new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 12

ChronoEdit: Towards Temporal Reasoning for Image Editing and World Simulation

Recent advances in large generative models have significantly advanced image editing and in-context image generation, yet a critical gap remains in ensuring physical consistency, where edited objects must remain coherent. This capability is especially vital for world simulation related tasks. In this paper, we present ChronoEdit, a framework that reframes image editing as a video generation problem. First, ChronoEdit treats the input and edited images as the first and last frames of a video, allowing it to leverage large pretrained video generative models that capture not only object appearance but also the implicit physics of motion and interaction through learned temporal consistency. Second, ChronoEdit introduces a temporal reasoning stage that explicitly performs editing at inference time. Under this setting, the target frame is jointly denoised with reasoning tokens to imagine a plausible editing trajectory that constrains the solution space to physically viable transformations. The reasoning tokens are then dropped after a few steps to avoid the high computational cost of rendering a full video. To validate ChronoEdit, we introduce PBench-Edit, a new benchmark of image-prompt pairs for contexts that require physical consistency, and demonstrate that ChronoEdit surpasses state-of-the-art baselines in both visual fidelity and physical plausibility. Code and models for both the 14B and 2B variants of ChronoEdit will be released on the project page: https://research.nvidia.com/labs/toronto-ai/chronoedit

nvidia NVIDIA
·
Oct 5 2

Draw-In-Mind: Learning Precise Image Editing via Chain-of-Thought Imagination

In recent years, integrating multimodal understanding and generation into a single unified model has emerged as a promising paradigm. While this approach achieves strong results in text-to-image (T2I) generation, it still struggles with precise image editing. We attribute this limitation to an imbalanced division of responsibilities. The understanding module primarily functions as a translator that encodes user instructions into semantic conditions, while the generation module must simultaneously act as designer and painter, inferring the original layout, identifying the target editing region, and rendering the new content. This imbalance is counterintuitive because the understanding module is typically trained with several times more data on complex reasoning tasks than the generation module. To address this issue, we introduce Draw-In-Mind (DIM), a dataset comprising two complementary subsets: (i) DIM-T2I, containing 14M long-context image-text pairs to enhance complex instruction comprehension; and (ii) DIM-Edit, consisting of 233K chain-of-thought imaginations generated by GPT-4o, serving as explicit design blueprints for image edits. We connect a frozen Qwen2.5-VL-3B with a trainable SANA1.5-1.6B via a lightweight two-layer MLP, and train it on the proposed DIM dataset, resulting in DIM-4.6B-T2I/Edit. Despite its modest parameter scale, DIM-4.6B-Edit achieves SOTA or competitive performance on the ImgEdit and GEdit-Bench benchmarks, outperforming much larger models such as UniWorld-V1 and Step1X-Edit. These findings demonstrate that explicitly assigning the design responsibility to the understanding module provides significant benefits for image editing. Our dataset and models will be available at https://github.com/showlab/DIM.

showlab Show Lab
·
Sep 2

ImageBrush: Learning Visual In-Context Instructions for Exemplar-Based Image Manipulation

While language-guided image manipulation has made remarkable progress, the challenge of how to instruct the manipulation process faithfully reflecting human intentions persists. An accurate and comprehensive description of a manipulation task using natural language is laborious and sometimes even impossible, primarily due to the inherent uncertainty and ambiguity present in linguistic expressions. Is it feasible to accomplish image manipulation without resorting to external cross-modal language information? If this possibility exists, the inherent modality gap would be effortlessly eliminated. In this paper, we propose a novel manipulation methodology, dubbed ImageBrush, that learns visual instructions for more accurate image editing. Our key idea is to employ a pair of transformation images as visual instructions, which not only precisely captures human intention but also facilitates accessibility in real-world scenarios. Capturing visual instructions is particularly challenging because it involves extracting the underlying intentions solely from visual demonstrations and then applying this operation to a new image. To address this challenge, we formulate visual instruction learning as a diffusion-based inpainting problem, where the contextual information is fully exploited through an iterative process of generation. A visual prompting encoder is carefully devised to enhance the model's capacity in uncovering human intent behind the visual instructions. Extensive experiments show that our method generates engaging manipulation results conforming to the transformations entailed in demonstrations. Moreover, our model exhibits robust generalization capabilities on various downstream tasks such as pose transfer, image translation and video inpainting.

  • 8 authors
·
Aug 1, 2023

WEAVE: Unleashing and Benchmarking the In-context Interleaved Comprehension and Generation

Recent advances in unified multimodal models (UMMs) have enabled impressive progress in visual comprehension and generation. However, existing datasets and benchmarks focus primarily on single-turn interactions, failing to capture the multi-turn, context-dependent nature of real-world image creation and editing. To address this gap, we present WEAVE, the first suite for in-context interleaved cross-modality comprehension and generation. Our suite consists of two complementary parts. WEAVE-100k is a large-scale dataset of 100K interleaved samples spanning over 370K dialogue turns and 500K images, covering comprehension, editing, and generation tasks that require reasoning over historical context. WEAVEBench is a human-annotated benchmark with 100 tasks based on 480 images, featuring a hybrid VLM judger evaluation framework based on both the reference image and the combination of the original image with editing instructions that assesses models' abilities in multi-turn generation, visual memory, and world-knowledge reasoning across diverse domains. Experiments demonstrate that training on WEAVE-100k enables vision comprehension, image editing, and comprehension-generation collaboration capabilities. Furthermore, it facilitates UMMs to develop emergent visual-memory capabilities, while extensive evaluations on WEAVEBench expose the persistent limitations and challenges of current approaches in multi-turn, context-aware image generation and editing. We believe WEAVE provides a view and foundation for studying in-context interleaved comprehension and generation for multi-modal community.

  • 13 authors
·
Nov 14 2

Seedream 4.0: Toward Next-generation Multimodal Image Generation

We introduce Seedream 4.0, an efficient and high-performance multimodal image generation system that unifies text-to-image (T2I) synthesis, image editing, and multi-image composition within a single framework. We develop a highly efficient diffusion transformer with a powerful VAE which also can reduce the number of image tokens considerably. This allows for efficient training of our model, and enables it to fast generate native high-resolution images (e.g., 1K-4K). Seedream 4.0 is pretrained on billions of text-image pairs spanning diverse taxonomies and knowledge-centric concepts. Comprehensive data collection across hundreds of vertical scenarios, coupled with optimized strategies, ensures stable and large-scale training, with strong generalization. By incorporating a carefully fine-tuned VLM model, we perform multi-modal post-training for training both T2I and image editing tasks jointly. For inference acceleration, we integrate adversarial distillation, distribution matching, and quantization, as well as speculative decoding. It achieves an inference time of up to 1.8 seconds for generating a 2K image (without a LLM/VLM as PE model). Comprehensive evaluations reveal that Seedream 4.0 can achieve state-of-the-art results on both T2I and multimodal image editing. In particular, it demonstrates exceptional multimodal capabilities in complex tasks, including precise image editing and in-context reasoning, and also allows for multi-image reference, and can generate multiple output images. This extends traditional T2I systems into an more interactive and multidimensional creative tool, pushing the boundary of generative AI for both creativity and professional applications. Seedream 4.0 is now accessible on https://www.volcengine.com/experience/ark?launch=seedream.

