Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeToward Stable and Consistent Evaluation Results: A New Methodology for Base Model Evaluation
This paper poses two critical issues in evaluating base models (without post-training): (1) Unstable evaluation during training: in the early stages of pre-training, the models lack the capability to answer questions as required, leading to unstable evaluation results. This instability makes it difficult to provide solid conclusions to guide the training, especially for key experiments such as data ablation and scaling law. (2) Inconsistency between base and instruct models: base models generally exhibit poorer evaluation performance compared to corresponding instruct models. This gap poses a challenge for assessing whether a base model with better evaluation can truly lead to a better instruct model. To address these issues, we propose Base model Oriented Systematic Evaluation (BOSE), a method specifically designed to optimize the evaluation of base models. Specifically, BOSE introduces two key innovations: In-Context Light-instruction Prompt (ICLiP) for open-ended tasks and Blank-ppl for multi-choice tasks with candidate options, which transforms the standard perplexity (ppl) metric into a fill-in-the-blank format to mitigate early-stage evaluation fluctuations. Furthermore, we are the first to propose Kendall's rank correlation to quantitatively measure the evaluation stability and consistency. Experimental results demonstrate that BOSE significantly enhances both the stability of evaluations during pre-training and the consistency between base and instruct models, thereby providing more reliable guidance for the LLMs' training.
PerSEval: Assessing Personalization in Text Summarizers
Personalized summarization models cater to individuals' subjective understanding of saliency, as represented by their reading history and current topics of attention. Existing personalized text summarizers are primarily evaluated based on accuracy measures such as BLEU, ROUGE, and METEOR. However, a recent study argued that accuracy measures are inadequate for evaluating the degree of personalization of these models and proposed EGISES, the first metric to evaluate personalized text summaries. It was suggested that accuracy is a separate aspect and should be evaluated standalone. In this paper, we challenge the necessity of an accuracy leaderboard, suggesting that relying on accuracy-based aggregated results might lead to misleading conclusions. To support this, we delve deeper into EGISES, demonstrating both theoretically and empirically that it measures the degree of responsiveness, a necessary but not sufficient condition for degree-of-personalization. We subsequently propose PerSEval, a novel measure that satisfies the required sufficiency condition. Based on the benchmarking of ten SOTA summarization models on the PENS dataset, we empirically establish that -- (i) PerSEval is reliable w.r.t human-judgment correlation (Pearson's r = 0.73; Spearman's rho = 0.62; Kendall's tau = 0.42), (ii) PerSEval has high rank-stability, (iii) PerSEval as a rank-measure is not entailed by EGISES-based ranking, and (iv) PerSEval can be a standalone rank-measure without the need of any aggregated ranking.
A Test for Jumps in Metric-Space Conditional Means
Standard methods for detecting discontinuities in conditional means are not applicable to outcomes that are complex, non-Euclidean objects like distributions, networks, or covariance matrices. This article develops a nonparametric test for jumps in conditional means when outcomes lie in a non-Euclidean metric space. Using local Fr\'echet regressionx2014which generalizes standard regression to metric-space valued datax2014the method estimates a mean path on either side of a candidate cutoff, extending existing k-sample tests to a flexible regression setting. Key theoretical contributions include a central limit theorem for the local estimator of the conditional Fr\'echet variance and the asymptotic validity and consistency of the proposed test. Simulations confirm nominal size control and robust power in finite samples. Two applications demonstrate the method's value by revealing effects invisible to scalar-based tests. First, I detect a sharp change in work-from-home compositions at Washington State's income threshold for non-compete enforceability during COVID-19, highlighting remote work's role as a bargaining margin. Second, I find that countries restructure their input-output networks after losing preferential US trade access. These findings underscore that analyzing regression functions within their native metric spaces can reveal structural discontinuities that scalar summaries would miss.
A Versatile Causal Discovery Framework to Allow Causally-Related Hidden Variables
Most existing causal discovery methods rely on the assumption of no latent confounders, limiting their applicability in solving real-life problems. In this paper, we introduce a novel, versatile framework for causal discovery that accommodates the presence of causally-related hidden variables almost everywhere in the causal network (for instance, they can be effects of observed variables), based on rank information of covariance matrix over observed variables. We start by investigating the efficacy of rank in comparison to conditional independence and, theoretically, establish necessary and sufficient conditions for the identifiability of certain latent structural patterns. Furthermore, we develop a Rank-based Latent Causal Discovery algorithm, RLCD, that can efficiently locate hidden variables, determine their cardinalities, and discover the entire causal structure over both measured and hidden ones. We also show that, under certain graphical conditions, RLCD correctly identifies the Markov Equivalence Class of the whole latent causal graph asymptotically. Experimental results on both synthetic and real-world personality data sets demonstrate the efficacy of the proposed approach in finite-sample cases.
