLMs in medical applications have not been systematically characterized. We propose using five key principles for safe and trustworthy medical AI: Truthfulness, Resilience, Fairness, Robustness, and Privacy, along with ten specific aspects. Under this comprehensive framework, we introduce a novel MedGuard benchmark with 1,000 expert-verified questions. Our evaluation of 11 commonly used LLMs shows that the current language models, regardless of their safety alignment mechanisms, generally perform poorly on most of our benchmarks, particularly when compared to the high performance of human physicians. Despite recent reports indicate that advanced LLMs like ChatGPT can match or even exceed human performance in various medical tasks, this study underscores a significant safety gap, highlighting the crucial need for human oversight and the implementation of AI safety guardrails.
SciSafeEval: A Comprehensive Benchmark for Safety Alignment of Large Language Models in Scientific Tasks
Large language models (LLMs) have had a transformative impact on a variety of scientific tasks across disciplines such as biology, chemistry, medicine, and physics. However, ensuring the safety alignment of these models in scientific research remains an underexplored area, with existing benchmarks primarily focus on textual content and overlooking key scientific representations such as molecular, protein, and genomic languages. Moreover, the safety mechanisms of LLMs in scientific tasks are insufficiently studied. To address these limitations, we introduce SciSafeEval, a comprehensive benchmark designed to evaluate the safety alignment of LLMs across a range of scientific tasks. SciSafeEval spans multiple scientific languages - including textual, molecular, protein, and genomic - and covers a wide range of scientific domains. We evaluate LLMs in zero-shot, few-shot and chain-of-thought settings, and introduce a 'jailbreak' enhancement feature that challenges LLMs equipped with safety guardrails, rigorously testing their defenses against malicious intention. Our benchmark surpasses existing safety datasets in both scale and scope, providing a robust platform for assessing the safety and performance of LLMs in scientific contexts. This work aims to facilitate the responsible development and deployment of LLMs, promoting alignment with safety and ethical standards in scientific research.
Decoding Hate: Exploring Language Models' Reactions to Hate Speech
Hate speech is a harmful form of online expression, often manifesting as derogatory posts. It is a significant risk in digital environments. With the rise of Large Language Models (LLMs), there is concern about their potential to replicate hate speech patterns, given their training on vast amounts of unmoderated internet data. Understanding how LLMs respond to hate speech is crucial for their responsible deployment. However, the behaviour of LLMs towards hate speech has been limited compared. This paper investigates the reactions of seven state-of-the-art LLMs (LLaMA 2, Vicuna, LLaMA 3, Mistral, GPT-3.5, GPT-4, and Gemini Pro) to hate speech. Through qualitative analysis, we aim to reveal the spectrum of responses these models produce, highlighting their capacity to handle hate speech inputs. We also discuss strategies to mitigate hate speech generation by LLMs, particularly through fine-tuning and guideline guardrailing. Finally, we explore the models' responses to hate speech framed in politically correct language.
Overriding Safety protections of Open-source Models
LLMs(Large Language Models) nowadays have widespread adoption as a tool for solving issues across various domain/tasks. These models since are susceptible to produce harmful or toxic results, inference-time adversarial attacks, therefore they do undergo safety alignment training and Red teaming for putting in safety guardrails. For using these models, usually fine-tuning is done for model alignment on the desired tasks, which can make model more aligned but also make it more susceptible to produce unsafe responses, if fine-tuned with harmful data.In this paper, we study how much of impact introduction of harmful data in fine-tuning can make, and if it can override the safety protection of those models. Conversely,it was also explored that if model is fine-tuned on safety data can make the model produce more safer responses. Further we explore if fine-tuning the model on harmful data makes it less helpful or less trustworthy because of increase in model uncertainty leading to knowledge drift. Our extensive experimental results shown that Safety protection in an open-source can be overridden, when fine-tuned with harmful data as observed by ASR increasing by 35% when compared to basemodel's ASR. Also, as observed, fine-tuning a model with harmful data made the harmful fine-tuned model highly uncertain with huge knowledge drift and less truthfulness in its responses. Furthermore, for the safe fine-tuned model, ASR decreases by 51.68% as compared to the basemodel, and Safe model also shown in minor drop in uncertainty and truthfulness as compared to basemodel. This paper's code is available at: https://github.com/techsachinkr/Overriding_Model_Safety_Protections
Does Refusal Training in LLMs Generalize to the Past Tense?