  • 50 authors
·
Sep 24 14

OmniGen2: Exploration to Advanced Multimodal Generation

In this work, we introduce OmniGen2, a versatile and open-source generative model designed to provide a unified solution for diverse generation tasks, including text-to-image, image editing, and in-context generation. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. This design enables OmniGen2 to build upon existing multimodal understanding models without the need to re-adapt VAE inputs, thereby preserving the original text generation capabilities. To facilitate the training of OmniGen2, we developed comprehensive data construction pipelines, encompassing image editing and in-context generation data. Additionally, we introduce a reflection mechanism tailored for image generation tasks and curate a dedicated reflection dataset based on OmniGen2. Despite its relatively modest parameter size, OmniGen2 achieves competitive results on multiple task benchmarks, including text-to-image and image editing. To further evaluate in-context generation, also referred to as subject-driven tasks, we introduce a new benchmark named OmniContext. OmniGen2 achieves state-of-the-art performance among open-source models in terms of consistency. We will release our models, training code, datasets, and data construction pipeline to support future research in this field. Project Page: https://vectorspacelab.github.io/OmniGen2; GitHub Link: https://github.com/VectorSpaceLab/OmniGen2

  • 22 authors
·
Jun 23 4

Multimodal-Conditioned Latent Diffusion Models for Fashion Image Editing

Fashion illustration is a crucial medium for designers to convey their creative vision and transform design concepts into tangible representations that showcase the interplay between clothing and the human body. In the context of fashion design, computer vision techniques have the potential to enhance and streamline the design process. Departing from prior research primarily focused on virtual try-on, this paper tackles the task of multimodal-conditioned fashion image editing. Our approach aims to generate human-centric fashion images guided by multimodal prompts, including text, human body poses, garment sketches, and fabric textures. To address this problem, we propose extending latent diffusion models to incorporate these multiple modalities and modifying the structure of the denoising network, taking multimodal prompts as input. To condition the proposed architecture on fabric textures, we employ textual inversion techniques and let diverse cross-attention layers of the denoising network attend to textual and texture information, thus incorporating different granularity conditioning details. Given the lack of datasets for the task, we extend two existing fashion datasets, Dress Code and VITON-HD, with multimodal annotations. Experimental evaluations demonstrate the effectiveness of our proposed approach in terms of realism and coherence concerning the provided multimodal inputs.

  • 5 authors
·
Mar 21, 2024

DC-SAM: In-Context Segment Anything in Images and Videos via Dual Consistency

Given a single labeled example, in-context segmentation aims to segment corresponding objects. This setting, known as one-shot segmentation in few-shot learning, explores the segmentation model's generalization ability and has been applied to various vision tasks, including scene understanding and image/video editing. While recent Segment Anything Models have achieved state-of-the-art results in interactive segmentation, these approaches are not directly applicable to in-context segmentation. In this work, we propose the Dual Consistency SAM (DC-SAM) method based on prompt-tuning to adapt SAM and SAM2 for in-context segmentation of both images and videos. Our key insights are to enhance the features of the SAM's prompt encoder in segmentation by providing high-quality visual prompts. When generating a mask prior, we fuse the SAM features to better align the prompt encoder. Then, we design a cycle-consistent cross-attention on fused features and initial visual prompts. Next, a dual-branch design is provided by using the discriminative positive and negative prompts in the prompt encoder. Furthermore, we design a simple mask-tube training strategy to adopt our proposed dual consistency method into the mask tube. Although the proposed DC-SAM is primarily designed for images, it can be seamlessly extended to the video domain with the support of SAM2. Given the absence of in-context segmentation in the video domain, we manually curate and construct the first benchmark from existing video segmentation datasets, named In-Context Video Object Segmentation (IC-VOS), to better assess the in-context capability of the model. Extensive experiments demonstrate that our method achieves 55.5 (+1.4) mIoU on COCO-20i, 73.0 (+1.1) mIoU on PASCAL-5i, and a J&F score of 71.52 on the proposed IC-VOS benchmark. Our source code and benchmark are available at https://github.com/zaplm/DC-SAM.

  • 7 authors
·
Apr 16 2

In-Context Sync-LoRA for Portrait Video Editing

Editing portrait videos is a challenging task that requires flexible yet precise control over a wide range of modifications, such as appearance changes, expression edits, or the addition of objects. The key difficulty lies in preserving the subject's original temporal behavior, demanding that every edited frame remains precisely synchronized with the corresponding source frame. We present Sync-LoRA, a method for editing portrait videos that achieves high-quality visual modifications while maintaining frame-accurate synchronization and identity consistency. Our approach uses an image-to-video diffusion model, where the edit is defined by modifying the first frame and then propagated to the entire sequence. To enable accurate synchronization, we train an in-context LoRA using paired videos that depict identical motion trajectories but differ in appearance. These pairs are automatically generated and curated through a synchronization-based filtering process that selects only the most temporally aligned examples for training. This training setup teaches the model to combine motion cues from the source video with the visual changes introduced in the edited first frame. Trained on a compact, highly curated set of synchronized human portraits, Sync-LoRA generalizes to unseen identities and diverse edits (e.g., modifying appearance, adding objects, or changing backgrounds), robustly handling variations in pose and expression. Our results demonstrate high visual fidelity and strong temporal coherence, achieving a robust balance between edit fidelity and precise motion preservation.

CPAM: Context-Preserving Adaptive Manipulation for Zero-Shot Real Image Editing

Editing natural images using textual descriptions in text-to-image diffusion models remains a significant challenge, particularly in achieving consistent generation and handling complex, non-rigid objects. Existing methods often struggle to preserve textures and identity, require extensive fine-tuning, and exhibit limitations in editing specific spatial regions or objects while retaining background details. This paper proposes Context-Preserving Adaptive Manipulation (CPAM), a novel zero-shot framework for complicated, non-rigid real image editing. Specifically, we propose a preservation adaptation module that adjusts self-attention mechanisms to preserve and independently control the object and background effectively. This ensures that the objects' shapes, textures, and identities are maintained while keeping the background undistorted during the editing process using the mask guidance technique. Additionally, we develop a localized extraction module to mitigate the interference with the non-desired modified regions during conditioning in cross-attention mechanisms. We also introduce various mask-guidance strategies to facilitate diverse image manipulation tasks in a simple manner. Extensive experiments on our newly constructed Image Manipulation BenchmArk (IMBA), a robust benchmark dataset specifically designed for real image editing, demonstrate that our proposed method is the preferred choice among human raters, outperforming existing state-of-the-art editing techniques.

