Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePixelRefer: A Unified Framework for Spatio-Temporal Object Referring with Arbitrary Granularity
Multimodal large language models (MLLMs) have demonstrated strong general-purpose capabilities in open-world visual comprehension. However, most existing MLLMs primarily focus on holistic, scene-level understanding, often overlooking the need for fine-grained, object-centric reasoning. In this paper, we present PixelRefer, a unified region-level MLLM framework that enables advanced fine-grained understanding over user-specified regions across both images and videos. Motivated by the observation that LLM attention predominantly focuses on object-level tokens, we propose a Scale-Adaptive Object Tokenizer (SAOT) to generate compact and semantically rich object representations from free-form regions. Our analysis reveals that global visual tokens contribute mainly in early LLM layers, inspiring the design of PixelRefer-Lite, an efficient variant that employs an Object-Centric Infusion module to pre-fuse global context into object tokens. This yields a lightweight Object-Only Framework that substantially reduces computational cost while maintaining high semantic fidelity. To facilitate fine-grained instruction tuning, we curate PixelRefer-2.2M, a high-quality object-centric instruction dataset. Extensive experiments across a range of benchmarks validate that PixelRefer achieves leading performance with fewer training samples, while PixelRefer-Lite offers competitive accuracy with notable gains in efficiency.
MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models
As inference on Large Language Models (LLMs) emerges as an important workload in machine learning applications, weight quantization has become a standard technique for efficient GPU deployment. Quantization not only reduces model size, but has also been shown to yield substantial speedups for single-user inference, due to reduced memory movement, with low accuracy impact. Yet, it remains open whether speedups are achievable also in batched settings with multiple parallel clients, which are highly relevant for practical serving. It is unclear whether GPU kernels can be designed to remain practically memory-bound, while supporting the substantially increased compute requirements of batched workloads. This paper resolves this question positively by describing the design of Mixed-precision Auto-Regressive LINear kernels, called MARLIN. Concretely, given a model whose weights are compressed via quantization to, e.g., 4 bits per element, MARLIN shows that batchsizes up to 16-32 can be supported with close to maximum (4times) quantization speedup, and larger batchsizes up to 64-128 with gradually decreasing, but still significant, acceleration. MARLIN accomplishes this via a combination of techniques, such as asynchronous memory access, complex task scheduling and pipelining, and bespoke quantization support. Our experiments show that MARLIN's near-optimal performance on individual LLM layers across different scenarios can also lead to end-to-end LLM inference speedups (of up to 2.8times) when integrated with the popular vLLM serving engine. Finally, MARLIN is extensible to further compression techniques, like NVIDIA 2:4 sparsity, leading to additional speedups.
CrossLMM: Decoupling Long Video Sequences from LMMs via Dual Cross-Attention Mechanisms
The advent of Large Multimodal Models (LMMs) has significantly enhanced Large Language Models (LLMs) to process and interpret diverse data modalities (e.g., image and video). However, as input complexity increases, particularly with long video sequences, the number of required tokens has grown significantly, leading to quadratically computational costs. This has made the efficient compression of video tokens in LMMs, while maintaining performance integrity, a pressing research challenge. In this paper, we introduce CrossLMM, decoupling long video sequences from LMMs via a dual cross-attention mechanism, which substantially reduces visual token quantity with minimal performance degradation. Specifically, we first implement a significant token reduction from pretrained visual encoders through a pooling methodology. Then, within LLM layers, we employ a visual-to-visual cross-attention mechanism, wherein the pooled visual tokens function as queries against the original visual token set. This module enables more efficient token utilization while retaining fine-grained informational fidelity. In addition, we introduce a text-to-visual cross-attention mechanism, for which the text tokens are enhanced through interaction with the original visual tokens, enriching the visual comprehension of the text tokens. Comprehensive empirical evaluation demonstrates that our approach achieves comparable or superior performance across diverse video-based LMM benchmarks, despite utilizing substantially fewer computational resources.
ATP-LLaVA: Adaptive Token Pruning for Large Vision Language Models
Large Vision Language Models (LVLMs) have achieved significant success across multi-modal tasks. However, the computational cost of processing long visual tokens can be prohibitively expensive on resource-limited devices. Previous methods have identified redundancy in visual tokens within the Large Language Model (LLM) decoder layers and have mitigated this by pruning tokens using a pre-defined or fixed ratio, thereby reducing computational overhead. Nonetheless, we observe that the impact of pruning ratio varies across different LLM layers and instances (image-prompt pairs). Therefore, it is essential to develop a layer-wise and instance-wise vision token pruning strategy to balance computational cost and model performance effectively. We propose ATP-LLaVA, a novel approach that adaptively determines instance-specific token pruning ratios for each LLM layer. Specifically, we introduce an Adaptive Token Pruning (ATP) module, which computes the importance score and pruning threshold based on input instance adaptively. The ATP module can be seamlessly integrated between any two LLM layers with negligible computational overhead. Additionally, we develop a Spatial Augmented Pruning (SAP) strategy that prunes visual tokens with both token redundancy and spatial modeling perspectives. Our approach reduces the average token count by 75% while maintaining performance, with only a minimal 1.9% degradation across seven widely used benchmarks. The project page can be accessed via https://yxxxb.github.io/ATP-LLaVA-page/.
Enabling Precise Topic Alignment in Large Language Models Via Sparse Autoencoders
Recent work shows that Sparse Autoencoders (SAE) applied to large language model (LLM) layers have neurons corresponding to interpretable concepts. These SAE neurons can be modified to align generated outputs, but only towards pre-identified topics and with some parameter tuning. Our approach leverages the observational and modification properties of SAEs to enable alignment for any topic. This method 1) scores each SAE neuron by its semantic similarity to an alignment text and uses them to 2) modify SAE-layer-level outputs by emphasizing topic-aligned neurons. We assess the alignment capabilities of this approach on diverse public topic datasets including Amazon reviews, Medicine, and Sycophancy, across the currently available open-source LLMs and SAE pairs (GPT2 and Gemma) with multiple SAEs configurations. Experiments aligning to medical prompts reveal several benefits over fine-tuning, including increased average language acceptability (0.25 vs. 0.5), reduced training time across multiple alignment topics (333.6s vs. 62s), and acceptable inference time for many applications (+0.00092s/token). Our open-source code is available at github.com/IBM/sae-steering.
LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model
How to efficiently transform large language models (LLMs) into instruction followers is recently a popular research direction, while training LLM for multi-modal reasoning remains less explored. Although the recent LLaMA-Adapter demonstrates the potential to handle visual inputs with LLMs, it still cannot generalize well to open-ended visual instructions and lags behind GPT-4. In this paper, we present LLaMA-Adapter V2, a parameter-efficient visual instruction model. Specifically, we first augment LLaMA-Adapter by unlocking more learnable parameters (e.g., norm, bias and scale), which distribute the instruction-following ability across the entire LLaMA model besides adapters. Secondly, we propose an early fusion strategy to feed visual tokens only into the early LLM layers, contributing to better visual knowledge incorporation. Thirdly, a joint training paradigm of image-text pairs and instruction-following data is introduced by optimizing disjoint groups of learnable parameters. This strategy effectively alleviates the interference between the two tasks of image-text alignment and instruction following and achieves strong multi-modal reasoning with only a small-scale image-text and instruction dataset. During inference, we incorporate additional expert models (e.g. captioning/OCR systems) into LLaMA-Adapter to further enhance its image understanding capability without incurring training costs. Compared to the original LLaMA-Adapter, our LLaMA-Adapter V2 can perform open-ended multi-modal instructions by merely introducing 14M parameters over LLaMA. The newly designed framework also exhibits stronger language-only instruction-following capabilities and even excels in chat interactions. Our code and models are available at https://github.com/ZrrSkywalker/LLaMA-Adapter.
FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping
Autoregressive Large Language Models (e.g., LLaMa, GPTs) are omnipresent achieving remarkable success in language understanding and generation. However, such impressive capability typically comes with a substantial model size, which presents significant challenges for autoregressive token-by-token generation. To mitigate computation overload incurred during generation, several early-exit and layer-dropping strategies have been proposed. Despite some promising success due to the redundancy across LLMs layers on metrics like Rough-L/BLUE, our careful knowledge-intensive evaluation unveils issues such as generation collapse, hallucination of wrong facts, and noticeable performance drop even at the trivial exit ratio of 10-15% of layers. We attribute these errors primarily to ineffective handling of the KV cache through state copying during early-exit. In this work, we observed the saturation of computationally expensive feed-forward blocks of LLM layers and proposed FFN-SkipLLM, which is a novel fine-grained skip strategy of autoregressive LLMs. More specifically, FFN-SkipLLM is an input-adaptive feed-forward skipping strategy that can skip 25-30% of FFN blocks of LLMs with marginal change in performance on knowledge-intensive generation tasks without any requirement to handle KV cache. Our extensive experiments and ablation across benchmarks like MT-Bench, Factoid-QA, and variable-length text summarization illustrate how our simple and ease-at-use method can facilitate faster autoregressive decoding.