Refusal training is widely used to prevent LLMs from generating harmful, undesirable, or illegal outputs. We reveal a curious generalization gap in the current refusal training approaches: simply reformulating a harmful request in the past tense (e.g., "How to make a Molotov cocktail?" to "How did people make a Molotov cocktail?") is often sufficient to jailbreak many state-of-the-art LLMs. We systematically evaluate this method on Llama-3 8B, Claude-3.5 Sonnet, GPT-3.5 Turbo, Gemma-2 9B, Phi-3-Mini, GPT-4o mini, GPT-4o, and R2D2 models using GPT-3.5 Turbo as a reformulation model. For example, the success rate of this simple attack on GPT-4o increases from 1% using direct requests to 88% using 20 past tense reformulation attempts on harmful requests from JailbreakBench with GPT-4 as a jailbreak judge. Interestingly, we also find that reformulations in the future tense are less effective, suggesting that refusal guardrails tend to consider past historical questions more benign than hypothetical future questions. Moreover, our experiments on fine-tuning GPT-3.5 Turbo show that defending against past reformulations is feasible when past tense examples are explicitly included in the fine-tuning data. Overall, our findings highlight that the widely used alignment techniques -- such as SFT, RLHF, and adversarial training -- employed to align the studied models can be brittle and do not always generalize as intended. We provide code and jailbreak artifacts at https://github.com/tml-epfl/llm-past-tense.
Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations
Large language models (LLMs) are susceptible to a variety of risks, from non-faithful output to biased and toxic generations. Due to several limiting factors surrounding LLMs (training cost, API access, data availability, etc.), it may not always be feasible to impose direct safety constraints on a deployed model. Therefore, an efficient and reliable alternative is required. To this end, we present our ongoing efforts to create and deploy a library of detectors: compact and easy-to-build classification models that provide labels for various harms. In addition to the detectors themselves, we discuss a wide range of uses for these detector models - from acting as guardrails to enabling effective AI governance. We also deep dive into inherent challenges in their development and discuss future work aimed at making the detectors more reliable and broadening their scope.
Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes
Large Language Models (LLMs) are becoming a prominent generative AI tool, where the user enters a query and the LLM generates an answer. To reduce harm and misuse, efforts have been made to align these LLMs to human values using advanced training techniques such as Reinforcement Learning from Human Feedback (RLHF). However, recent studies have highlighted the vulnerability of LLMs to adversarial jailbreak attempts aiming at subverting the embedded safety guardrails. To address this challenge, this paper defines and investigates the Refusal Loss of LLMs and then proposes a method called Gradient Cuff to detect jailbreak attempts. Gradient Cuff exploits the unique properties observed in the refusal loss landscape, including functional values and its smoothness, to design an effective two-step detection strategy. Experimental results on two aligned LLMs (LLaMA-2-7B-Chat and Vicuna-7B-V1.5) and six types of jailbreak attacks (GCG, AutoDAN, PAIR, TAP, Base64, and LRL) show that Gradient Cuff can significantly improve the LLM's rejection capability for malicious jailbreak queries, while maintaining the model's performance for benign user queries by adjusting the detection threshold.
Plan-Grounded Large Language Models for Dual Goal Conversational Settings
Training Large Language Models (LLMs) to follow user instructions has been shown to supply the LLM with ample capacity to converse fluently while being aligned with humans. Yet, it is not completely clear how an LLM can lead a plan-grounded conversation in mixed-initiative settings where instructions flow in both directions of the conversation, i.e. both the LLM and the user provide instructions to one another. In this paper, we tackle a dual goal mixed-initiative conversational setting where the LLM not only grounds the conversation on an arbitrary plan but also seeks to satisfy both a procedural plan and user instructions. The LLM is then responsible for guiding the user through the plan and, at the same time, adapting to new circumstances, answering questions, and activating safety guardrails when needed. We propose a novel LLM that grounds the dialogue on a procedural plan, can take the dialogue initiative, and enforces guardrails on the system's behavior, while also improving the LLM's responses to unexpected user behavior. Experiments in controlled settings and with real users show that the best-performing model, which we call PlanLLM, achieves a 2.1x improvement over a strong baseline. Moreover, experiments also show good generalization to unseen domains.
Scaling Laws for Forgetting When Fine-Tuning Large Language Models
We study and quantify the problem of forgetting when fine-tuning pre-trained large language models (LLMs) on a downstream task. We find that parameter-efficient fine-tuning (PEFT) strategies, such as Low-Rank Adapters (LoRA), still suffer from catastrophic forgetting. In particular, we identify a strong inverse linear relationship between the fine-tuning performance and the amount of forgetting when fine-tuning LLMs with LoRA. We further obtain precise scaling laws that show forgetting increases as a shifted power law in the number of parameters fine-tuned and the number of update steps. We also examine the impact of forgetting on knowledge, reasoning, and the safety guardrails trained into Llama 2 7B chat. Our study suggests that forgetting cannot be avoided through early stopping or by varying the number of parameters fine-tuned. We believe this opens up an important safety-critical direction for future research to evaluate and develop fine-tuning schemes which mitigate forgetting
Formally Specifying the High-Level Behavior of LLM-Based Agents
LLM-based agents have recently emerged as promising tools for solving challenging problems without the need for task-specific finetuned models that can be expensive to procure. Currently, the design and implementation of such agents is ad hoc, as the wide variety of tasks that LLM-based agents may be applied to naturally means there can be no one-size-fits-all approach to agent design. In this work we aim to alleviate the difficulty of designing and implementing new agents by proposing a minimalistic, high-level generation framework that simplifies the process of building agents. The framework we introduce allows the user to specify desired agent behaviors in Linear Temporal Logic (LTL). The declarative LTL specification is then used to construct a constrained decoder that guarantees the LLM will produce an output exhibiting the desired behavior. By designing our framework in this way, we obtain several benefits, including the ability to enforce complex agent behavior, the ability to formally validate prompt examples, and the ability to seamlessly incorporate content-focused logical constraints into generation. In particular, our declarative approach, in which the desired behavior is simply described without concern for how it should be implemented or enforced, enables rapid design, implementation and experimentation with different LLM-based agents. We demonstrate how the proposed framework can be used to implement recent LLM-based agents, and show how the guardrails our approach provides can lead to improvements in agent performance. In addition, we release our code for general use.