  • 5 authors
·
Jun 23

DreamEdit: Subject-driven Image Editing

Subject-driven image generation aims at generating images containing customized subjects, which has recently drawn enormous attention from the research community. However, the previous works cannot precisely control the background and position of the target subject. In this work, we aspire to fill the void and propose two novel subject-driven sub-tasks, i.e., Subject Replacement and Subject Addition. The new tasks are challenging in multiple aspects: replacing a subject with a customized one can change its shape, texture, and color, while adding a target subject to a designated position in a provided scene necessitates a context-aware posture. To conquer these two novel tasks, we first manually curate a new dataset DreamEditBench containing 22 different types of subjects, and 440 source images with different difficulty levels. We plan to host DreamEditBench as a platform and hire trained evaluators for standard human evaluation. We also devise an innovative method DreamEditor to resolve these tasks by performing iterative generation, which enables a smooth adaptation to the customized subject. In this project, we conduct automatic and human evaluations to understand the performance of DreamEditor and baselines on DreamEditBench. For Subject Replacement, we found that the existing models are sensitive to the shape and color of the original subject. The model failure rate will dramatically increase when the source and target subjects are highly different. For Subject Addition, we found that the existing models cannot easily blend the customized subjects into the background smoothly, leading to noticeable artifacts in the generated image. We hope DreamEditBench can become a standard platform to enable future investigations toward building more controllable subject-driven image editing. Our project homepage is https://dreameditbenchteam.github.io/.

  • 4 authors
·
Jun 21, 2023

Image Translation as Diffusion Visual Programmers

We introduce the novel Diffusion Visual Programmer (DVP), a neuro-symbolic image translation framework. Our proposed DVP seamlessly embeds a condition-flexible diffusion model within the GPT architecture, orchestrating a coherent sequence of visual programs (i.e., computer vision models) for various pro-symbolic steps, which span RoI identification, style transfer, and position manipulation, facilitating transparent and controllable image translation processes. Extensive experiments demonstrate DVP's remarkable performance, surpassing concurrent arts. This success can be attributed to several key features of DVP: First, DVP achieves condition-flexible translation via instance normalization, enabling the model to eliminate sensitivity caused by the manual guidance and optimally focus on textual descriptions for high-quality content generation. Second, the framework enhances in-context reasoning by deciphering intricate high-dimensional concepts in feature spaces into more accessible low-dimensional symbols (e.g., [Prompt], [RoI object]), allowing for localized, context-free editing while maintaining overall coherence. Last but not least, DVP improves systemic controllability and explainability by offering explicit symbolic representations at each programming stage, empowering users to intuitively interpret and modify results. Our research marks a substantial step towards harmonizing artificial image translation processes with cognitive intelligence, promising broader applications.

  • 8 authors
·
Jan 18, 2024

Ming-UniVision: Joint Image Understanding and Generation with a Unified Continuous Tokenizer

Visual tokenization remains a core challenge in unifying visual understanding and generation within the autoregressive paradigm. Existing methods typically employ tokenizers in discrete latent spaces to align with the tokens from large language models, where the quantization errors can limit semantic expressiveness and degrade the capability of vision-language understanding. To address this, we introduce MingTok, a new family of visual tokenizers with a continuous latent space, for unified autoregressive generation and understanding. While understanding tasks favor discriminative high-dimensional features, generation tasks prefer compact low-level codes. Thus, to reconcile these competing demands, MingTok adopts a three-stage sequential architecture involving low-level encoding, semantic expansion, and visual reconstruction. Built on top of it, Ming-UniVision eliminates the need for task-specific visual representations, and unifies diverse vision-language tasks under a single autoregrsssive prediction paradigm. By formulating both understanding and generation as next-token prediction in a shared continuous space, it seamlessly supports multi-round, in-context tasks such as iterative understanding, generation and editing. Empirically, we find that using a unified continuous visual representation reconciles the competing requirements on the tokenizers by the understanding and generation tasks, thereby leading to state-of-the-art level performance across both domains. We hope our findings will facilitate unified visual tokenization in the continuous domain. Inference code and model weights are released to benefit community.

inclusionAI inclusionAI
·
Oct 7 3

UniVideo: Unified Understanding, Generation, and Editing for Videos

Unified multimodal models have shown promising results in multimodal content generation and editing but remain largely limited to the image domain. In this work, we present UniVideo, a versatile framework that extends unified modeling to the video domain. UniVideo adopts a dual-stream design, combining a Multimodal Large Language Model (MLLM) for instruction understanding with a Multimodal DiT (MMDiT) for video generation. This design enables accurate interpretation of complex multimodal instructions while preserving visual consistency. Built on this architecture, UniVideo unifies diverse video generation and editing tasks under a single multimodal instruction paradigm and is jointly trained across them. Extensive experiments demonstrate that UniVideo matches or surpasses state-of-the-art task-specific baselines in text/image-to-video generation, in-context video generation and in-context video editing. Notably, the unified design of UniVideo enables two forms of generalization. First, UniVideo supports task composition, such as combining editing with style transfer, by integrating multiple capabilities within a single instruction. Second, even without explicit training on free-form video editing, UniVideo transfers its editing capability from large-scale image editing data to this setting, handling unseen instructions such as green-screening characters or changing materials within a video. Beyond these core capabilities, UniVideo also supports visual-prompt-based video generation, where the MLLM interprets visual prompts and guides the MMDiT during synthesis. To foster future research, we will release our model and code.

  • 8 authors
·
Oct 9 3

DreamSalon: A Staged Diffusion Framework for Preserving Identity-Context in Editable Face Generation

While large-scale pre-trained text-to-image models can synthesize diverse and high-quality human-centered images, novel challenges arise with a nuanced task of "identity fine editing": precisely modifying specific features of a subject while maintaining its inherent identity and context. Existing personalization methods either require time-consuming optimization or learning additional encoders, adept in "identity re-contextualization". However, they often struggle with detailed and sensitive tasks like human face editing. To address these challenges, we introduce DreamSalon, a noise-guided, staged-editing framework, uniquely focusing on detailed image manipulations and identity-context preservation. By discerning editing and boosting stages via the frequency and gradient of predicted noises, DreamSalon first performs detailed manipulations on specific features in the editing stage, guided by high-frequency information, and then employs stochastic denoising in the boosting stage to improve image quality. For more precise editing, DreamSalon semantically mixes source and target textual prompts, guided by differences in their embedding covariances, to direct the model's focus on specific manipulation areas. Our experiments demonstrate DreamSalon's ability to efficiently and faithfully edit fine details on human faces, outperforming existing methods both qualitatively and quantitatively.