ToMMeR -- Efficient Entity Mention Detection from Large Language Models
Identifying which text spans refer to entities -- mention detection -- is both foundational for information extraction and a known performance bottleneck. We introduce ToMMeR, a lightweight model (<300K parameters) probing mention detection capabilities from early LLM layers. Across 13 NER benchmarks, ToMMeR achieves 93\% recall zero-shot, with over 90\% precision using an LLM as a judge showing that ToMMeR rarely produces spurious predictions despite high recall. Cross-model analysis reveals that diverse architectures (14M-15B parameters) converge on similar mention boundaries (DICE >75\%), confirming that mention detection emerges naturally from language modeling. When extended with span classification heads, ToMMeR achieves near SOTA NER performance (80-87\% F1 on standard benchmarks). Our work provides evidence that structured entity representations exist in early transformer layers and can be efficiently recovered with minimal parameters.
Probing LLMs for Joint Encoding of Linguistic Categories
Large Language Models (LLMs) exhibit impressive performance on a range of NLP tasks, due to the general-purpose linguistic knowledge acquired during pretraining. Existing model interpretability research (Tenney et al., 2019) suggests that a linguistic hierarchy emerges in the LLM layers, with lower layers better suited to solving syntactic tasks and higher layers employed for semantic processing. Yet, little is known about how encodings of different linguistic phenomena interact within the models and to what extent processing of linguistically-related categories relies on the same, shared model representations. In this paper, we propose a framework for testing the joint encoding of linguistic categories in LLMs. Focusing on syntax, we find evidence of joint encoding both at the same (related part-of-speech (POS) classes) and different (POS classes and related syntactic dependency relations) levels of linguistic hierarchy. Our cross-lingual experiments show that the same patterns hold across languages in multilingual LLMs.
AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning
Large language models (LLMs) have enabled the creation of multi-modal LLMs that exhibit strong comprehension of visual data such as images and videos. However, these models usually rely on extensive visual tokens from visual encoders, leading to high computational demands, which limits their applicability in resource-constrained environments and for long-context tasks. In this work, we propose a training-free adaptive inference method for multi-modal LLMs that can accommodate a broad range of efficiency requirements with a minimum performance drop. Our method consists of a) iterative token merging based on embedding similarity before LLMs, and b) progressive token pruning within LLM layers based on multi-modal importance. With a minimalist design, our method can be applied to both video and image LLMs. Extensive experiments on diverse video and image benchmarks demonstrate that, our method substantially reduces computation load (e.g., a 7-fold reduction in FLOPs) while preserving the performance of video and image LLMs. Further, under a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding (e.g., +4.6 on MLVU). Additionally, our in-depth analysis provides insights into token redundancy and LLM layer behaviors, offering guidance for future research in designing efficient multi-modal LLMs. Our code will be available at https://github.com/LaVi-Lab/AIM.
FLOWER: Democratizing Generalist Robot Policies with Efficient Vision-Language-Action Flow Policies
Developing efficient Vision-Language-Action (VLA) policies is crucial for practical robotics deployment, yet current approaches face prohibitive computational costs and resource requirements. Existing diffusion-based VLA policies require multi-billion-parameter models and massive datasets to achieve strong performance. We tackle this efficiency challenge with two contributions: intermediate-modality fusion, which reallocates capacity to the diffusion head by pruning up to 50% of LLM layers, and action-specific Global-AdaLN conditioning, which cuts parameters by 20% through modular adaptation. We integrate these advances into a novel 950 M-parameter VLA called FLOWER. Pretrained in just 200 H100 GPU hours, FLOWER delivers competitive performance with bigger VLAs across 190 tasks spanning ten simulation and real-world benchmarks and demonstrates robustness across diverse robotic embodiments. In addition, FLOWER achieves a new SoTA of 4.53 on the CALVIN ABC benchmark. Demos, code and pretrained weights are available at https://intuitive-robots.github.io/flower_vla/.
Can "consciousness" be observed from large language model (LLM) internal states? Dissecting LLM representations obtained from Theory of Mind test with Integrated Information Theory and Span Representation analysis
Integrated Information Theory (IIT) provides a quantitative framework for explaining consciousness phenomenon, positing that conscious systems comprise elements integrated through causal properties. We apply IIT 3.0 and 4.0 -- the latest iterations of this framework -- to sequences of Large Language Model (LLM) representations, analyzing data derived from existing Theory of Mind (ToM) test results. Our study systematically investigates whether the differences of ToM test performances, when presented in the LLM representations, can be revealed by IIT estimates, i.e., Phi^{max} (IIT 3.0), Phi (IIT 4.0), Conceptual Information (IIT 3.0), and Phi-structure (IIT 4.0). Furthermore, we compare these metrics with the Span Representations independent of any estimate for consciousness. This additional effort aims to differentiate between potential "consciousness" phenomena and inherent separations within LLM representational space. We conduct comprehensive experiments examining variations across LLM transformer layers and linguistic spans from stimuli. Our results suggest that sequences of contemporary Transformer-based LLM representations lack statistically significant indicators of observed "consciousness" phenomena but exhibit intriguing patterns under spatio-permutational analyses. The Appendix and code are available as Supplementary Materials at: https://doi.org/10.1016/j.nlp.2025.100163.
Exploring the Potential of Encoder-free Architectures in 3D LMMs
Encoder-free architectures have been preliminarily explored in the 2D visual domain, yet it remains an open question whether they can be effectively applied to 3D understanding scenarios. In this paper, we present the first comprehensive investigation into the potential of encoder-free architectures to overcome the challenges of encoder-based 3D Large Multimodal Models (LMMs). These challenges include the failure to adapt to varying point cloud resolutions and the point features from the encoder not meeting the semantic needs of Large Language Models (LLMs). We identify key aspects for 3D LMMs to remove the encoder and enable the LLM to assume the role of the 3D encoder: 1) We propose the LLM-embedded Semantic Encoding strategy in the pre-training stage, exploring the effects of various point cloud self-supervised losses. And we present the Hybrid Semantic Loss to extract high-level semantics. 2) We introduce the Hierarchical Geometry Aggregation strategy in the instruction tuning stage. This incorporates inductive bias into the LLM early layers to focus on the local details of the point clouds. To the end, we present the first Encoder-free 3D LMM, ENEL. Our 7B model rivals the current state-of-the-art model, ShapeLLM-13B, achieving 55.0%, 50.92%, and 42.7% on the classification, captioning, and VQA tasks, respectively. Our results demonstrate that the encoder-free architecture is highly promising for replacing encoder-based architectures in the field of 3D understanding. The code is released at https://github.com/Ivan-Tang-3D/ENEL
Vision Remember: Alleviating Visual Forgetting in Efficient MLLM with Vision Feature Resample
In this work, we study the Efficient Multimodal Large Language Model. Redundant vision tokens consume a significant amount of computational memory and resources. Therefore, many previous works compress them in the Vision Projector to reduce the number of vision tokens. However, simply compressing in the Vision Projector can lead to the loss of visual information, especially for tasks that rely on fine-grained spatial relationships, such as OCR and Chart \& Table Understanding. To address this problem, we propose Vision Remember, which is inserted between the LLM decoder layers to allow vision tokens to re-memorize vision features. Specifically, we retain multi-level vision features and resample them with the vision tokens that have interacted with the text token. During the resampling process, each vision token only attends to a local region in vision features, which is referred to as saliency-enhancing local attention. Saliency-enhancing local attention not only improves computational efficiency but also captures more fine-grained contextual information and spatial relationships within the region. Comprehensive experiments on multiple visual understanding benchmarks validate the effectiveness of our method when combined with various Efficient Vision Projectors, showing performance gains without sacrificing efficiency. Based on Vision Remember, LLaVA-VR with only 2B parameters is also superior to previous representative MLLMs such as Tokenpacker-HD-7B and DeepSeek-VL-7B.
LFD: Layer Fused Decoding to Exploit External Knowledge in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) incorporates external knowledge into large language models (LLMs), improving their adaptability to downstream tasks and enabling information updates. Surprisingly, recent empirical evidence demonstrates that injecting noise into retrieved relevant documents paradoxically facilitates exploitation of external knowledge and improves generation quality. Although counterintuitive and challenging to apply in practice, this phenomenon enables granular control and rigorous analysis of how LLMs integrate external knowledge. Therefore, in this paper, we intervene on noise injection and establish a layer-specific functional demarcation within the LLM: shallow layers specialize in local context modeling, intermediate layers focus on integrating long-range external factual knowledge, and deeper layers primarily rely on parametric internal knowledge. Building on this insight, we propose Layer Fused Decoding (LFD), a simple decoding strategy that directly combines representations from an intermediate layer with final-layer decoding outputs to fully exploit the external factual knowledge. To identify the optimal intermediate layer, we introduce an internal knowledge score (IKS) criterion that selects the layer with the lowest IKS value in the latter half of layers. Experimental results across multiple benchmarks demonstrate that LFD helps RAG systems more effectively surface retrieved context knowledge with minimal cost.