Sensitivity Analysis On Loss Landscape
Gradients can be employed for sensitivity analysis. Here, we leverage the advantages of the Loss Landscape to comprehend which independent variables impact the dependent variable. We seek to grasp the loss landscape by utilizing first, second, and third derivatives through automatic differentiation. we know that Spearman's rank correlation coefficient can detect the monotonic relationship between two variables. However, I have found that second-order gradients, with certain configurations and parameters, provide information that can be visualized similarly to Spearman results, In this approach, we incorporate a loss function with an activation function, resulting in a non-linear pattern. Each exploration of the loss landscape through retraining yields new valuable information. Furthermore, the first and third derivatives are also beneficial, as they indicate the extent to which independent variables influence the dependent variable.
Partial Correlations in Compositional Data Analysis
Partial correlations quantify linear association between two variables adjusting for the influence of the remaining variables. They form the backbone for graphical models and are readily obtained from the inverse of the covariance matrix. For compositional data, the covariance structure is specified from log ratios of variables, so unless we try to "open" the data via a normalization, this implies changes in the definition and interpretation of partial correlations. In the present work, we elucidate how results derived by Aitchison (1986) lead to a natural definition of partial correlation that has a number of advantages over current measures of association. For this, we show that the residuals of log-ratios between a variable with a reference, when adjusting for all remaining variables including the reference, are reference-independent. Since the reference itself can be controlled for, correlations between residuals are defined for the variables directly without the necessity to recur to ratios except when specifying which variables are partialled out. Thus, perhaps surprisingly, partial correlations do not have the problems commonly found with measures of pairwise association on compositional data. They are well-defined between two variables, are properly scaled, and allow for negative association. By design, they are subcompositionally incoherent, but they share this property with conventional partial correlations (where results change when adjusting for the influence of fewer variables). We discuss the equivalence with normalization-based approaches whenever the normalizing variables are controlled for. We also discuss the partial variances and correlations we obtain from a previously studied data set of Roman glass cups.
SWAP-NAS: Sample-Wise Activation Patterns for Ultra-fast NAS
Training-free metrics (a.k.a. zero-cost proxies) are widely used to avoid resource-intensive neural network training, especially in Neural Architecture Search (NAS). Recent studies show that existing training-free metrics have several limitations, such as limited correlation and poor generalisation across different search spaces and tasks. Hence, we propose Sample-Wise Activation Patterns and its derivative, SWAP-Score, a novel high-performance training-free metric. It measures the expressivity of networks over a batch of input samples. The SWAP-Score is strongly correlated with ground-truth performance across various search spaces and tasks, outperforming 15 existing training-free metrics on NAS-Bench-101/201/301 and TransNAS-Bench-101. The SWAP-Score can be further enhanced by regularisation, which leads to even higher correlations in cell-based search space and enables model size control during the search. For example, Spearman's rank correlation coefficient between regularised SWAP-Score and CIFAR-100 validation accuracies on NAS-Bench-201 networks is 0.90, significantly higher than 0.80 from the second-best metric, NWOT. When integrated with an evolutionary algorithm for NAS, our SWAP-NAS achieves competitive performance on CIFAR-10 and ImageNet in approximately 6 minutes and 9 minutes of GPU time respectively.
Can ChatGPT Compute Trustworthy Sentiment Scores from Bloomberg Market Wraps?
We used a dataset of daily Bloomberg Financial Market Summaries from 2010 to 2023, reposted on large financial media, to determine how global news headlines may affect stock market movements using ChatGPT and a two-stage prompt approach. We document a statistically significant positive correlation between the sentiment score and future equity market returns over short to medium term, which reverts to a negative correlation over longer horizons. Validation of this correlation pattern across multiple equity markets indicates its robustness across equity regions and resilience to non-linearity, evidenced by comparison of Pearson and Spearman correlations. Finally, we provide an estimate of the optimal horizon that strikes a balance between reactivity to new information and correlation.
Efficient Algorithms for Exact Graph Matching on Correlated Stochastic Block Models with Constant Correlation
We consider the problem of graph matching, or learning vertex correspondence, between two correlated stochastic block models (SBMs). The graph matching problem arises in various fields, including computer vision, natural language processing and bioinformatics, and in particular, matching graphs with inherent community structure has significance related to de-anonymization of correlated social networks. Compared to the correlated Erdos-Renyi (ER) model, where various efficient algorithms have been developed, among which a few algorithms have been proven to achieve the exact matching with constant edge correlation, no low-order polynomial algorithm has been known to achieve exact matching for the correlated SBMs with constant correlation. In this work, we propose an efficient algorithm for matching graphs with community structure, based on the comparison between partition trees rooted from each vertex, by extending the idea of Mao et al. (2021) to graphs with communities. The partition tree divides the large neighborhoods of each vertex into disjoint subsets using their edge statistics to different communities. Our algorithm is the first low-order polynomial-time algorithm achieving exact matching between two correlated SBMs with high probability in dense graphs.
Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS Algorithms
Clustering non-Euclidean data is difficult, and one of the most used algorithms besides hierarchical clustering is the popular algorithm Partitioning Around Medoids (PAM), also simply referred to as k-medoids. In Euclidean geometry the mean-as used in k-means-is a good estimator for the cluster center, but this does not hold for arbitrary dissimilarities. PAM uses the medoid instead, the object with the smallest dissimilarity to all others in the cluster. This notion of centrality can be used with any (dis-)similarity, and thus is of high relevance to many domains such as biology that require the use of Jaccard, Gower, or more complex distances. A key issue with PAM is its high run time cost. We propose modifications to the PAM algorithm to achieve an O(k)-fold speedup in the second SWAP phase of the algorithm, but will still find the same results as the original PAM algorithm. If we slightly relax the choice of swaps performed (at comparable quality), we can further accelerate the algorithm by performing up to k swaps in each iteration. With the substantially faster SWAP, we can now also explore alternative strategies for choosing the initial medoids. We also show how the CLARA and CLARANS algorithms benefit from these modifications. It can easily be combined with earlier approaches to use PAM and CLARA on big data (some of which use PAM as a subroutine, hence can immediately benefit from these improvements), where the performance with high k becomes increasingly important. In experiments on real data with k=100, we observed a 200-fold speedup compared to the original PAM SWAP algorithm, making PAM applicable to larger data sets as long as we can afford to compute a distance matrix, and in particular to higher k (at k=2, the new SWAP was only 1.5 times faster, as the speedup is expected to increase with k).
Phase Transitions in the Detection of Correlated Databases
We study the problem of detecting the correlation between two Gaussian databases XinR^{ntimes d} and Y^{ntimes d}, each composed of n users with d features. This problem is relevant in the analysis of social media, computational biology, etc. We formulate this as a hypothesis testing problem: under the null hypothesis, these two databases are statistically independent. Under the alternative, however, there exists an unknown permutation sigma over the set of n users (or, row permutation), such that X is rho-correlated with Y^sigma, a permuted version of Y. We determine sharp thresholds at which optimal testing exhibits a phase transition, depending on the asymptotic regime of n and d. Specifically, we prove that if rho^2dto0, as dtoinfty, then weak detection (performing slightly better than random guessing) is statistically impossible, irrespectively of the value of n. This compliments the performance of a simple test that thresholds the sum all entries of X^TY. Furthermore, when d is fixed, we prove that strong detection (vanishing error probability) is impossible for any rho<rho^star, where rho^star is an explicit function of d, while weak detection is again impossible as long as rho^2dto0. These results close significant gaps in current recent related studies.
The PeerRank Method for Peer Assessment
We propose the PeerRank method for peer assessment. This constructs a grade for an agent based on the grades proposed by the agents evaluating the agent. Since the grade of an agent is a measure of their ability to grade correctly, the PeerRank method weights grades by the grades of the grading agent. The PeerRank method also provides an incentive for agents to grade correctly. As the grades of an agent depend on the grades of the grading agents, and as these grades themselves depend on the grades of other agents, we define the PeerRank method by a fixed point equation similar to the PageRank method for ranking web-pages. We identify some formal properties of the PeerRank method (for example, it satisfies axioms of unanimity, no dummy, no discrimination and symmetry), discuss some examples, compare with related work and evaluate the performance on some synthetic data. Our results show considerable promise, reducing the error in grade predictions by a factor of 2 or more in many cases over the natural baseline of averaging peer grades.
GEMA-Score: Granular Explainable Multi-Agent Score for Radiology Report Evaluation
Automatic medical report generation supports clinical diagnosis, reduces the workload of radiologists, and holds the promise of improving diagnosis consistency. However, existing evaluation metrics primarily assess the accuracy of key medical information coverage in generated reports compared to human-written reports, while overlooking crucial details such as the location and certainty of reported abnormalities. These limitations hinder the comprehensive assessment of the reliability of generated reports and pose risks in their selection for clinical use. Therefore, we propose a Granular Explainable Multi-Agent Score (GEMA-Score) in this paper, which conducts both objective quantification and subjective evaluation through a large language model-based multi-agent workflow. Our GEMA-Score parses structured reports and employs NER-F1 calculations through interactive exchanges of information among agents to assess disease diagnosis, location, severity, and uncertainty. Additionally, an LLM-based scoring agent evaluates completeness, readability, and clinical terminology while providing explanatory feedback. Extensive experiments validate that GEMA-Score achieves the highest correlation with human expert evaluations on a public dataset, demonstrating its effectiveness in clinical scoring (Kendall coefficient = 0.70 for Rexval dataset and Kendall coefficient = 0.54 for RadEvalX dataset). The anonymous project demo is available at: https://github.com/Zhenxuan-Zhang/GEMA_score.
Efficient computation of rankings from pairwise comparisons
We study the ranking of individuals, teams, or objects, based on pairwise comparisons between them, using the Bradley-Terry model. Estimates of rankings within this model are commonly made using a simple iterative algorithm first introduced by Zermelo almost a century ago. Here we describe an alternative and similarly simple iteration that provably returns identical results but does so much faster -- over a hundred times faster in some cases. We demonstrate this algorithm with applications to a range of example data sets and derive a number of results regarding its convergence.