  • 9 authors
·
Mar 28, 2024

Direct Inversion: Boosting Diffusion-based Editing with 3 Lines of Code

Text-guided diffusion models have revolutionized image generation and editing, offering exceptional realism and diversity. Specifically, in the context of diffusion-based editing, where a source image is edited according to a target prompt, the process commences by acquiring a noisy latent vector corresponding to the source image via the diffusion model. This vector is subsequently fed into separate source and target diffusion branches for editing. The accuracy of this inversion process significantly impacts the final editing outcome, influencing both essential content preservation of the source image and edit fidelity according to the target prompt. Prior inversion techniques aimed at finding a unified solution in both the source and target diffusion branches. However, our theoretical and empirical analyses reveal that disentangling these branches leads to a distinct separation of responsibilities for preserving essential content and ensuring edit fidelity. Building on this insight, we introduce "Direct Inversion," a novel technique achieving optimal performance of both branches with just three lines of code. To assess image editing performance, we present PIE-Bench, an editing benchmark with 700 images showcasing diverse scenes and editing types, accompanied by versatile annotations and comprehensive evaluation metrics. Compared to state-of-the-art optimization-based inversion techniques, our solution not only yields superior performance across 8 editing methods but also achieves nearly an order of speed-up.

  • 5 authors
·
Oct 2, 2023

ACE++: Instruction-Based Image Creation and Editing via Context-Aware Content Filling

We report ACE++, an instruction-based diffusion framework that tackles various image generation and editing tasks. Inspired by the input format for the inpainting task proposed by FLUX.1-Fill-dev, we improve the Long-context Condition Unit (LCU) introduced in ACE and extend this input paradigm to any editing and generation tasks. To take full advantage of image generative priors, we develop a two-stage training scheme to minimize the efforts of finetuning powerful text-to-image diffusion models like FLUX.1-dev. In the first stage, we pre-train the model using task data with the 0-ref tasks from the text-to-image model. There are many models in the community based on the post-training of text-to-image foundational models that meet this training paradigm of the first stage. For example, FLUX.1-Fill-dev deals primarily with painting tasks and can be used as an initialization to accelerate the training process. In the second stage, we finetune the above model to support the general instructions using all tasks defined in ACE. To promote the widespread application of ACE++ in different scenarios, we provide a comprehensive set of models that cover both full finetuning and lightweight finetuning, while considering general applicability and applicability in vertical scenarios. The qualitative analysis showcases the superiority of ACE++ in terms of generating image quality and prompt following ability.

  • 7 authors
·
Jan 5

DiffSeg30k: A Multi-Turn Diffusion Editing Benchmark for Localized AIGC Detection

Diffusion-based editing enables realistic modification of local image regions, making AI-generated content harder to detect. Existing AIGC detection benchmarks focus on classifying entire images, overlooking the localization of diffusion-based edits. We introduce DiffSeg30k, a publicly available dataset of 30k diffusion-edited images with pixel-level annotations, designed to support fine-grained detection. DiffSeg30k features: 1) In-the-wild images--we collect images or image prompts from COCO to reflect real-world content diversity; 2) Diverse diffusion models--local edits using eight SOTA diffusion models; 3) Multi-turn editing--each image undergoes up to three sequential edits to mimic real-world sequential editing; and 4) Realistic editing scenarios--a vision-language model (VLM)-based pipeline automatically identifies meaningful regions and generates context-aware prompts covering additions, removals, and attribute changes. DiffSeg30k shifts AIGC detection from binary classification to semantic segmentation, enabling simultaneous localization of edits and identification of the editing models. We benchmark three baseline segmentation approaches, revealing significant challenges in semantic segmentation tasks, particularly concerning robustness to image distortions. Experiments also reveal that segmentation models, despite being trained for pixel-level localization, emerge as highly reliable whole-image classifiers of diffusion edits, outperforming established forgery classifiers while showing great potential in cross-generator generalization. We believe DiffSeg30k will advance research in fine-grained localization of AI-generated content by demonstrating the promise and limitations of segmentation-based methods. DiffSeg30k is released at: https://huggingface.co/datasets/Chaos2629/Diffseg30k

  • 5 authors
·
Nov 24 2

SwapAnything: Enabling Arbitrary Object Swapping in Personalized Visual Editing

Effective editing of personal content holds a pivotal role in enabling individuals to express their creativity, weaving captivating narratives within their visual stories, and elevate the overall quality and impact of their visual content. Therefore, in this work, we introduce SwapAnything, a novel framework that can swap any objects in an image with personalized concepts given by the reference, while keeping the context unchanged. Compared with existing methods for personalized subject swapping, SwapAnything has three unique advantages: (1) precise control of arbitrary objects and parts rather than the main subject, (2) more faithful preservation of context pixels, (3) better adaptation of the personalized concept to the image. First, we propose targeted variable swapping to apply region control over latent feature maps and swap masked variables for faithful context preservation and initial semantic concept swapping. Then, we introduce appearance adaptation, to seamlessly adapt the semantic concept into the original image in terms of target location, shape, style, and content during the image generation process. Extensive results on both human and automatic evaluation demonstrate significant improvements of our approach over baseline methods on personalized swapping. Furthermore, SwapAnything shows its precise and faithful swapping abilities across single object, multiple objects, partial object, and cross-domain swapping tasks. SwapAnything also achieves great performance on text-based swapping and tasks beyond swapping such as object insertion.

  • 10 authors
·
Apr 8, 2024

VideoPainter: Any-length Video Inpainting and Editing with Plug-and-Play Context Control

Video inpainting, which aims to restore corrupted video content, has experienced substantial progress. Despite these advances, existing methods, whether propagating unmasked region pixels through optical flow and receptive field priors, or extending image-inpainting models temporally, face challenges in generating fully masked objects or balancing the competing objectives of background context preservation and foreground generation in one model, respectively. To address these limitations, we propose a novel dual-stream paradigm VideoPainter that incorporates an efficient context encoder (comprising only 6% of the backbone parameters) to process masked videos and inject backbone-aware background contextual cues to any pre-trained video DiT, producing semantically consistent content in a plug-and-play manner. This architectural separation significantly reduces the model's learning complexity while enabling nuanced integration of crucial background context. We also introduce a novel target region ID resampling technique that enables any-length video inpainting, greatly enhancing our practical applicability. Additionally, we establish a scalable dataset pipeline leveraging current vision understanding models, contributing VPData and VPBench to facilitate segmentation-based inpainting training and assessment, the largest video inpainting dataset and benchmark to date with over 390K diverse clips. Using inpainting as a pipeline basis, we also explore downstream applications including video editing and video editing pair data generation, demonstrating competitive performance and significant practical potential. Extensive experiments demonstrate VideoPainter's superior performance in both any-length video inpainting and editing, across eight key metrics, including video quality, mask region preservation, and textual coherence.