Guiding Giants: Lightweight Controllers for Weighted Activation Steering in LLMs
Controlling undesirable Large Language Model (LLM) behaviors, such as the generation of unsafe content or failing to adhere to safety guidelines, often relies on costly fine-tuning. Activation steering provides an alternative for inference-time control, but existing methods typically lack fine-grained, adaptive mechanisms. We introduce a novel approach using a lightweight, trainable controller network integrated during inference. This controller network observes specific intermediate LLM activations and predicts both a global scaling factor and layer-specific weights. The predicted global scaling factor and layer-specific weights then dynamically modulate the intensity of a steering patch, derived from a pre-computed "refusal direction" vector, applied across the LLM's layers during generation. Trained on activations from both harmful and benign prompts, our controller learns to discriminatively apply nuanced, layer-aware interventions, activating steering primarily for harmful inputs. Experiments using safety benchmarks like ToxicChat & In-The-Wild Jailbreak Prompts demonstrate that our weighted steering controller significantly increases refusal rates compared to the base LLM, achieving targeted behavioral modification without altering the original model parameters. Our experiments with Llama-3.1-8B, Llama-3.2-1B & Mistral-7B show our approach outperforms existing methods, presenting an efficient and adaptive method for fine-grained control over LLM behavior at inference time.
Wider and Deeper LLM Networks are Fairer LLM Evaluators
Measuring the quality of responses generated by LLMs is a challenging task, particularly when it comes to evaluating whether the response is aligned with human preference. A novel approach involves using the LLM itself to make evaluation and stabilizing the results through multiple independent evaluations, similar to a single-layer narrow LLM network. This network consists of a fixed number of neurons, with each neuron being the same LLM. In this paper, we draw upon the extensive research on deep neural networks to explore whether deeper and wider networks can lead to fairer evaluations. Specifically, inspired by the observation that different neurons in a neural network are responsible for detecting different concepts, we first adaptively generate as many neuron roles as possible for each evaluation sample. Each perspective corresponds to the role of a specific LLM neuron in the first layer. In subsequent layers, we follow the idea that higher layers in deep networks are responsible for more comprehensive features, each layer receives representations from all neurons in the previous layer, integrating the locally learned evaluation information to obtain a more comprehensive evaluation result. Interestingly, this network design resembles the process of academic paper reviewing. To validate the effectiveness of our method, we construct the largest and most diverse English evaluation benchmark LLMEval^2 for LLM evaluators, comprising 15 tasks, 8 abilities, and 2,553 samples. Experimental results demonstrate that a wider network (involving many reviewers) with 2 layers (one round of discussion) performs the best, improving kappa correlation coefficient from 0.28 to 0.34. We also leverage WideDeep to aid in the assessment of Chinese LLMs, which has accelerated the evaluation time by 4.6 times, resulting in a 60% cost saving. WideDeep achieves a remarkable 93% agreement level among humans.
PAL: Probing Audio Encoders via LLMs -- A Study of Information Transfer from Audio Encoders to LLMs
The integration of audio perception capabilities into Large Language Models (LLMs) has enabled significant advances in Audio-LLMs. Although application-focused developments, particularly in curating training data for specific capabilities e.g., audio reasoning, have progressed rapidly, the underlying mechanisms that govern efficient transfer of rich semantic representations from audio encoders to LLMs remain under-explored. We conceptualize effective audio-LLM interaction as the LLM's ability to proficiently probe the audio encoder representations to satisfy textual queries. This paper presents a systematic investigation on how architectural design choices can affect that. Beginning with a standard Pengi/LLaVA-style audio-LLM architecture, we propose and evaluate several modifications guided by hypotheses derived from mechanistic interpretability studies and LLM operational principles. Our experiments demonstrate that: (1) delaying audio integration until the LLM's initial layers establish textual context that enhances its ability to probe the audio representations for relevant information; (2) the LLM can proficiently probe audio representations exclusively through LLM layer's attention submodule, without requiring propagation to its Feed-Forward Network (FFN) submodule; (3) an efficiently integrated ensemble of diverse audio encoders provides richer, complementary representations, thereby broadening the LLM's capacity to probe a wider spectrum of audio information. All hypotheses are evaluated using an identical three-stage training curriculum on a dataset of 5.6 million audio-text pairs, ensuring controlled comparisons. Our final architecture, which incorporates all proposed modifications, achieves relative improvements from 10\% to 60\% over the baseline, validating our approach to optimizing cross-modal information transfer in audio-LLMs. Project page: https://ta012.github.io/PAL/
When Semantics Mislead Vision: Mitigating Large Multimodal Models Hallucinations in Scene Text Spotting and Understanding
Large Multimodal Models (LMMs) have achieved impressive progress in visual perception and reasoning. However, when confronted with visually ambiguous or non-semantic scene text, they often struggle to accurately spot and understand the content, frequently generating semantically plausible yet visually incorrect answers, which we refer to as semantic hallucination. In this work, we investigate the underlying causes of semantic hallucination and identify a key finding: Transformer layers in LLM with stronger attention focus on scene text regions are less prone to producing semantic hallucinations. Thus, we propose a training-free semantic hallucination mitigation framework comprising two key components: (1) ZoomText, a coarse-to-fine strategy that identifies potential text regions without external detectors; and (2) Grounded Layer Correction, which adaptively leverages the internal representations from layers less prone to hallucination to guide decoding, correcting hallucinated outputs for non-semantic samples while preserving the semantics of meaningful ones. To enable rigorous evaluation, we introduce TextHalu-Bench, a benchmark of over 1,730 samples spanning both semantic and non-semantic cases, with manually curated question-answer pairs designed to probe model hallucinations. Extensive experiments demonstrate that our method not only effectively mitigates semantic hallucination but also achieves strong performance on public benchmarks for scene text spotting and understanding.
CompactifAI: Extreme Compression of Large Language Models using Quantum-Inspired Tensor Networks
Large Language Models (LLMs) such as ChatGPT and LlaMA are advancing rapidly in generative Artificial Intelligence (AI), but their immense size poses significant challenges, such as huge training and inference costs, substantial energy demands, and limitations for on-site deployment. Traditional compression methods such as pruning, distillation, and low-rank approximation focus on reducing the effective number of neurons in the network, while quantization focuses on reducing the numerical precision of individual weights to reduce the model size while keeping the number of neurons fixed. While these compression methods have been relatively successful in practice, there is no compelling reason to believe that truncating the number of neurons is an optimal strategy. In this context, this paper introduces CompactifAI, an innovative LLM compression approach using quantum-inspired Tensor Networks that focuses on the model's correlation space instead, allowing for a more controlled, refined and interpretable model compression. Our method is versatile and can be implemented with - or on top of - other compression techniques. As a benchmark, we demonstrate that a combination of CompactifAI with quantization allows to reduce a 93% the memory size of LlaMA 7B, reducing also 70% the number of parameters, accelerating 50% the training and 25% the inference times of the model, and just with a small accuracy drop of 2% - 3%, going much beyond of what is achievable today by other compression techniques. Our methods also allow to perform a refined layer sensitivity profiling, showing that deeper layers tend to be more suitable for tensor network compression, which is compatible with recent observations on the ineffectiveness of those layers for LLM performance. Our results imply that standard LLMs are, in fact, heavily overparametrized, and do not need to be large at all.
ToDRE: Visual Token Pruning via Diversity and Task Awareness for Efficient Large Vision-Language Models
The representation of visual inputs of large vision-language models (LVLMs) usually involves substantially more tokens than that of textual inputs, leading to significant computational overhead. Several recent studies strive to mitigate this issue by either conducting token compression to prune redundant visual tokens or guiding them to bypass certain computational stages. While most existing work exploits token importance as the redundancy indicator, our study reveals that two largely neglected factors, namely, the diversity of retained visual tokens and their task relevance, often offer more robust criteria in token pruning. To this end, we design ToDRE, a two-stage and training-free token compression framework that achieves superior performance by pruning Tokens based on token Diversity and token-task RElevance. Instead of pruning redundant tokens, ToDRE introduces a greedy k-center algorithm to select and retain a small subset of diverse visual tokens after the vision encoder. Additionally, ToDRE addresses the "information migration" by further eliminating task-irrelevant visual tokens within the decoder of large language model (LLM). Extensive experiments show that ToDRE effectively reduces 90% of visual tokens after vision encoder and adaptively prunes all visual tokens within certain LLM's decoder layers, leading to a 2.6x speed-up in total inference time while maintaining 95.1% of model performance and excellent compatibility with efficient attention operators.