Fast Combinatorial Algorithms for Min Max Correlation Clustering
We introduce fast algorithms for correlation clustering with respect to the Min Max objective that provide constant factor approximations on complete graphs. Our algorithms are the first purely combinatorial approximation algorithms for this problem. We construct a novel semi-metric on the set of vertices, which we call the correlation metric, that indicates to our clustering algorithms whether pairs of nodes should be in the same cluster. The paper demonstrates empirically that, compared to prior work, our algorithms sacrifice little in the objective quality to obtain significantly better run-time. Moreover, our algorithms scale to larger networks that are effectively intractable for known algorithms.
Enhancing Predictive Accuracy in Tennis: Integrating Fuzzy Logic and CV-GRNN for Dynamic Match Outcome and Player Momentum Analysis
The predictive analysis of match outcomes and player momentum in professional tennis has long been a subject of scholarly debate. In this paper, we introduce a novel approach to game prediction by combining a multi-level fuzzy evaluation model with a CV-GRNN model. We first identify critical statistical indicators via Principal Component Analysis and then develop a two-tier fuzzy model based on the Wimbledon data. In addition, the results of Pearson Correlation Coefficient indicate that the momentum indicators, such as Player Win Streak and Score Difference, have a strong correlation among them, revealing insightful trends among players transitioning between losing and winning streaks. Subsequently, we refine the CV-GRNN model by incorporating 15 statistically significant indicators, resulting in an increase in accuracy to 86.64% and a decrease in MSE by 49.21%. This consequently strengthens the methodological framework for predicting tennis match outcomes, emphasizing its practical utility and potential for adaptation in various athletic contexts.
Order in the Court: Explainable AI Methods Prone to Disagreement
By computing the rank correlation between attention weights and feature-additive explanation methods, previous analyses either invalidate or support the role of attention-based explanations as a faithful and plausible measure of salience. To investigate whether this approach is appropriate, we compare LIME, Integrated Gradients, DeepLIFT, Grad-SHAP, Deep-SHAP, and attention-based explanations, applied to two neural architectures trained on single- and pair-sequence language tasks. In most cases, we find that none of our chosen methods agree. Based on our empirical observations and theoretical objections, we conclude that rank correlation does not measure the quality of feature-additive methods. Practitioners should instead use the numerous and rigorous diagnostic methods proposed by the community.
Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution
Correlation does not imply causation, but patterns of statistical association between variables can be exploited to infer a causal structure (even with purely observational data) with the burgeoning field of causal discovery. As a purely observational science, astrophysics has much to gain by exploiting these new methods. The supermassive black hole (SMBH)--galaxy interaction has long been constrained by observed scaling relations, that is low-scatter correlations between variables such as SMBH mass and the central velocity dispersion of stars in a host galaxy's bulge. This study, using advanced causal discovery techniques and an up-to-date dataset, reveals a causal link between galaxy properties and dynamically-measured SMBH masses. We apply a score-based Bayesian framework to compute the exact conditional probabilities of every causal structure that could possibly describe our galaxy sample. With the exact posterior distribution, we determine the most likely causal structures and notice a probable causal reversal when separating galaxies by morphology. In elliptical galaxies, bulge properties (built from major mergers) tend to influence SMBH growth, while in spiral galaxies, SMBHs are seen to affect host galaxy properties, potentially through feedback in gas-rich environments. For spiral galaxies, SMBHs progressively quench star formation, whereas in elliptical galaxies, quenching is complete, and the causal connection has reversed. Our findings support theoretical models of hierarchical assembly of galaxies and active galactic nuclei feedback regulating galaxy evolution. Our study suggests the potentiality for further exploration of causal links in astrophysical and cosmological scaling relations, as well as any other observational science.
Accuracy on the Curve: On the Nonlinear Correlation of ML Performance Between Data Subpopulations
Understanding the performance of machine learning (ML) models across diverse data distributions is critically important for reliable applications. Despite recent empirical studies positing a near-perfect linear correlation between in-distribution (ID) and out-of-distribution (OOD) accuracies, we empirically demonstrate that this correlation is more nuanced under subpopulation shifts. Through rigorous experimentation and analysis across a variety of datasets, models, and training epochs, we demonstrate that OOD performance often has a nonlinear correlation with ID performance in subpopulation shifts. Our findings, which contrast previous studies that have posited a linear correlation in model performance during distribution shifts, reveal a "moon shape" correlation (parabolic uptrend curve) between the test performance on the majority subpopulation and the minority subpopulation. This non-trivial nonlinear correlation holds across model architectures, hyperparameters, training durations, and the imbalance between subpopulations. Furthermore, we found that the nonlinearity of this "moon shape" is causally influenced by the degree of spurious correlations in the training data. Our controlled experiments show that stronger spurious correlation in the training data creates more nonlinear performance correlation. We provide complementary experimental and theoretical analyses for this phenomenon, and discuss its implications for ML reliability and fairness. Our work highlights the importance of understanding the nonlinear effects of model improvement on performance in different subpopulations, and has the potential to inform the development of more equitable and responsible machine learning models.