  • 7 authors
·
Mar 7 3

GIE-Bench: Towards Grounded Evaluation for Text-Guided Image Editing

Editing images using natural language instructions has become a natural and expressive way to modify visual content; yet, evaluating the performance of such models remains challenging. Existing evaluation approaches often rely on image-text similarity metrics like CLIP, which lack precision. In this work, we introduce a new benchmark designed to evaluate text-guided image editing models in a more grounded manner, along two critical dimensions: (i) functional correctness, assessed via automatically generated multiple-choice questions that verify whether the intended change was successfully applied; and (ii) image content preservation, which ensures that non-targeted regions of the image remain visually consistent using an object-aware masking technique and preservation scoring. The benchmark includes over 1000 high-quality editing examples across 20 diverse content categories, each annotated with detailed editing instructions, evaluation questions, and spatial object masks. We conduct a large-scale study comparing GPT-Image-1, the latest flagship in the text-guided image editing space, against several state-of-the-art editing models, and validate our automatic metrics against human ratings. Results show that GPT-Image-1 leads in instruction-following accuracy, but often over-modifies irrelevant image regions, highlighting a key trade-off in the current model behavior. GIE-Bench provides a scalable, reproducible framework for advancing more accurate evaluation of text-guided image editing.

  • 8 authors
·
May 16 2

Attack as Defense: Run-time Backdoor Implantation for Image Content Protection

As generative models achieve great success, tampering and modifying the sensitive image contents (i.e., human faces, artist signatures, commercial logos, etc.) have induced a significant threat with social impact. The backdoor attack is a method that implants vulnerabilities in a target model, which can be activated through a trigger. In this work, we innovatively prevent the abuse of image content modification by implanting the backdoor into image-editing models. Once the protected sensitive content on an image is modified by an editing model, the backdoor will be triggered, making the editing fail. Unlike traditional backdoor attacks that use data poisoning, to enable protection on individual images and eliminate the need for model training, we developed the first framework for run-time backdoor implantation, which is both time- and resource- efficient. We generate imperceptible perturbations on the images to inject the backdoor and define the protected area as the only backdoor trigger. Editing other unprotected insensitive areas will not trigger the backdoor, which minimizes the negative impact on legal image modifications. Evaluations with state-of-the-art image editing models show that our protective method can increase the CLIP-FID of generated images from 12.72 to 39.91, or reduce the SSIM from 0.503 to 0.167 when subjected to malicious editing. At the same time, our method exhibits minimal impact on benign editing, which demonstrates the efficacy of our proposed framework. The proposed run-time backdoor can also achieve effective protection on the latest diffusion models. Code are available.

  • 7 authors
·
Oct 18, 2024

MotionCanvas: Cinematic Shot Design with Controllable Image-to-Video Generation

This paper presents a method that allows users to design cinematic video shots in the context of image-to-video generation. Shot design, a critical aspect of filmmaking, involves meticulously planning both camera movements and object motions in a scene. However, enabling intuitive shot design in modern image-to-video generation systems presents two main challenges: first, effectively capturing user intentions on the motion design, where both camera movements and scene-space object motions must be specified jointly; and second, representing motion information that can be effectively utilized by a video diffusion model to synthesize the image animations. To address these challenges, we introduce MotionCanvas, a method that integrates user-driven controls into image-to-video (I2V) generation models, allowing users to control both object and camera motions in a scene-aware manner. By connecting insights from classical computer graphics and contemporary video generation techniques, we demonstrate the ability to achieve 3D-aware motion control in I2V synthesis without requiring costly 3D-related training data. MotionCanvas enables users to intuitively depict scene-space motion intentions, and translates them into spatiotemporal motion-conditioning signals for video diffusion models. We demonstrate the effectiveness of our method on a wide range of real-world image content and shot-design scenarios, highlighting its potential to enhance the creative workflows in digital content creation and adapt to various image and video editing applications.

MIND-Edit: MLLM Insight-Driven Editing via Language-Vision Projection

Recent advances in AI-generated content (AIGC) have significantly accelerated image editing techniques, driving increasing demand for diverse and fine-grained edits. Despite these advances, existing image editing methods still face challenges in achieving high precision and semantic accuracy in complex scenarios. Recent studies address this issue by incorporating multimodal large language models (MLLMs) into image editing pipelines. However, current MLLM-based methods mainly rely on interpreting textual instructions, leaving the intrinsic visual understanding of large models largely unexplored, thus resulting in insufficient alignment between textual semantics and visual outcomes. To overcome these limitations, we propose MIND-Edit, an end-to-end image-editing framework integrating pretrained diffusion model with MLLM. MIND-Edit introduces two complementary strategies: (1) a text instruction optimization strategy that clarifies ambiguous user instructions based on semantic reasoning from the MLLM, and (2) an MLLM insight-driven editing strategy that explicitly leverages the intrinsic visual understanding capability of the MLLM to infer editing intent and guide the diffusion process via generated visual embeddings. Furthermore, we propose a joint training approach to effectively integrate both strategies, allowing them to reinforce each other for more accurate instruction interpretation and visually coherent edits aligned with user intent. Extensive experiments demonstrate that MIND-Edit outperforms state-of-the-art image editing methods in both quantitative metrics and visual quality, particularly under complex and challenging scenarios.

  • 5 authors
·
May 25

GenAI Arena: An Open Evaluation Platform for Generative Models

Generative AI has made remarkable strides to revolutionize fields such as image and video generation. These advancements are driven by innovative algorithms, architecture, and data. However, the rapid proliferation of generative models has highlighted a critical gap: the absence of trustworthy evaluation metrics. Current automatic assessments such as FID, CLIP, FVD, etc often fail to capture the nuanced quality and user satisfaction associated with generative outputs. This paper proposes an open platform GenAI-Arena to evaluate different image and video generative models, where users can actively participate in evaluating these models. By leveraging collective user feedback and votes, GenAI-Arena aims to provide a more democratic and accurate measure of model performance. It covers three arenas for text-to-image generation, text-to-video generation, and image editing respectively. Currently, we cover a total of 27 open-source generative models. GenAI-Arena has been operating for four months, amassing over 6000 votes from the community. We describe our platform, analyze the data, and explain the statistical methods for ranking the models. To further promote the research in building model-based evaluation metrics, we release a cleaned version of our preference data for the three tasks, namely GenAI-Bench. We prompt the existing multi-modal models like Gemini, GPT-4o to mimic human voting. We compute the correlation between model voting with human voting to understand their judging abilities. Our results show existing multimodal models are still lagging in assessing the generated visual content, even the best model GPT-4o only achieves a Pearson correlation of 0.22 in the quality subscore, and behaves like random guessing in others.