GL-Fusion: Rethinking the Combination of Graph Neural Network and Large Language model
Recent research on integrating Large Language Models (LLMs) with Graph Neural Networks (GNNs) typically follows two approaches: LLM-centered models, which convert graph data into tokens for LLM processing, and GNN-centered models, which use LLMs to encode text features into node and edge representations for GNN input. LLM-centered models often struggle to capture graph structures effectively, while GNN-centered models compress variable-length textual data into fixed-size vectors, limiting their ability to understand complex semantics. Additionally, GNN-centered approaches require converting tasks into a uniform, manually-designed format, restricting them to classification tasks and preventing language output. To address these limitations, we introduce a new architecture that deeply integrates GNN with LLM, featuring three key innovations: (1) Structure-Aware Transformers, which incorporate GNN's message-passing capabilities directly into LLM's transformer layers, allowing simultaneous processing of textual and structural information and generating outputs from both GNN and LLM; (2) Graph-Text Cross-Attention, which processes full, uncompressed text from graph nodes and edges, ensuring complete semantic integration; and (3) GNN-LLM Twin Predictor, enabling LLM's flexible autoregressive generation alongside GNN's scalable one-pass prediction. GL-Fusion achieves outstand performance on various tasks. Notably, it achieves state-of-the-art performance on OGBN-Arxiv and OGBG-Code2.
LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token
The advent of real-time large multimodal models (LMMs) like GPT-4o has sparked considerable interest in efficient LMMs. LMM frameworks typically encode visual inputs into vision tokens (continuous representations) and integrate them and textual instructions into the context of large language models (LLMs), where large-scale parameters and numerous context tokens (predominantly vision tokens) result in substantial computational overhead. Previous efforts towards efficient LMMs always focus on replacing the LLM backbone with smaller models, while neglecting the crucial issue of token quantity. In this paper, we introduce LLaVA-Mini, an efficient LMM with minimal vision tokens. To achieve a high compression ratio of vision tokens while preserving visual information, we first analyze how LMMs understand vision tokens and find that most vision tokens only play a crucial role in the early layers of LLM backbone, where they mainly fuse visual information into text tokens. Building on this finding, LLaVA-Mini introduces modality pre-fusion to fuse visual information into text tokens in advance, thereby facilitating the extreme compression of vision tokens fed to LLM backbone into one token. LLaVA-Mini is a unified large multimodal model that can support the understanding of images, high-resolution images, and videos in an efficient manner. Experiments across 11 image-based and 7 video-based benchmarks demonstrate that LLaVA-Mini outperforms LLaVA-v1.5 with just 1 vision token instead of 576. Efficiency analyses reveal that LLaVA-Mini can reduce FLOPs by 77%, deliver low-latency responses within 40 milliseconds, and process over 10,000 frames of video on the GPU hardware with 24GB of memory.
From Tokens to Layers: Redefining Stall-Free Scheduling for LLM Serving with Layered Prefill
Large Language Model (LLM) inference in production must meet stringent service-level objectives for both time-to-first-token (TTFT) and time-between-token (TBT) while maximizing throughput under fixed compute, memory, and interconnect budgets. Modern serving systems adopt stall-free scheduling techniques such as chunked prefill, which splits long prompt processing along the token dimension and interleaves prefill with ongoing decode iterations. While effective at stabilizing TBT, chunked prefill incurs substantial overhead in Mixture-of-Experts (MoE) models: redundant expert weight loads increase memory traffic by up to 39% and inflate energy consumption. We propose layered prefill, a new scheduling paradigm that treats transformer layer groups as the primary scheduling unit. By vertically partitioning the model into contiguous layer groups and interleaving prefill and decode across the groups, layered prefill sustains stall-free decoding while eliminating chunk-induced MoE weight reloads. It reduces off-chip bandwidth demand, lowering TTFT by up to 70%, End-to-End latency by 41% and per-token energy by up to 22%. Evaluations show that layered prefill consistently improves the TTFT--TBT Pareto frontier over chunked prefill, reducing expert-load traffic and energy cost while maintaining stall-free decoding. Overall, shifting the scheduling axis from tokens to layers unlocks a new operating regime for high-efficiency, energy-aware LLM serving in co-located environments.
Safety Layers in Aligned Large Language Models: The Key to LLM Security
Aligned LLMs are secure, capable of recognizing and refusing to answer malicious questions. However, the role of internal parameters in maintaining such security is not well understood yet, further these models can be vulnerable to security degradation when subjected to fine-tuning attacks. To address these challenges, our work uncovers the mechanism behind security in aligned LLMs at the parameter level, identifying a small set of contiguous layers in the middle of the model that are crucial for distinguishing malicious queries from normal ones, referred to as ``safety layers". We first confirm the existence of these safety layers by analyzing variations in input vectors within the model's internal layers. Additionally, we leverage the over-rejection phenomenon and parameters scaling analysis to precisely locate the safety layers. Building on these findings, we propose a novel fine-tuning approach, Safely Partial-Parameter Fine-Tuning (SPPFT), that fixes the gradient of the safety layers during fine-tuning to address the security degradation. Our experiments demonstrate that the proposed approach can significantly preserve LLM security while maintaining performance and reducing computational resources compared to full fine-tuning.
An Analysis of Embedding Layers and Similarity Scores using Siamese Neural Networks
Large Lanugage Models (LLMs) are gaining increasing popularity in a variety of use cases, from language understanding and writing to assistance in application development. One of the most important aspects for optimal funcionality of LLMs is embedding layers. Word embeddings are distributed representations of words in a continuous vector space. In the context of LLMs, words or tokens from the input text are transformed into high-dimensional vectors using unique algorithms specific to the model. Our research examines the embedding algorithms from leading companies in the industry, such as OpenAI, Google's PaLM, and BERT. Using medical data, we have analyzed similarity scores of each embedding layer, observing differences in performance among each algorithm. To enhance each model and provide an additional encoding layer, we also implemented Siamese Neural Networks. After observing changes in performance with the addition of the model, we measured the carbon footage per epoch of training. The carbon footprint associated with large language models (LLMs) is a significant concern, and should be taken into consideration when selecting algorithms for a variety of use cases. Overall, our research compared the accuracy different, leading embedding algorithms and their carbon footage, allowing for a holistic review of each embedding algorithm.
Why Lift so Heavy? Slimming Large Language Models by Cutting Off the Layers
Large Language Models (LLMs) possess outstanding capabilities in addressing various natural language processing (NLP) tasks. However, the sheer size of these models poses challenges in terms of storage, training and inference due to the inclusion of billions of parameters through layer stacking. While traditional approaches such as model pruning or distillation offer ways for reducing model size, they often come at the expense of performance retention. In our investigation, we systematically explore the approach of reducing the number of layers in LLMs. Surprisingly, we observe that even with fewer layers, LLMs maintain similar or better performance levels, particularly in prompt-based fine-tuning for text classification tasks. Remarkably, in certain cases, models with a single layer outperform their fully layered counterparts. These findings offer valuable insights for future work aimed at mitigating the size constraints of LLMs while preserving their performance, thereby opening avenues for significantly more efficient use of LLMs.
Streamlining Redundant Layers to Compress Large Language Models
This paper introduces LLM-Streamline, a novel layer pruning approach for large language models. It is based on the observation that different layers have varying impacts on hidden states, enabling the identification of less important layers. LLMStreamline comprises two parts: layer pruning, which removes consecutive layers with the lowest importance based on target sparsity, and layer replacement, where a lightweight network is trained to replace the pruned layers to mitigate performance loss. Additionally, a new metric called "stability" is proposed to address the limitations of accuracy in evaluating model compression. Experiments show that LLM-Streamline surpasses previous state-of-the-art pruning methods in both accuracy and stability.
User-LLM: Efficient LLM Contextualization with User Embeddings
Large language models (LLMs) have revolutionized natural language processing. However, effectively incorporating complex and potentially noisy user interaction data remains a challenge. To address this, we propose User-LLM, a novel framework that leverages user embeddings to contextualize LLMs. These embeddings, distilled from diverse user interactions using self-supervised pretraining, capture latent user preferences and their evolution over time. We integrate these user embeddings with LLMs through cross-attention and soft-prompting, enabling LLMs to dynamically adapt to user context. Our comprehensive experiments on MovieLens, Amazon Review, and Google Local Review datasets demonstrate significant performance gains across various tasks. Notably, our approach outperforms text-prompt-based contextualization on long sequence tasks and tasks that require deep user understanding while being computationally efficient. We further incorporate Perceiver layers to streamline the integration between user encoders and LLMs, reducing computational demands.
BTS: Harmonizing Specialized Experts into a Generalist LLM
We present Branch-Train-Stitch (BTS), an efficient and flexible training algorithm for combining independently trained large language model (LLM) experts into a single, capable generalist model. Following Li et al., we start with a single seed language model which is branched into domain-specific (e.g., coding or math) experts with continual pretraining. BTS combines experts into a generalist model using lightweight stitch layers, which are inserted between frozen experts and the seed LLM, and trained on a small datamix of the expert domains. Stitch layers enable the seed LLM to integrate representations from any number of experts during the forward pass, allowing it to generalize to new domains, despite remaining frozen. Because BTS does not alter the constituent LLMs, BTS provides a modular and flexible approach: experts can be easily removed and new experts can be added with only a small amount of training. Compared to alternative model merging approaches, BTS yields the best generalist performance on a variety of downstream tasks, retaining the specialized capabilities of each of the experts.