Jailbreaking Black Box Large Language Models in Twenty Queries
There is growing interest in ensuring that large language models (LLMs) align with human values. However, the alignment of such models is vulnerable to adversarial jailbreaks, which coax LLMs into overriding their safety guardrails. The identification of these vulnerabilities is therefore instrumental in understanding inherent weaknesses and preventing future misuse. To this end, we propose Prompt Automatic Iterative Refinement (PAIR), an algorithm that generates semantic jailbreaks with only black-box access to an LLM. PAIR -- which is inspired by social engineering attacks -- uses an attacker LLM to automatically generate jailbreaks for a separate targeted LLM without human intervention. In this way, the attacker LLM iteratively queries the target LLM to update and refine a candidate jailbreak. Empirically, PAIR often requires fewer than twenty queries to produce a jailbreak, which is orders of magnitude more efficient than existing algorithms. PAIR also achieves competitive jailbreaking success rates and transferability on open and closed-source LLMs, including GPT-3.5/4, Vicuna, and PaLM-2.
Right to be Forgotten in the Era of Large Language Models: Implications, Challenges, and Solutions
The Right to be Forgotten (RTBF) was first established as the result of the ruling of Google Spain SL, Google Inc. v AEPD, Mario Costeja Gonz\'alez, and was later included as the Right to Erasure under the General Data Protection Regulation (GDPR) of European Union to allow individuals the right to request personal data be deleted by organizations. Specifically for search engines, individuals can send requests to organizations to exclude their information from the query results. It was a significant emergent right as the result of the evolution of technology. With the recent development of Large Language Models (LLMs) and their use in chatbots, LLM-enabled software systems have become popular. But they are not excluded from the RTBF. Compared with the indexing approach used by search engines, LLMs store, and process information in a completely different way. This poses new challenges for compliance with the RTBF. In this paper, we explore these challenges and provide our insights on how to implement technical solutions for the RTBF, including the use of differential privacy, machine unlearning, model editing, and guardrails. With the rapid advancement of AI and the increasing need of regulating this powerful technology, learning from the case of RTBF can provide valuable lessons for technical practitioners, legal experts, organizations, and authorities.
Baize: An Open-Source Chat Model with Parameter-Efficient Tuning on Self-Chat Data
Chat models, such as ChatGPT, have shown impressive capabilities and have been rapidly adopted across numerous domains. However, these models are only accessible through a restricted API, creating barriers for new research and progress in the field. We propose a pipeline that can automatically generate a high-quality multi-turn chat corpus by leveraging ChatGPT to engage in a conversation with itself. Subsequently, we employ parameter-efficient tuning to enhance LLaMA, an open-source large language model. The resulting model, named Baize, demonstrates good performance in multi-turn dialogues with guardrails that minimize potential risks. The Baize models and data are released for research purposes only at https://github.com/project-baize/baize. An online demo is also available at https://huggingface.co/spaces/project-baize/baize-lora-7B.
Agentic AI Frameworks: Architectures, Protocols, and Design Challenges
The emergence of Large Language Models (LLMs) has ushered in a transformative paradigm in artificial intelligence, Agentic AI, where intelligent agents exhibit goal-directed autonomy, contextual reasoning, and dynamic multi-agent coordination. This paper provides a systematic review and comparative analysis of leading Agentic AI frameworks, including CrewAI, LangGraph, AutoGen, Semantic Kernel, Agno, Google ADK, and MetaGPT, evaluating their architectural principles, communication mechanisms, memory management, safety guardrails, and alignment with service-oriented computing paradigms. Furthermore, we identify key limitations, emerging trends, and open challenges in the field. To address the issue of agent communication, we conduct an in-depth analysis of protocols such as the Contract Net Protocol (CNP), Agent-to-Agent (A2A), Agent Network Protocol (ANP), and Agora. Our findings not only establish a foundational taxonomy for Agentic AI systems but also propose future research directions to enhance scalability, robustness, and interoperability. This work serves as a comprehensive reference for researchers and practitioners working to advance the next generation of autonomous AI systems.