  • 7 authors
·
Jun 6, 2024

LORE: Latent Optimization for Precise Semantic Control in Rectified Flow-based Image Editing

Text-driven image editing enables users to flexibly modify visual content through natural language instructions, and is widely applied to tasks such as semantic object replacement, insertion, and removal. While recent inversion-based editing methods using rectified flow models have achieved promising results in image quality, we identify a structural limitation in their editing behavior: the semantic bias toward the source concept encoded in the inverted noise tends to suppress attention to the target concept. This issue becomes particularly critical when the source and target semantics are dissimilar, where the attention mechanism inherently leads to editing failure or unintended modifications in non-target regions. In this paper, we systematically analyze and validate this structural flaw, and introduce LORE, a training-free and efficient image editing method. LORE directly optimizes the inverted noise, addressing the core limitations in generalization and controllability of existing approaches, enabling stable, controllable, and general-purpose concept replacement, without requiring architectural modification or model fine-tuning. We conduct comprehensive evaluations on three challenging benchmarks: PIEBench, SmartEdit, and GapEdit. Experimental results show that LORE significantly outperforms strong baselines in terms of semantic alignment, image quality, and background fidelity, demonstrating the effectiveness and scalability of latent-space optimization for general-purpose image editing.

  • 2 authors
·
Aug 5

FreeFlux: Understanding and Exploiting Layer-Specific Roles in RoPE-Based MMDiT for Versatile Image Editing

The integration of Rotary Position Embedding (RoPE) in Multimodal Diffusion Transformer (MMDiT) has significantly enhanced text-to-image generation quality. However, the fundamental reliance of self-attention layers on positional embedding versus query-key similarity during generation remains an intriguing question. We present the first mechanistic analysis of RoPE-based MMDiT models (e.g., FLUX), introducing an automated probing strategy that disentangles positional information versus content dependencies by strategically manipulating RoPE during generation. Our analysis reveals distinct dependency patterns that do not straightforwardly correlate with depth, offering new insights into the layer-specific roles in RoPE-based MMDiT. Based on these findings, we propose a training-free, task-specific image editing framework that categorizes editing tasks into three types: position-dependent editing (e.g., object addition), content similarity-dependent editing (e.g., non-rigid editing), and region-preserved editing (e.g., background replacement). For each type, we design tailored key-value injection strategies based on the characteristics of the editing task. Extensive qualitative and quantitative evaluations demonstrate that our method outperforms state-of-the-art approaches, particularly in preserving original semantic content and achieving seamless modifications.

  • 4 authors
·
Mar 20

Zooming In on Fakes: A Novel Dataset for Localized AI-Generated Image Detection with Forgery Amplification Approach

The rise of AI-generated image editing tools has made localized forgeries increasingly realistic, posing challenges for visual content integrity. Although recent efforts have explored localized AIGC detection, existing datasets predominantly focus on object-level forgeries while overlooking broader scene edits in regions such as sky or ground. To address these limitations, we introduce BR-Gen, a large-scale dataset of 150,000 locally forged images with diverse scene-aware annotations, which are based on semantic calibration to ensure high-quality samples. BR-Gen is constructed through a fully automated Perception-Creation-Evaluation pipeline to ensure semantic coherence and visual realism. In addition, we further propose NFA-ViT, a Noise-guided Forgery Amplification Vision Transformer that enhances the detection of localized forgeries by amplifying forgery-related features across the entire image. NFA-ViT mines heterogeneous regions in images, i.e., potential edited areas, by noise fingerprints. Subsequently, attention mechanism is introduced to compel the interaction between normal and abnormal features, thereby propagating the generalization traces throughout the entire image, allowing subtle forgeries to influence a broader context and improving overall detection robustness. Extensive experiments demonstrate that BR-Gen constructs entirely new scenarios that are not covered by existing methods. Take a step further, NFA-ViT outperforms existing methods on BR-Gen and generalizes well across current benchmarks. All data and codes are available at https://github.com/clpbc/BR-Gen.

  • 8 authors
·
Apr 16

MagicProp: Diffusion-based Video Editing via Motion-aware Appearance Propagation

This paper addresses the issue of modifying the visual appearance of videos while preserving their motion. A novel framework, named MagicProp, is proposed, which disentangles the video editing process into two stages: appearance editing and motion-aware appearance propagation. In the first stage, MagicProp selects a single frame from the input video and applies image-editing techniques to modify the content and/or style of the frame. The flexibility of these techniques enables the editing of arbitrary regions within the frame. In the second stage, MagicProp employs the edited frame as an appearance reference and generates the remaining frames using an autoregressive rendering approach. To achieve this, a diffusion-based conditional generation model, called PropDPM, is developed, which synthesizes the target frame by conditioning on the reference appearance, the target motion, and its previous appearance. The autoregressive editing approach ensures temporal consistency in the resulting videos. Overall, MagicProp combines the flexibility of image-editing techniques with the superior temporal consistency of autoregressive modeling, enabling flexible editing of object types and aesthetic styles in arbitrary regions of input videos while maintaining good temporal consistency across frames. Extensive experiments in various video editing scenarios demonstrate the effectiveness of MagicProp.

  • 5 authors
·
Sep 2, 2023

TextCraftor: Your Text Encoder Can be Image Quality Controller

Diffusion-based text-to-image generative models, e.g., Stable Diffusion, have revolutionized the field of content generation, enabling significant advancements in areas like image editing and video synthesis. Despite their formidable capabilities, these models are not without their limitations. It is still challenging to synthesize an image that aligns well with the input text, and multiple runs with carefully crafted prompts are required to achieve satisfactory results. To mitigate these limitations, numerous studies have endeavored to fine-tune the pre-trained diffusion models, i.e., UNet, utilizing various technologies. Yet, amidst these efforts, a pivotal question of text-to-image diffusion model training has remained largely unexplored: Is it possible and feasible to fine-tune the text encoder to improve the performance of text-to-image diffusion models? Our findings reveal that, instead of replacing the CLIP text encoder used in Stable Diffusion with other large language models, we can enhance it through our proposed fine-tuning approach, TextCraftor, leading to substantial improvements in quantitative benchmarks and human assessments. Interestingly, our technique also empowers controllable image generation through the interpolation of different text encoders fine-tuned with various rewards. We also demonstrate that TextCraftor is orthogonal to UNet finetuning, and can be combined to further improve generative quality.