G-Rank: Unsupervised Continuous Learn-to-Rank for Edge Devices in a P2P Network
Ranking algorithms in traditional search engines are powered by enormous training data sets that are meticulously engineered and curated by a centralized entity. Decentralized peer-to-peer (p2p) networks such as torrenting applications and Web3 protocols deliberately eschew centralized databases and computational architectures when designing services and features. As such, robust search-and-rank algorithms designed for such domains must be engineered specifically for decentralized networks, and must be lightweight enough to operate on consumer-grade personal devices such as a smartphone or laptop computer. We introduce G-Rank, an unsupervised ranking algorithm designed exclusively for decentralized networks. We demonstrate that accurate, relevant ranking results can be achieved in fully decentralized networks without any centralized data aggregation, feature engineering, or model training. Furthermore, we show that such results are obtainable with minimal data preprocessing and computational overhead, and can still return highly relevant results even when a user's device is disconnected from the network. G-Rank is highly modular in design, is not limited to categorical data, and can be implemented in a variety of domains with minimal modification. The results herein show that unsupervised ranking models designed for decentralized p2p networks are not only viable, but worthy of further research.
How Discriminative Are Your Qrels? How To Study the Statistical Significance of Document Adjudication Methods
Creating test collections for offline retrieval evaluation requires human effort to judge documents' relevance. This expensive activity motivated much work in developing methods for constructing benchmarks with fewer assessment costs. In this respect, adjudication methods actively decide both which documents and the order in which experts review them, in order to better exploit the assessment budget or to lower it. Researchers evaluate the quality of those methods by measuring the correlation between the known gold ranking of systems under the full collection and the observed ranking of systems under the lower-cost one. This traditional analysis ignores whether and how the low-cost judgements impact on the statistically significant differences among systems with respect to the full collection. We fill this void by proposing a novel methodology to evaluate how the low-cost adjudication methods preserve the pairwise significant differences between systems as the full collection. In other terms, while traditional approaches look for stability in answering the question "is system A better than system B?", our proposed approach looks for stability in answering the question "is system A significantly better than system B?", which is the ultimate questions researchers need to answer to guarantee the generalisability of their results. Among other results, we found that the best methods in terms of ranking of systems correlation do not always match those preserving statistical significance.
Further Generalizations of the Jaccard Index
Quantifying the similarity between two mathematical structures or datasets constitutes a particularly interesting and useful operation in several theoretical and applied problems. Aimed at this specific objective, the Jaccard index has been extensively used in the most diverse types of problems, also motivating some respective generalizations. The present work addresses further generalizations of this index, including its modification into a coincidence index capable of accounting also for the level of relative interiority between the two compared entities, as well as respective extensions for sets in continuous vector spaces, the generalization to multiset addition, densities and generic scalar fields, as well as a means to quantify the joint interdependence between two random variables. The also interesting possibility to take into account more than two sets has also been addressed, including the description of an index capable of quantifying the level of chaining between three structures. Several of the described and suggested eneralizations have been illustrated with respect to numeric case examples. It is also posited that these indices can play an important role while analyzing and integrating datasets in modeling approaches and pattern recognition activities, including as a measurement of clusters similarity or separation and as a resource for representing and analyzing complex networks.
Duplicate Question Retrieval and Confirmation Time Prediction in Software Communities
Community Question Answering (CQA) in different domains is growing at a large scale because of the availability of several platforms and huge shareable information among users. With the rapid growth of such online platforms, a massive amount of archived data makes it difficult for moderators to retrieve possible duplicates for a new question and identify and confirm existing question pairs as duplicates at the right time. This problem is even more critical in CQAs corresponding to large software systems like askubuntu where moderators need to be experts to comprehend something as a duplicate. Note that the prime challenge in such CQA platforms is that the moderators are themselves experts and are therefore usually extremely busy with their time being extraordinarily expensive. To facilitate the task of the moderators, in this work, we have tackled two significant issues for the askubuntu CQA platform: (1) retrieval of duplicate questions given a new question and (2) duplicate question confirmation time prediction. In the first task, we focus on retrieving duplicate questions from a question pool for a particular newly posted question. In the second task, we solve a regression problem to rank a pair of questions that could potentially take a long time to get confirmed as duplicates. For duplicate question retrieval, we propose a Siamese neural network based approach by exploiting both text and network-based features, which outperforms several state-of-the-art baseline techniques. Our method outperforms DupPredictor and DUPE by 5% and 7% respectively. For duplicate confirmation time prediction, we have used both the standard machine learning models and neural network along with the text and graph-based features. We obtain Spearman's rank correlation of 0.20 and 0.213 (statistically significant) for text and graph based features respectively.
Dissecting graph measure performance for node clustering in LFR parameter space
Graph measures that express closeness or distance between nodes can be employed for graph nodes clustering using metric clustering algorithms. There are numerous measures applicable to this task, and which one performs better is an open question. We study the performance of 25 graph measures on generated graphs with different parameters. While usually measure comparisons are limited to general measure ranking on a particular dataset, we aim to explore the performance of various measures depending on graph features. Using an LFR graph generator, we create a dataset of 11780 graphs covering the whole LFR parameter space. For each graph, we assess the quality of clustering with k-means algorithm for each considered measure. Based on this, we determine the best measure for each area of the parameter space. We find that the parameter space consists of distinct zones where one particular measure is the best. We analyze the geometry of the resulting zones and describe it with simple criteria. Given particular graph parameters, this allows us to recommend a particular measure to use for clustering.