LightTransfer: Your Long-Context LLM is Secretly a Hybrid Model with Effortless Adaptation
Scaling language models to handle longer contexts introduces substantial memory challenges due to the growing cost of key-value (KV) caches. Motivated by the efficiency gains of hybrid models and the broad availability of pretrained large transformer backbones, we explore transitioning transformer models into hybrid architectures for a more efficient generation. In this work, we propose LightTransfer, a lightweight method that transforms models such as LLaMA into hybrid variants. Our approach identifies lazy layers -- those focusing on recent or initial tokens -- and replaces their full attention with streaming attention. This transformation can be performed without any training for long-context understanding tasks or with minimal fine-tuning for o1-like long reasoning generation tasks that require stronger reasoning capabilities. Experiments across diverse benchmarks and models (e.g., LLaMA, Mistral, QwQ-STILL) demonstrate that, even when half of the layers are identified as lazy, LightTransfer achieves up to 2.17times throughput improvement with minimal performance loss (<1.5% on LongBench) and achieves 53.3\% on math benchmark AIME24 of advanced o1-like long reasoning model QwQ-STILL.
Transcoders Find Interpretable LLM Feature Circuits
A key goal in mechanistic interpretability is circuit analysis: finding sparse subgraphs of models corresponding to specific behaviors or capabilities. However, MLP sublayers make fine-grained circuit analysis on transformer-based language models difficult. In particular, interpretable features -- such as those found by sparse autoencoders (SAEs) -- are typically linear combinations of extremely many neurons, each with its own nonlinearity to account for. Circuit analysis in this setting thus either yields intractably large circuits or fails to disentangle local and global behavior. To address this we explore transcoders, which seek to faithfully approximate a densely activating MLP layer with a wider, sparsely-activating MLP layer. We successfully train transcoders on language models with 120M, 410M, and 1.4B parameters, and find them to perform at least on par with SAEs in terms of sparsity, faithfulness, and human-interpretability. We then introduce a novel method for using transcoders to perform weights-based circuit analysis through MLP sublayers. The resulting circuits neatly factorize into input-dependent and input-invariant terms. Finally, we apply transcoders to reverse-engineer unknown circuits in the model, and we obtain novel insights regarding the greater-than circuit in GPT2-small. Our results suggest that transcoders can prove effective in decomposing model computations involving MLPs into interpretable circuits. Code is available at https://github.com/jacobdunefsky/transcoder_circuits.
SurveyG: A Multi-Agent LLM Framework with Hierarchical Citation Graph for Automated Survey Generation
Large language models (LLMs) are increasingly adopted for automating survey paper generation wang2406autosurvey, liang2025surveyx, yan2025surveyforge,su2025benchmarking,wen2025interactivesurvey. Existing approaches typically extract content from a large collection of related papers and prompt LLMs to summarize them directly. However, such methods often overlook the structural relationships among papers, resulting in generated surveys that lack a coherent taxonomy and a deeper contextual understanding of research progress. To address these shortcomings, we propose SurveyG, an LLM-based agent framework that integrates hierarchical citation graph, where nodes denote research papers and edges capture both citation dependencies and semantic relatedness between their contents, thereby embedding structural and contextual knowledge into the survey generation process. The graph is organized into three layers: Foundation, Development, and Frontier, to capture the evolution of research from seminal works to incremental advances and emerging directions. By combining horizontal search within layers and vertical depth traversal across layers, the agent produces multi-level summaries, which are consolidated into a structured survey outline. A multi-agent validation stage then ensures consistency, coverage, and factual accuracy in generating the final survey. Experiments, including evaluations by human experts and LLM-as-a-judge, demonstrate that SurveyG outperforms state-of-the-art frameworks, producing surveys that are more comprehensive and better structured to the underlying knowledge taxonomy of a field.
Polar Sparsity: High Throughput Batched LLM Inferencing with Scalable Contextual Sparsity
Accelerating large language model (LLM) inference is critical for real-world deployments requiring high throughput and low latency. Contextual sparsity, where each token dynamically activates only a small subset of the model parameters, shows promise but does not scale to large batch sizes due to union of active neurons quickly approaching dense computation. We introduce Polar Sparsity, highlighting a key shift in sparsity importance from MLP to Attention layers as we scale batch size and sequence length. While MLP layers become more compute-efficient under batching, their sparsity vanishes. In contrast, attention becomes increasingly more expensive at scale, while their head sparsity remains stable and batch-invariant. We develop hardware-efficient, sparsity-aware GPU kernels for selective MLP and Attention computations, delivering up to \(2.2\times\) end-to-end speedups for models like OPT, LLaMA-2 \& 3, across various batch sizes and sequence lengths without compromising accuracy. To our knowledge, this is the first work to demonstrate that contextual sparsity can scale effectively to large batch sizes, delivering substantial inference acceleration with minimal changes, making Polar Sparsity practical for large-scale, high-throughput LLM deployment systems. Our code is available at: https://github.com/susavlsh10/Polar-Sparsity.
No Answer Needed: Predicting LLM Answer Accuracy from Question-Only Linear Probes
Do large language models (LLMs) anticipate when they will answer correctly? To study this, we extract activations after a question is read but before any tokens are generated, and train linear probes to predict whether the model's forthcoming answer will be correct. Across three open-source model families ranging from 7 to 70 billion parameters, projections on this "in-advance correctness direction" trained on generic trivia questions predict success in distribution and on diverse out-of-distribution knowledge datasets, outperforming black-box baselines and verbalised predicted confidence. Predictive power saturates in intermediate layers, suggesting that self-assessment emerges mid-computation. Notably, generalisation falters on questions requiring mathematical reasoning. Moreover, for models responding "I don't know", doing so strongly correlates with the probe score, indicating that the same direction also captures confidence. By complementing previous results on truthfulness and other behaviours obtained with probes and sparse auto-encoders, our work contributes essential findings to elucidate LLM internals.
How Alignment and Jailbreak Work: Explain LLM Safety through Intermediate Hidden States
Large language models (LLMs) rely on safety alignment to avoid responding to malicious user inputs. Unfortunately, jailbreak can circumvent safety guardrails, resulting in LLMs generating harmful content and raising concerns about LLM safety. Due to language models with intensive parameters often regarded as black boxes, the mechanisms of alignment and jailbreak are challenging to elucidate. In this paper, we employ weak classifiers to explain LLM safety through the intermediate hidden states. We first confirm that LLMs learn ethical concepts during pre-training rather than alignment and can identify malicious and normal inputs in the early layers. Alignment actually associates the early concepts with emotion guesses in the middle layers and then refines them to the specific reject tokens for safe generations. Jailbreak disturbs the transformation of early unethical classification into negative emotions. We conduct experiments on models from 7B to 70B across various model families to prove our conclusion. Overall, our paper indicates the intrinsical mechanism of LLM safety and how jailbreaks circumvent safety guardrails, offering a new perspective on LLM safety and reducing concerns. Our code is available at https://github.com/ydyjya/LLM-IHS-Explanation.
What Happened in LLMs Layers when Trained for Fast vs. Slow Thinking: A Gradient Perspective
What makes a difference in the post-training of LLMs? We investigate the training patterns of different layers in large language models (LLMs), through the lens of gradient, when training with different responses and initial models. We are specifically interested in how fast vs. slow thinking affects the layer-wise gradients, given the recent popularity of training LLMs on reasoning paths such as chain-of-thoughts (CoT) and process rewards. In our study, fast thinking without CoT leads to larger gradients and larger differences of gradients across layers than slow thinking (Detailed CoT), indicating the learning stability brought by the latter. Moreover, pre-trained LLMs are less affected by the instability of fast thinking than instruction-tuned LLMs. Additionally, we study whether the gradient patterns can reflect the correctness of responses when training different LLMs using slow vs. fast thinking paths. The results show that the gradients of slow thinking can distinguish correct and irrelevant reasoning paths. As a comparison, we conduct similar gradient analyses on non-reasoning knowledge learning tasks, on which, however, trivially increasing the response length does not lead to similar behaviors of slow thinking. Our study strengthens fundamental understandings of LLM training and sheds novel insights on its efficiency and stability, which pave the way towards building a generalizable System-2 agent. Our code, data, and gradient statistics can be found in: https://github.com/MingLiiii/Layer_Gradient.