  • 9 authors
·
Mar 27, 2024 1

PromptDresser: Improving the Quality and Controllability of Virtual Try-On via Generative Textual Prompt and Prompt-aware Mask

Recent virtual try-on approaches have advanced by fine-tuning the pre-trained text-to-image diffusion models to leverage their powerful generative ability. However, the use of text prompts in virtual try-on is still underexplored. This paper tackles a text-editable virtual try-on task that changes the clothing item based on the provided clothing image while editing the wearing style (e.g., tucking style, fit) according to the text descriptions. In the text-editable virtual try-on, three key aspects exist: (i) designing rich text descriptions for paired person-clothing data to train the model, (ii) addressing the conflicts where textual information of the existing person's clothing interferes the generation of the new clothing, and (iii) adaptively adjust the inpainting mask aligned with the text descriptions, ensuring proper editing areas while preserving the original person's appearance irrelevant to the new clothing. To address these aspects, we propose PromptDresser, a text-editable virtual try-on model that leverages large multimodal model (LMM) assistance to enable high-quality and versatile manipulation based on generative text prompts. Our approach utilizes LMMs via in-context learning to generate detailed text descriptions for person and clothing images independently, including pose details and editing attributes using minimal human cost. Moreover, to ensure the editing areas, we adjust the inpainting mask depending on the text prompts adaptively. We found that our approach, utilizing detailed text prompts, not only enhances text editability but also effectively conveys clothing details that are difficult to capture through images alone, thereby enhancing image quality. Our code is available at https://github.com/rlawjdghek/PromptDresser.

  • 4 authors
·
Dec 22, 2024

Safe-SD: Safe and Traceable Stable Diffusion with Text Prompt Trigger for Invisible Generative Watermarking

Recently, stable diffusion (SD) models have typically flourished in the field of image synthesis and personalized editing, with a range of photorealistic and unprecedented images being successfully generated. As a result, widespread interest has been ignited to develop and use various SD-based tools for visual content creation. However, the exposure of AI-created content on public platforms could raise both legal and ethical risks. In this regard, the traditional methods of adding watermarks to the already generated images (i.e. post-processing) may face a dilemma (e.g., being erased or modified) in terms of copyright protection and content monitoring, since the powerful image inversion and text-to-image editing techniques have been widely explored in SD-based methods. In this work, we propose a Safe and high-traceable Stable Diffusion framework (namely Safe-SD) to adaptively implant the graphical watermarks (e.g., QR code) into the imperceptible structure-related pixels during the generative diffusion process for supporting text-driven invisible watermarking and detection. Different from the previous high-cost injection-then-detection training framework, we design a simple and unified architecture, which makes it possible to simultaneously train watermark injection and detection in a single network, greatly improving the efficiency and convenience of use. Moreover, to further support text-driven generative watermarking and deeply explore its robustness and high-traceability, we elaborately design lambda sampling and encryption algorithm to fine-tune a latent diffuser wrapped by a VAE for balancing high-fidelity image synthesis and high-traceable watermark detection. We present our quantitative and qualitative results on two representative datasets LSUN, COCO and FFHQ, demonstrating state-of-the-art performance of Safe-SD and showing it significantly outperforms the previous approaches.

  • 4 authors
·
Jul 18, 2024

3D Gaussian Editing with A Single Image

The modeling and manipulation of 3D scenes captured from the real world are pivotal in various applications, attracting growing research interest. While previous works on editing have achieved interesting results through manipulating 3D meshes, they often require accurately reconstructed meshes to perform editing, which limits their application in 3D content generation. To address this gap, we introduce a novel single-image-driven 3D scene editing approach based on 3D Gaussian Splatting, enabling intuitive manipulation via directly editing the content on a 2D image plane. Our method learns to optimize the 3D Gaussians to align with an edited version of the image rendered from a user-specified viewpoint of the original scene. To capture long-range object deformation, we introduce positional loss into the optimization process of 3D Gaussian Splatting and enable gradient propagation through reparameterization. To handle occluded 3D Gaussians when rendering from the specified viewpoint, we build an anchor-based structure and employ a coarse-to-fine optimization strategy capable of handling long-range deformation while maintaining structural stability. Furthermore, we design a novel masking strategy to adaptively identify non-rigid deformation regions for fine-scale modeling. Extensive experiments show the effectiveness of our method in handling geometric details, long-range, and non-rigid deformation, demonstrating superior editing flexibility and quality compared to previous approaches.

  • 6 authors
·
Aug 14, 2024 3

MvDrag3D: Drag-based Creative 3D Editing via Multi-view Generation-Reconstruction Priors

Drag-based editing has become popular in 2D content creation, driven by the capabilities of image generative models. However, extending this technique to 3D remains a challenge. Existing 3D drag-based editing methods, whether employing explicit spatial transformations or relying on implicit latent optimization within limited-capacity 3D generative models, fall short in handling significant topology changes or generating new textures across diverse object categories. To overcome these limitations, we introduce MVDrag3D, a novel framework for more flexible and creative drag-based 3D editing that leverages multi-view generation and reconstruction priors. At the core of our approach is the usage of a multi-view diffusion model as a strong generative prior to perform consistent drag editing over multiple rendered views, which is followed by a reconstruction model that reconstructs 3D Gaussians of the edited object. While the initial 3D Gaussians may suffer from misalignment between different views, we address this via view-specific deformation networks that adjust the position of Gaussians to be well aligned. In addition, we propose a multi-view score function that distills generative priors from multiple views to further enhance the view consistency and visual quality. Extensive experiments demonstrate that MVDrag3D provides a precise, generative, and flexible solution for 3D drag-based editing, supporting more versatile editing effects across various object categories and 3D representations.

  • 5 authors
·
Oct 21, 2024

Free-Editor: Zero-shot Text-driven 3D Scene Editing

Text-to-Image (T2I) diffusion models have recently gained traction for their versatility and user-friendliness in 2D content generation and editing. However, training a diffusion model specifically for 3D scene editing is challenging due to the scarcity of large-scale datasets. Currently, editing 3D scenes necessitates either retraining the model to accommodate various 3D edits or developing specific methods tailored to each unique editing type. Moreover, state-of-the-art (SOTA) techniques require multiple synchronized edited images from the same scene to enable effective scene editing. Given the current limitations of T2I models, achieving consistent editing effects across multiple images remains difficult, leading to multi-view inconsistency in editing. This inconsistency undermines the performance of 3D scene editing when these images are utilized. In this study, we introduce a novel, training-free 3D scene editing technique called Free-Editor, which enables users to edit 3D scenes without the need for model retraining during the testing phase. Our method effectively addresses the issue of multi-view style inconsistency found in state-of-the-art (SOTA) methods through the implementation of a single-view editing scheme. Specifically, we demonstrate that editing a particular 3D scene can be achieved by modifying only a single view. To facilitate this, we present an Edit Transformer that ensures intra-view consistency and inter-view style transfer using self-view and cross-view attention mechanisms, respectively. By eliminating the need for model retraining and multi-view editing, our approach significantly reduces editing time and memory resource requirements, achieving runtimes approximately 20 times faster than SOTA methods. We have performed extensive experiments on various benchmark datasets, showcasing the diverse editing capabilities of our proposed technique.