Extending Mixture of Experts Model to Investigate Heterogeneity of Trajectories: When, Where and How to Add Which Covariates
Researchers are usually interested in examining the impact of covariates when separating heterogeneous samples into latent classes that are more homogeneous. The majority of theoretical and empirical studies with such aims have focused on identifying covariates as predictors of class membership in the structural equation modeling framework. In other words, the covariates only indirectly affect the sample heterogeneity. However, the covariates' influence on between-individual differences can also be direct. This article presents a mixture model that investigates covariates to explain within-cluster and between-cluster heterogeneity simultaneously, known as a mixture-of-experts (MoE) model. This study aims to extend the MoE framework to investigate heterogeneity in nonlinear trajectories: to identify latent classes, covariates as predictors to clusters, and covariates that explain within-cluster differences in change patterns over time. Our simulation studies demonstrate that the proposed model generally estimates the parameters unbiasedly, precisely and exhibits appropriate empirical coverage for a nominal 95% confidence interval. This study also proposes implementing structural equation model forests to shrink the covariate space of the proposed mixture model. We illustrate how to select covariates and construct the proposed model with longitudinal mathematics achievement data. Additionally, we demonstrate that the proposed mixture model can be further extended in the structural equation modeling framework by allowing the covariates that have direct effects to be time-varying.
Fast and Eager k-Medoids Clustering: O(k) Runtime Improvement of the PAM, CLARA, and CLARANS Algorithms
Clustering non-Euclidean data is difficult, and one of the most used algorithms besides hierarchical clustering is the popular algorithm Partitioning Around Medoids (PAM), also simply referred to as k-medoids clustering. In Euclidean geometry the mean-as used in k-means-is a good estimator for the cluster center, but this does not exist for arbitrary dissimilarities. PAM uses the medoid instead, the object with the smallest dissimilarity to all others in the cluster. This notion of centrality can be used with any (dis-)similarity, and thus is of high relevance to many domains and applications. A key issue with PAM is its high run time cost. We propose modifications to the PAM algorithm that achieve an O(k)-fold speedup in the second ("SWAP") phase of the algorithm, but will still find the same results as the original PAM algorithm. If we relax the choice of swaps performed (while retaining comparable quality), we can further accelerate the algorithm by eagerly performing additional swaps in each iteration. With the substantially faster SWAP, we can now explore faster initialization strategies, because (i) the classic ("BUILD") initialization now becomes the bottleneck, and (ii) our swap is fast enough to compensate for worse starting conditions. We also show how the CLARA and CLARANS algorithms benefit from the proposed modifications. While we do not study the parallelization of our approach in this work, it can easily be combined with earlier approaches to use PAM and CLARA on big data (some of which use PAM as a subroutine, hence can immediately benefit from these improvements), where the performance with high k becomes increasingly important. In experiments on real data with k=100,200, we observed a 458x respectively 1191x speedup compared to the original PAM SWAP algorithm, making PAM applicable to larger data sets, and in particular to higher k.
Quantifying Network Similarity using Graph Cumulants
How might one test the hypothesis that networks were sampled from the same distribution? Here, we compare two statistical tests that use subgraph counts to address this question. The first uses the empirical subgraph densities themselves as estimates of those of the underlying distribution. The second test uses a new approach that converts these subgraph densities into estimates of the graph cumulants of the distribution (without any increase in computational complexity). We demonstrate -- via theory, simulation, and application to real data -- the superior statistical power of using graph cumulants. In summary, when analyzing data using subgraph/motif densities, we suggest using the corresponding graph cumulants instead.
Mind the gap in university rankings: a complex network approach towards fairness
University rankings are increasingly adopted for academic comparison and success quantification, even to establish performance-based criteria for funding assignment. However, rankings are not neutral tools, and their use frequently overlooks disparities in the starting conditions of institutions. In this research, we detect and measure structural biases that affect in inhomogeneous ways the ranking outcomes of universities from diversified territorial and educational contexts. Moreover, we develop a fairer rating system based on a fully data-driven debiasing strategy that returns an equity-oriented redefinition of the achieved scores. The key idea consists in partitioning universities in similarity groups, determined from multifaceted data using complex network analysis, and referring the performance of each institution to an expectation based on its peers. Significant evidence of territorial biases emerges for official rankings concerning both the OECD and Italian university systems, hence debiasing provides relevant insights suggesting the design of fairer strategies for performance-based funding allocations.