All is Not Lost: LLM Recovery without Checkpoints
Training LLMs on decentralized and wimpy computation nodes, e.g., multiple on-spot instances, lowers the training cost and enables model democratization. The inevitable challenge here is the churn of nodes due to failures and the operator's scheduling policies, leading to losing a stage - a part of the model. The conventional approaches to recover from failures are to either use checkpointing, where periodically a copy of the entire model is sent to an additional storage, or redundant computation. These approaches yield significant communication and/or computation overhead even in non-failure cases and scale poorly in settings with large models. In this paper, we propose, CheckFree, an efficient recovery method where a failing stage is substituted by a weighted average of the closest neighboring stages. In contrast to the state of the art, CheckFree requires no additional computation or storage. However, because of the nature of averaging neighbouring stages, it can only recover failures of intermediate stages. We further extend our method to CheckFree+ with out-of-order pipeline execution to tolerate crashes of the first and last stages. Thanks to out-of-order pipelining, behaviour of those stages is mimicked by their neighboring ones, which allows CheckFree+ to recover them by simply copying the weights from the immediate neighbour. To be able to recover the (de)embedding layers, CheckFree+ copies those layers to the neighboring stages, which requires relatively small storage overhead. We extensively evaluate our method on LLaMa models of model sizes from 124M to 1.5B with varying failure frequencies. In the case of low and medium failure rates (5-10%), CheckFree and CheckFree+ outperform both checkpointing and redundant computation in terms of convergence in wall-clock time by over 12%. Both of our proposals can be run via our code available at: https://github.com/gensyn-ai/CheckFree.
MedVisionLlama: Leveraging Pre-Trained Large Language Model Layers to Enhance Medical Image Segmentation
Large Language Models (LLMs), known for their versatility in textual data, are increasingly being explored for their potential to enhance medical image segmentation, a crucial task for accurate diagnostic imaging. This study explores enhancing Vision Transformers (ViTs) for medical image segmentation by integrating pre-trained LLM transformer blocks. Our approach, which incorporates a frozen LLM transformer block into the encoder of a ViT-based model, leads to substantial improvements in segmentation performance across various medical imaging modalities. We propose a Hybrid Attention Mechanism that combines global and local feature learning with a Multi-Scale Fusion Block for aggregating features across different scales. The enhanced model shows significant performance gains, including an average Dice score increase from 0.74 to 0.79 and improvements in accuracy, precision, and the Jaccard Index. These results demonstrate the effectiveness of LLM-based transformers in refining medical image segmentation, highlighting their potential to significantly boost model accuracy and robustness. The source code and our implementation are available at: https://bit.ly/3zf2CVs
Duo-LLM: A Framework for Studying Adaptive Computation in Large Language Models
Large Language Models (LLMs) typically generate outputs token by token using a fixed compute budget, leading to inefficient resource utilization. To address this shortcoming, recent advancements in mixture of expert (MoE) models, speculative decoding, and early exit strategies leverage the insight that computational demands can vary significantly based on the complexity and nature of the input. However, identifying optimal routing patterns for dynamic execution remains an open challenge, limiting the full potential of these adaptive methods. To address this need, we study adaptive computation in LLMs more systematically. We propose a novel framework that integrates smaller auxiliary modules within each Feed-Forward Network layer of the LLM. This design enables dynamic routing of tokens based on task complexity: tokens can be processed by either the small or big modules at each layer, or even bypass certain layers entirely. This allows us to introduce a novel notion of a token's difficulty, defined by its potential to benefit from additional computational resources. Importantly, by employing oracles to identify optimal patterns of adaptive computations, we gain valuable insights into the internal workings of LLMs and the routing processes in a simplified heterogeneous MoE setup. We show that trained routers operate differently from oracles and often yield suboptimal solutions. Notably, activating a large module in just one layer outperforms models that use large modules across all layers, underscoring the gap between practical implementations of routing in MoE models and theoretical optima for adaptive computation.
Boosting CTC-Based ASR Using LLM-Based Intermediate Loss Regularization
End-to-end (E2E) automatic speech recognition (ASR) systems have revolutionized the field by integrating all components into a single neural network, with attention-based encoder-decoder models achieving state-of-the-art performance. However, their autoregressive decoding process limits inference speed, making them unsuitable for real-time applications. In contrast, CTC-based models offer faster, non-autoregressive decoding but struggle to model linguistic dependencies effectively. Addressing this challenge, we propose a novel auxiliary loss framework called Language-Aware Intermediate Loss (LAIL) to enhance CTC-based ASR using the linguistic knowledge of large language models (LLMs). By attaching connector layers to intermediate encoder layers, LAIL maps outputs to the embedding space of an LLM and computes a causal language modeling loss during training. This approach enhances linguistic modeling while preserving the computational efficiency of CTC decoding. Using the Conformer architecture and various LLaMA models, we demonstrate significant improvements in Word Error Rate (WER) on the LibriSpeech, TEDLIUM2, and WSJ corpora, achieving state-of-the-art performance for CTC-based ASR with minimal computational overhead.
FireQ: Fast INT4-FP8 Kernel and RoPE-aware Quantization for LLM Inference Acceleration
As large language models become increasingly prevalent, memory bandwidth constraints significantly limit inference throughput, motivating post-training quantization (PTQ). In this paper, we propose FireQ, a co-designed PTQ framework and an INT4-FP8 matrix multiplication kernel that accelerates LLM inference across all linear layers. Specifically, FireQ quantizes linear layer weights and key-values to INT4, and activations and queries to FP8, significantly enhancing throughput. Additionally, we introduce a three-stage pipelining for the prefill phase, which modifies the FlashAttention-3 kernel, effectively reducing time-to-first-token in the prefill phase. To minimize accuracy loss from quantization, we develop novel outlier smoothing techniques tailored separately for linear and attention layers. In linear layers, we explicitly use per-tensor scaling to prevent underflow caused by the FP8 quantization scaling factor of INT4 quantization, and channel-wise scaling to compensate for coarse granularity of INT4. In attention layers, we address quantization challenges posed by rotary positional embeddings (RoPE) by combining pre-RoPE and post-RoPE scaling strategies. FireQ significantly outperforms state-of-the-art methods, achieving 1.68x faster inference in feed-forward network layers on Llama2-7B and 1.26x faster prefill phase performance on Llama3-8B compared to QServe, with negligible accuracy loss.
CCoE: A Compact LLM with Collaboration of Experts
In the domain of Large Language Model (LLM), LLMs demonstrate significant capabilities in natural language understanding and generation. With the growing needs of applying LLMs on various domains, it is a research question that how to efficiently train and build a model that has expertise in different domains but with a low training cost. We propose CCoE architecture, a framework of easily coupling multiple strong domain experts together to fuse into a big LLM, provides a collective way of utilizing the different domain expert LLMs. Besides, training a large collaborative of multiple expert LLMs requires a high requirements on training sources. CCoE bypasses this problem through isolating other experts and train each expert separately. The design of CCoE assembles multiple expert LLMs through the CoE (Collaboration of Experts) layer. Each CoE layer could have one or more expert LLMs. Expert LLMs have different number of layers and have been well-trained for different domain tasks. Each expert is fine-tuned to be able to achieve the comparable results with SOTA domain LLMs. We start from 5 experts in the domain of Code, Math, Law, text-to-SQL and Medical. The results indicate that our CCoE framework can easily and efficiently boost nearly 10%-20% performance on original base model in different domains but using less resources on training, as well as inference.
Discovering the Gems in Early Layers: Accelerating Long-Context LLMs with 1000x Input Token Reduction
Large Language Models (LLMs) have demonstrated remarkable capabilities in handling long context inputs, but this comes at the cost of increased computational resources and latency. Our research introduces a novel approach for the long context bottleneck to accelerate LLM inference and reduce GPU memory consumption. Our research demonstrates that LLMs can identify relevant tokens in the early layers before generating answers to a query. Leveraging this insight, we propose an algorithm that uses early layers of an LLM as filters to select and compress input tokens, significantly reducing the context length for subsequent processing. Our method, GemFilter, demonstrates substantial improvements in both speed and memory efficiency compared to existing techniques, such as standard attention and SnapKV/H2O. Notably, it achieves a 2.4times speedup and 30\% reduction in GPU memory usage compared to SOTA methods. Evaluation on the Needle in a Haystack task shows that GemFilter significantly outperforms standard attention, SnapKV and demonstrates comparable performance on the LongBench challenge. GemFilter is simple, training-free, and broadly applicable across different LLMs. Crucially, it provides interpretability by allowing humans to inspect the selected input sequence. These findings not only offer practical benefits for LLM deployment, but also enhance our understanding of LLM internal mechanisms, paving the way for further optimizations in LLM design and inference. Our code is available at https://github.com/SalesforceAIResearch/GemFilter.