  • 5 authors
·
Dec 21, 2023

ZeroScene: A Zero-Shot Framework for 3D Scene Generation from a Single Image and Controllable Texture Editing

In the field of 3D content generation, single image scene reconstruction methods still struggle to simultaneously ensure the quality of individual assets and the coherence of the overall scene in complex environments, while texture editing techniques often fail to maintain both local continuity and multi-view consistency. In this paper, we propose a novel system ZeroScene, which leverages the prior knowledge of large vision models to accomplish both single image-to-3D scene reconstruction and texture editing in a zero-shot manner. ZeroScene extracts object-level 2D segmentation and depth information from input images to infer spatial relationships within the scene. It then jointly optimizes 3D and 2D projection losses of the point cloud to update object poses for precise scene alignment, ultimately constructing a coherent and complete 3D scene that encompasses both foreground and background. Moreover, ZeroScene supports texture editing of objects in the scene. By imposing constraints on the diffusion model and introducing a mask-guided progressive image generation strategy, we effectively maintain texture consistency across multiple viewpoints and further enhance the realism of rendered results through Physically Based Rendering (PBR) material estimation. Experimental results demonstrate that our framework not only ensures the geometric and appearance accuracy of generated assets, but also faithfully reconstructs scene layouts and produces highly detailed textures that closely align with text prompts.

  • 3 authors
·
Sep 27

Improving Editability in Image Generation with Layer-wise Memory

Most real-world image editing tasks require multiple sequential edits to achieve desired results. Current editing approaches, primarily designed for single-object modifications, struggle with sequential editing: especially with maintaining previous edits along with adapting new objects naturally into the existing content. These limitations significantly hinder complex editing scenarios where multiple objects need to be modified while preserving their contextual relationships. We address this fundamental challenge through two key proposals: enabling rough mask inputs that preserve existing content while naturally integrating new elements and supporting consistent editing across multiple modifications. Our framework achieves this through layer-wise memory, which stores latent representations and prompt embeddings from previous edits. We propose Background Consistency Guidance that leverages memorized latents to maintain scene coherence and Multi-Query Disentanglement in cross-attention that ensures natural adaptation to existing content. To evaluate our method, we present a new benchmark dataset incorporating semantic alignment metrics and interactive editing scenarios. Through comprehensive experiments, we demonstrate superior performance in iterative image editing tasks with minimal user effort, requiring only rough masks while maintaining high-quality results throughout multiple editing steps.

  • 3 authors
·
May 2 1

OmniV2V: Versatile Video Generation and Editing via Dynamic Content Manipulation

The emergence of Diffusion Transformers (DiT) has brought significant advancements to video generation, especially in text-to-video and image-to-video tasks. Although video generation is widely applied in various fields, most existing models are limited to single scenarios and cannot perform diverse video generation and editing through dynamic content manipulation. We propose OmniV2V, a video model capable of generating and editing videos across different scenarios based on various operations, including: object movement, object addition, mask-guided video edit, try-on, inpainting, outpainting, human animation, and controllable character video synthesis. We explore a unified dynamic content manipulation injection module, which effectively integrates the requirements of the above tasks. In addition, we design a visual-text instruction module based on LLaVA, enabling the model to effectively understand the correspondence between visual content and instructions. Furthermore, we build a comprehensive multi-task data processing system. Since there is data overlap among various tasks, this system can efficiently provide data augmentation. Using this system, we construct a multi-type, multi-scenario OmniV2V dataset and its corresponding OmniV2V-Test benchmark. Extensive experiments show that OmniV2V works as well as, and sometimes better than, the best existing open-source and commercial models for many video generation and editing tasks.

  • 11 authors
·
Jun 2

SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing

Image diffusion models have been utilized in various tasks, such as text-to-image generation and controllable image synthesis. Recent research has introduced tuning methods that make subtle adjustments to the original models, yielding promising results in specific adaptations of foundational generative diffusion models. Rather than modifying the main backbone of the diffusion model, we delve into the role of skip connection in U-Net and reveal that hierarchical features aggregating long-distance information across encoder and decoder make a significant impact on the content and quality of image generation. Based on the observation, we propose an efficient generative tuning framework, dubbed SCEdit, which integrates and edits Skip Connection using a lightweight tuning module named SC-Tuner. Furthermore, the proposed framework allows for straightforward extension to controllable image synthesis by injecting different conditions with Controllable SC-Tuner, simplifying and unifying the network design for multi-condition inputs. Our SCEdit substantially reduces training parameters, memory usage, and computational expense due to its lightweight tuners, with backward propagation only passing to the decoder blocks. Extensive experiments conducted on text-to-image generation and controllable image synthesis tasks demonstrate the superiority of our method in terms of efficiency and performance. Project page: https://scedit.github.io/

  • 5 authors
·
Dec 18, 2023 3

EdiVal-Agent: An Object-Centric Framework for Automated, Scalable, Fine-Grained Evaluation of Multi-Turn Editing

Instruction-based image editing has advanced rapidly, yet reliable and interpretable evaluation remains a bottleneck. Current protocols either (i) depend on paired reference images -- resulting in limited coverage and inheriting biases from prior generative models -- or (ii) rely solely on zero-shot vision-language models (VLMs), whose prompt-based assessments of instruction following, content consistency, and visual quality are often imprecise. To address this, we introduce EdiVal-Agent, an automated, scalable, and fine-grained evaluation framework for multi-turn instruction-based editing from an object-centric perspective, supported by a suite of expert tools. Given an image, EdiVal-Agent first decomposes it into semantically meaningful objects, then synthesizes diverse, context-aware editing instructions. For evaluation, it integrates VLMs with open-vocabulary object detectors to assess instruction following, uses semantic-level feature extractors to evaluate content consistency, and leverages human preference models to judge visual quality. We show that combining VLMs with object detectors yields stronger agreement with human judgments in instruction-following evaluation compared to using VLMs alone and CLIP-based metrics. Furthermore, the pipeline's modular design allows future tools to be seamlessly integrated, enhancing evaluation accuracy over time. Instantiating this pipeline, we build EdiVal-Bench, a multi-turn editing benchmark covering 9 instruction types and 11 state-of-the-art editing models spanning autoregressive (AR) (including Nano Banana, GPT-Image-1), flow-matching, and diffusion paradigms. We demonstrate that EdiVal-Agent can be used to identify existing failure modes, thereby informing the development of the next generation of editing models. Project page: https://tianyucodings.github.io/EdiVAL-page/.

  • 16 authors
·
Sep 16 2