Machine Learning with Multitype Protected Attributes: Intersectional Fairness through Regularisation
Ensuring equitable treatment (fairness) across protected attributes (such as gender or ethnicity) is a critical issue in machine learning. Most existing literature focuses on binary classification, but achieving fairness in regression tasks-such as insurance pricing or hiring score assessments-is equally important. Moreover, anti-discrimination laws also apply to continuous attributes, such as age, for which many existing methods are not applicable. In practice, multiple protected attributes can exist simultaneously; however, methods targeting fairness across several attributes often overlook so-called "fairness gerrymandering", thereby ignoring disparities among intersectional subgroups (e.g., African-American women or Hispanic men). In this paper, we propose a distance covariance regularisation framework that mitigates the association between model predictions and protected attributes, in line with the fairness definition of demographic parity, and that captures both linear and nonlinear dependencies. To enhance applicability in the presence of multiple protected attributes, we extend our framework by incorporating two multivariate dependence measures based on distance covariance: the previously proposed joint distance covariance (JdCov) and our novel concatenated distance covariance (CCdCov), which effectively address fairness gerrymandering in both regression and classification tasks involving protected attributes of various types. We discuss and illustrate how to calibrate regularisation strength, including a method based on Jensen-Shannon divergence, which quantifies dissimilarities in prediction distributions across groups. We apply our framework to the COMPAS recidivism dataset and a large motor insurance claims dataset.
Measuring Fairness in Ranked Outputs
Ranking and scoring are ubiquitous. We consider the setting in which an institution, called a ranker, evaluates a set of individuals based on demographic, behavioral or other characteristics. The final output is a ranking that represents the relative quality of the individuals. While automatic and therefore seemingly objective, rankers can, and often do, discriminate against individuals and systematically disadvantage members of protected groups. This warrants a careful study of the fairness of a ranking scheme. In this paper we propose fairness measures for ranked outputs. We develop a data generation procedure that allows us to systematically control the degree of unfairness in the output, and study the behavior of our measures on these datasets. We then apply our proposed measures to several real datasets, and demonstrate cases of unfairness. Finally, we show preliminary results of incorporating our ranked fairness measures into an optimization framework, and show potential for improving fairness of ranked outputs while maintaining accuracy.
ID and OOD Performance Are Sometimes Inversely Correlated on Real-world Datasets
Several studies have compared the in-distribution (ID) and out-of-distribution (OOD) performance of models in computer vision and NLP. They report a frequent positive correlation and some surprisingly never even observe an inverse correlation indicative of a necessary trade-off. The possibility of inverse patterns is important to determine whether ID performance can serve as a proxy for OOD generalization capabilities. This paper shows with multiple datasets that inverse correlations between ID and OOD performance do happen in real-world data - not only in theoretical worst-case settings. We also explain theoretically how these cases can arise even in a minimal linear setting, and why past studies could miss such cases due to a biased selection of models. Our observations lead to recommendations that contradict those found in much of the current literature. - High OOD performance sometimes requires trading off ID performance. - Focusing on ID performance alone may not lead to optimal OOD performance. It may produce diminishing (eventually negative) returns in OOD performance. - In these cases, studies on OOD generalization that use ID performance for model selection (a common recommended practice) will necessarily miss the best-performing models, making these studies blind to a whole range of phenomena.
Learning from the Best, Differently: A Diversity-Driven Rethinking on Data Selection
High-quality pre-training data is crutial for large language models, where quality captures factual reliability and semantic value, and diversity ensures broad coverage and distributional heterogeneity. Existing approaches typically rely on single or multiple-dimensional score-based selection. However, directly selecting top-scored data often degrades performance, and sampling from a broader range is required to recover results. The above non-monotonicity between dataset scores and downstream benchmark results reveals a fundamental bias: score-based methods collapse correlated dimensions, causing top-scored data to appear high-quality while systematically overlooking diversity. We argue that ensuring diversity requires decomposing correlated metrics into orthogonal feature dimensions, from which the top-scored data can be directly selected. Therefore, we proposed the Orthogonal Diversity-Aware Selection (ODiS) algorithm, which preserves both quality and diversity during data selection. First, ODiS evaluates data from multiple dimensions, covering language quality, knowledge quality, and comprehension difficulty. The multi-dimensional scores are then decorrelated via Principal Component Analysis (PCA), yielding orthogonal evaluation dimensions. For each dimension, a Roberta-based scorer is trained to regress the data onto PCA-projected scores, enabling scalable inference on large corpora. Finally, ODiS constructs the training dataset by selecting top-scored data within each orthogonal dimension, thereby ensuring both quality and diversity. Empirical results show that ODiS-selected data exhibit less than 2\% inter-dimension overlap, confirming orthogonality between dimensions. More importantly, models trained with ODiS-selected data significantly outperform other baselines on downstream benchmarks, highlighting the necessity of orthogonal, diversity-aware data selection for LLMs.