Efficient LLM inference solution on Intel GPU
Transformer based Large Language Models (LLMs) have been widely used in many fields, and the efficiency of LLM inference becomes hot topic in real applications. However, LLMs are usually complicatedly designed in model structure with massive operations and perform inference in the auto-regressive mode, making it a challenging task to design a system with high efficiency. In this paper, we propose an efficient LLM inference solution with low latency and high throughput. Firstly, we simplify the LLM decoder layer by fusing data movement and element-wise operations to reduce the memory access frequency and lower system latency. We also propose a segment KV cache policy to keep key/value of the request and response tokens in separate physical memory for effective device memory management, helping enlarge the runtime batch size and improve system throughput. A customized Scaled-Dot-Product-Attention kernel is designed to match our fusion policy based on the segment KV cache solution. We implement our LLM inference solution on Intel GPU and publish it publicly. Compared with the standard HuggingFace implementation, the proposed solution achieves up to 7x lower token latency and 27x higher throughput for some popular LLMs on Intel GPU.
Evaluating Expert Contributions in a MoE LLM for Quiz-Based Tasks
Recently, Large Language Models (LLMs) with Mixture of Experts (MoE) layers have gained significant attention. Currently, state-of-the-art LLMs utilize this architecture. There is a substantial amount of research on how to train such models and how to select hyperparameters for this architecture. However, there is a lack of studies focusing on post-evaluation analysis of MoE layer properties. In this paper, we take a first step toward closing this gap by evaluating expert contributions on the quiz-based MMLU benchmark. We show that most experts were never activated during inference on this benchmark. Additionally, the output distribution of gating networks is much closer to uniform than sparse. Finally, we demonstrate that the average performance of some experts within the same layer varies significantly.
AdaSkip: Adaptive Sublayer Skipping for Accelerating Long-Context LLM Inference
Long-context large language models (LLMs) inference is increasingly critical, motivating a number of studies devoted to alleviating the substantial storage and computational costs in such scenarios. Layer-wise skipping methods are promising optimizations but rarely explored in long-context inference. We observe that existing layer-wise skipping strategies have several limitations when applied in long-context inference, including the inability to adapt to model and context variability, disregard for sublayer significance, and inapplicability for the prefilling phase. This paper proposes \sysname, an adaptive sublayer skipping method specifically designed for long-context inference. \sysname adaptively identifies less important layers by leveraging on-the-fly similarity information, enables sublayer-wise skipping, and accelerates both the prefilling and decoding phases. The effectiveness of \sysname is demonstrated through extensive experiments on various long-context benchmarks and models, showcasing its superior inference performance over existing baselines.
Power-Softmax: Towards Secure LLM Inference over Encrypted Data
Modern cryptographic methods for implementing privacy-preserving LLMs such as Homomorphic Encryption (HE) require the LLMs to have a polynomial form. Forming such a representation is challenging because Transformers include non-polynomial components, such as Softmax and layer normalization. Previous approaches have either directly approximated pre-trained models with large-degree polynomials, which are less efficient over HE, or replaced non-polynomial components with easier-to-approximate primitives before training, e.g., Softmax with pointwise attention. The latter approach might introduce scalability challenges. We present a new HE-friendly variant of self-attention that offers a stable form for training and is easy to approximate with polynomials for secure inference. Our work introduces the first polynomial LLMs with 32 layers and over a billion parameters, exceeding the size of previous models by more than tenfold. The resulting models demonstrate reasoning and in-context learning (ICL) capabilities comparable to standard transformers of the same size, representing a breakthrough in the field. Finally, we provide a detailed latency breakdown for each computation over encrypted data, paving the way for further optimization, and explore the differences in inductive bias between transformers relying on our HE-friendly variant and standard transformers. Our code is attached as a supplement.
ProteinGPT: Multimodal LLM for Protein Property Prediction and Structure Understanding
Understanding biological processes, drug development, and biotechnological advancements requires detailed analysis of protein structures and sequences, a task in protein research that is inherently complex and time-consuming when performed manually. To streamline this process, we introduce ProteinGPT, a state-of-the-art multi-modal protein chat system, that allows users to upload protein sequences and/or structures for comprehensive protein analysis and responsive inquiries. ProteinGPT seamlessly integrates protein sequence and structure encoders with linear projection layers for precise representation adaptation, coupled with a large language model (LLM) to generate accurate and contextually relevant responses. To train ProteinGPT, we construct a large-scale dataset of 132,092 proteins with annotations, and optimize the instruction-tuning process using GPT-4o. This innovative system ensures accurate alignment between the user-uploaded data and prompts, simplifying protein analysis. Experiments show that ProteinGPT can produce promising responses to proteins and their corresponding questions.
Amphista: Accelerate LLM Inference with Bi-directional Multiple Drafting Heads in a Non-autoregressive Style
Large Language Models (LLMs) inherently use autoregressive decoding, which lacks parallelism in inference and results in significantly slow inference speeds, especially when hardware parallel accelerators and memory bandwidth are not fully utilized. In this work, we propose Amphista, a speculative decoding algorithm that adheres to a non-autoregressive decoding paradigm. Owing to the increased parallelism, our method demonstrates higher efficiency in inference compared to autoregressive methods. Specifically, Amphista models an Auto-embedding Block capable of parallel inference, incorporating bi-directional attention to enable interaction between different drafting heads. Additionally, Amphista implements Staged Adaptation Layers to facilitate the transition of semantic information from the base model's autoregressive inference to the drafting heads' non-autoregressive speculation, thereby achieving paradigm transformation and feature fusion. We conduct a series of experiments on a suite of Vicuna models using MT-Bench and Spec-Bench. For the Vicuna 33B model, Amphista achieves up to 2.75times and 1.40times wall-clock acceleration compared to vanilla autoregressive decoding and Medusa, respectively, while preserving lossless generation quality.
Not all Layers of LLMs are Necessary during Inference
The inference phase of Large Language Models (LLMs) is very expensive. An ideal inference stage of LLMs could utilize fewer computational resources while still maintaining its capabilities (e.g., generalization and in-context learning ability). In this paper, we try to answer the question, "During LLM inference, can we use shallow layers for easy instances; and deep layers for hard ones?" To answer this question, we first indicate that Not all Layers are Necessary during Inference by statistically analyzing the activated layers across tasks. Then, we propose a simple algorithm named AdaInfer to determine the inference termination moment based on the input instance adaptively. More importantly, AdaInfer does not alter LLM parameters and maintains generalizability across tasks. Experiments on well-known LLMs (i.e., Llama2 series and OPT) show that AdaInfer saves an average of 14.8% of computational resources, even up to 50% on sentiment tasks, while maintaining comparable performance. Additionally, this method is orthogonal to other model acceleration techniques, potentially boosting inference efficiency further.
SINQ: Sinkhorn-Normalized Quantization for Calibration-Free Low-Precision LLM Weights
Post-training quantization has emerged as the most widely used strategy for deploying large language models at low precision. Still, current methods show perplexity degradation at bit-widths less than or equal to 4, partly because representing outliers causes precision issues in parameters that share the same scales as these outliers. This problem is especially pronounced for calibration-free, uniform quantization methods. We introduce SINQ to augment existing post-training quantizers with an additional second-axis scale factor and a fast Sinkhorn-Knopp-style algorithm that finds scales to normalize per-row and per-column variances, thereby minimizing a novel per-matrix proxy target for quantization: the matrix imbalance. Our method has no interactions between layers and can be trivially applied to new architectures to quantize any linear layers. We evaluate our method on the Qwen3 model family and DeepSeek-V2.5. SINQ improves WikiText2 and C4 perplexity significantly against uncalibrated uniform quantization baselines and can be further enhanced by combining it with calibration and non-uniform quantization levels. Code to reproduce the results of this work and to easily quantize models using SINQ is available at https://github.com/huawei-csl/SINQ.
SparseLoRA: Accelerating LLM Fine-Tuning with Contextual Sparsity
Fine-tuning LLMs is both computationally and memory-intensive. While parameter-efficient fine-tuning methods, such as QLoRA and DoRA, reduce the number of trainable parameters and lower memory usage, they do not decrease computational cost. In some cases, they may even slow down fine-tuning. In this paper, we introduce SparseLoRA, a method that accelerates LLM fine-tuning through contextual sparsity. We propose a lightweight, training-free SVD sparsity estimator that dynamically selects a sparse subset of weights for loss and gradient computation. Also, we systematically analyze and address sensitivity across layers, tokens, and training steps. Our experimental results show that SparseLoRA reduces computational cost by up to 2.2 times and a measured speedup of up to 1.6 times while maintaining accuracy across various downstream tasks, including commonsense and arithmetic reasoning, code generation, and instruction following.
ImageBind-LLM: Multi-modality Instruction Tuning
We present ImageBind-LLM, a multi-modality instruction tuning method of large language models (LLMs) via ImageBind. Existing works mainly focus on language and image instruction tuning, different from which, our ImageBind-LLM can respond to multi-modality conditions, including audio, 3D point clouds, video, and their embedding-space arithmetic by only image-text alignment training. During training, we adopt a learnable bind network to align the embedding space between LLaMA and ImageBind's image encoder. Then, the image features transformed by the bind network are added to word tokens of all layers in LLaMA, which progressively injects visual instructions via an attention-free and zero-initialized gating mechanism. Aided by the joint embedding of ImageBind, the simple image-text training enables our model to exhibit superior multi-modality instruction-following capabilities. During inference, the multi-modality inputs are fed into the corresponding ImageBind encoders, and processed by a proposed visual cache model for further cross-modal embedding enhancement. The training-free cache model retrieves from three million image features extracted by ImageBind, which effectively mitigates the training-inference modality discrepancy. Notably, with our approach, ImageBind-LLM can respond to instructions of diverse modalities and demonstrate significant language generation quality. Code is released at https://github.com/OpenGVLab/LLaMA-Adapter.