Subset Selection Based On Multiple Rankings in the Presence of Bias: Effectiveness of Fairness Constraints for Multiwinner Voting Score Functions
We consider the problem of subset selection where one is given multiple rankings of items and the goal is to select the highest ``quality'' subset. Score functions from the multiwinner voting literature have been used to aggregate rankings into quality scores for subsets. We study this setting of subset selection problems when, in addition, rankings may contain systemic or unconscious biases toward a group of items. For a general model of input rankings and biases, we show that requiring the selected subset to satisfy group fairness constraints can improve the quality of the selection with respect to unbiased rankings. Importantly, we show that for fairness constraints to be effective, different multiwinner score functions may require a drastically different number of rankings: While for some functions, fairness constraints need an exponential number of rankings to recover a close-to-optimal solution, for others, this dependency is only polynomial. This result relies on a novel notion of ``smoothness'' of submodular functions in this setting that quantifies how well a function can ``correctly'' assess the quality of items in the presence of bias. The results in this paper can be used to guide the choice of multiwinner score functions for the subset selection setting considered here; we additionally provide a tool to empirically enable this.
Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors
We present a straightforward statistical test to detect certain violations of the assumption that the data are Independent and Identically Distributed (IID). The specific form of violation considered is common across real-world applications: whether the examples are ordered in the dataset such that almost adjacent examples tend to have more similar feature values (e.g. due to distributional drift, or attractive interactions between datapoints). Based on a k-Nearest Neighbors estimate, our approach can be used to audit any multivariate numeric data as well as other data types (image, text, audio, etc.) that can be numerically represented, perhaps with model embeddings. Compared with existing methods to detect drift or auto-correlation, our approach is both applicable to more types of data and also able to detect a wider variety of IID violations in practice. Code: https://github.com/cleanlab/cleanlab
What can we learn from marketing skills as a bipartite network from accredited programs?
The relationship between professional skills and higher education programs is modeled as a non-directed bipartite network with binary entries representing the links between 28 skills (as captured by the occupational information network, O*NET) and 258 graduate program summaries (as captured by commercial brochures of graduate programs in marketing with accreditation standards of the Association to Advance Collegiate Schools of Business). While descriptive analysis for skills suggests a qualitative lack of alignment between the job demands captured by O*NET, inferential analyses based on exponential random graph model estimates show that skills' popularity and homophily coexist with a systematic yet weak alignment to job demands for marketing managers.
Simplicial Closure and higher-order link prediction
Networks provide a powerful formalism for modeling complex systems by using a model of pairwise interactions. But much of the structure within these systems involves interactions that take place among more than two nodes at once; for example, communication within a group rather than person-to person, collaboration among a team rather than a pair of coauthors, or biological interaction between a set of molecules rather than just two. Such higher-order interactions are ubiquitous, but their empirical study has received limited attention, and little is known about possible organizational principles of such structures. Here we study the temporal evolution of 19 datasets with explicit accounting for higher-order interactions. We show that there is a rich variety of structure in our datasets but datasets from the same system types have consistent patterns of higher-order structure. Furthermore, we find that tie strength and edge density are competing positive indicators of higher-order organization, and these trends are consistent across interactions involving differing numbers of nodes. To systematically further the study of theories for such higher-order structures, we propose higher-order link prediction as a benchmark problem to assess models and algorithms that predict higher-order structure. We find a fundamental differences from traditional pairwise link prediction, with a greater role for local rather than long-range information in predicting the appearance of new interactions.
Covariate balancing using the integral probability metric for causal inference
Weighting methods in causal inference have been widely used to achieve a desirable level of covariate balancing. However, the existing weighting methods have desirable theoretical properties only when a certain model, either the propensity score or outcome regression model, is correctly specified. In addition, the corresponding estimators do not behave well for finite samples due to large variance even when the model is correctly specified. In this paper, we consider to use the integral probability metric (IPM), which is a metric between two probability measures, for covariate balancing. Optimal weights are determined so that weighted empirical distributions for the treated and control groups have the smallest IPM value for a given set of discriminators. We prove that the corresponding estimator can be consistent without correctly specifying any model (neither the propensity score nor the outcome regression model). In addition, we empirically show that our proposed method outperforms existing weighting methods with large margins for finite samples.
NeuralNDCG: Direct Optimisation of a Ranking Metric via Differentiable Relaxation of Sorting
Learning to Rank (LTR) algorithms are usually evaluated using Information Retrieval metrics like Normalised Discounted Cumulative Gain (NDCG) or Mean Average Precision. As these metrics rely on sorting predicted items' scores (and thus, on items' ranks), their derivatives are either undefined or zero everywhere. This makes them unsuitable for gradient-based optimisation, which is the usual method of learning appropriate scoring functions. Commonly used LTR loss functions are only loosely related to the evaluation metrics, causing a mismatch between the optimisation objective and the evaluation criterion. In this paper, we address this mismatch by proposing NeuralNDCG, a novel differentiable approximation to NDCG. Since NDCG relies on the non-differentiable sorting operator, we obtain NeuralNDCG by relaxing that operator using NeuralSort, a differentiable approximation of sorting. As a result, we obtain a new ranking loss function which is an arbitrarily accurate approximation to the evaluation metric, thus closing the gap between the training and the evaluation of LTR models. We introduce two variants of the proposed loss function. Finally, the empirical evaluation shows that our proposed method outperforms previous work aimed at direct optimisation of NDCG and is competitive with the state-of-the-art methods.