LLM Modules: Knowledge Transfer from a Large to a Small Model using Enhanced Cross-Attention
In this work, we propose an architecture of LLM Modules that enables the transfer of knowledge from a large pre-trained model to a smaller model using an Enhanced Cross-Attention mechanism. In the proposed scheme, the Qwen2-1.5B model is frozen and its representations are passed through specially designed attention layers to the GPT-Neo-125M model, which is trained on limited computational resources. Experimental results on the Bespoke-Stratos-17k dataset demonstrate that after 15 epochs of training, the combined model generates responses comparable in quality to those obtained by distillation. We discuss the advantages of the modular approach, provide examples of input queries and comparative analysis, and outline prospects for further extension of the method.
Mediator: Memory-efficient LLM Merging with Less Parameter Conflicts and Uncertainty Based Routing
Model merging aggregates Large Language Models (LLMs) finetuned on different tasks into a stronger one. However, parameter conflicts between models leads to performance degradation in averaging. While model routing addresses this issue by selecting individual models during inference, it imposes excessive storage and compute costs, and fails to leverage the common knowledge from different models. In this work, we observe that different layers exhibit varying levels of parameter conflicts. Building on this insight, we average layers with minimal parameter conflicts and use a novel task-level expert routing for layers with significant conflicts. To further reduce storage costs, inspired by task arithmetic sparsity, we decouple multiple fine-tuned experts into a dense expert and several sparse experts. Considering the out-of-distribution samples, we select and merge appropriate experts based on the task uncertainty of the input data. We conduct extensive experiments on both LLaMA and Qwen with varying parameter scales, and evaluate on real-world reasoning tasks. Results demonstrate that our method consistently achieves significant performance improvements while requiring less system cost compared to existing methods.
SlimInfer: Accelerating Long-Context LLM Inference via Dynamic Token Pruning
Long-context inference for Large Language Models (LLMs) is heavily limited by high computational demands. While several existing methods optimize attention computation, they still process the full set of hidden states at each layer, limiting overall efficiency. In this work, we propose SlimInfer, an innovative framework that aims to accelerate inference by directly pruning less critical prompt tokens during the forward pass. Our key insight is an information diffusion phenomenon: As information from critical tokens propagates through layers, it becomes distributed across the entire sequence. This diffusion process suggests that LLMs can maintain their semantic integrity when excessive tokens, even including these critical ones, are pruned in hidden states. Motivated by this, SlimInfer introduces a dynamic fine-grained pruning mechanism that accurately removes redundant tokens of hidden state at intermediate layers. This layer-wise pruning naturally enables an asynchronous KV cache manager that prefetches required token blocks without complex predictors, reducing both memory usage and I/O costs. Extensive experiments show that SlimInfer can achieve up to 2.53times time-to-first-token (TTFT) speedup and 1.88times end-to-end latency reduction for LLaMA3.1-8B-Instruct on a single RTX 4090, without sacrificing performance on LongBench. Our code will be released upon acceptance.
FlexQ: Efficient Post-training INT6 Quantization for LLM Serving via Algorithm-System Co-Design
Large Language Models (LLMs) demonstrate exceptional performance but entail significant memory and computational costs, restricting their practical deployment. While existing INT4/INT8 quantization reduces these costs, they often degrade accuracy or lack optimal efficiency. INT6 quantization offers a superior trade-off between model accuracy and inference efficiency, but lacks hardware support in modern GPUs, forcing emulation via higher-precision arithmetic units that limit acceleration. In this paper, we propose FlexQ, a novel post-training INT6 quantization framework combining algorithmic innovation with system-level optimizations. FlexQ employs uniform 6-bit weight quantization across all layers, with adaptive retention of 8-bit activations in layers identified through layer-wise sensitivity analysis. To maximize hardware efficiency, we develop a specialized high-performance GPU kernel supporting matrix multiplication for W6A6 and W6A8 representations via Binary Tensor Core (BTC) equivalents, effectively bypassing the lack of native INT6 tensor cores. Evaluations on LLaMA models show FlexQ maintains near-FP16 accuracy, with perplexity increases of no more than 0.05. The proposed kernel achieves an average 1.39times speedup over ABQ-LLM on LLaMA-2-70B linear layers. End-to-end, FlexQ delivers 1.33times inference acceleration and 1.21times memory savings over SmoothQuant. Code is released at https://github.com/FlyFoxPlayer/FlexQ.
Context-Alignment: Activating and Enhancing LLM Capabilities in Time Series
Recently, leveraging pre-trained Large Language Models (LLMs) for time series (TS) tasks has gained increasing attention, which involves activating and enhancing LLMs' capabilities. Many methods aim to activate LLMs' capabilities based on token-level alignment but overlook LLMs' inherent strength on natural language processing -- their deep understanding of linguistic logic and structure rather than superficial embedding processing. We propose Context-Alignment, a new paradigm that aligns TS with a linguistic component in the language environments familiar to LLMs to enable LLMs to contextualize and comprehend TS data, thereby activating their capabilities. Specifically, such context-level alignment comprises structural alignment and logical alignment, which is achieved by a Dual-Scale Context-Alignment GNNs (DSCA-GNNs) applied to TS-language multimodal inputs. Structural alignment utilizes dual-scale nodes to describe hierarchical structure in TS-language, enabling LLMs treat long TS data as a whole linguistic component while preserving intrinsic token features. Logical alignment uses directed edges to guide logical relationships, ensuring coherence in the contextual semantics. Demonstration examples prompt are employed to construct Demonstration Examples based Context-Alignment (DECA) following DSCA-GNNs framework. DECA can be flexibly and repeatedly integrated into various layers of pre-trained LLMs to improve awareness of logic and structure, thereby enhancing performance. Extensive experiments show the effectiveness of DECA and the importance of Context-Alignment across tasks, particularly in few-shot and zero-shot forecasting, confirming that Context-Alignment provide powerful prior knowledge on context.
LLM Compression with Neural Architecture Search
Large language models (LLMs) exhibit remarkable reasoning abilities, allowing them to generalize across a wide range of downstream tasks, such as commonsense reasoning or instruction following. However, as LLMs scale, inference costs become increasingly prohibitive, accumulating significantly over their life cycle. This poses the question: Can we compress pre-trained LLMs to meet diverse size and latency requirements? We leverage Neural Architecture Search (NAS) to compress LLMs by pruning structural components, such as attention heads, neurons, and layers, aiming to achieve a Pareto-optimal balance between performance and efficiency. While NAS already achieved promising results on small language models in previous work, in this paper we propose various extensions that allow us to scale to LLMs. Compared to structural pruning baselines, we show that NAS improves performance up to 3.4% on MMLU with an on-device latency speedup.
LLM Guided Evolution -- The Automation of Models Advancing Models
In the realm of machine learning, traditional model development and automated approaches like AutoML typically rely on layers of abstraction, such as tree-based or Cartesian genetic programming. Our study introduces "Guided Evolution" (GE), a novel framework that diverges from these methods by utilizing Large Language Models (LLMs) to directly modify code. GE leverages LLMs for a more intelligent, supervised evolutionary process, guiding mutations and crossovers. Our unique "Evolution of Thought" (EoT) technique further enhances GE by enabling LLMs to reflect on and learn from the outcomes of previous mutations. This results in a self-sustaining feedback loop that augments decision-making in model evolution. GE maintains genetic diversity, crucial for evolutionary algorithms, by leveraging LLMs' capability to generate diverse responses from expertly crafted prompts and modulate model temperature. This not only accelerates the evolution process but also injects expert like creativity and insight into the process. Our application of GE in evolving the ExquisiteNetV2 model demonstrates its efficacy: the LLM-driven GE autonomously produced variants with improved accuracy, increasing from 92.52% to 93.34%, without compromising model compactness. This underscores the potential of LLMs to accelerate the traditional model design pipeline, enabling models to autonomously evolve and enhance their own designs.
TidalDecode: Fast and Accurate LLM Decoding with Position Persistent Sparse Attention
Large language models (LLMs) have driven significant advancements across diverse NLP tasks, with long-context models gaining prominence for handling extended inputs. However, the expanding key-value (KV) cache size required by Transformer architectures intensifies the memory constraints, particularly during the decoding phase, creating a significant bottleneck. Existing sparse attention mechanisms designed to address this bottleneck have two limitations: (1) they often fail to reliably identify the most relevant tokens for attention, and (2) they overlook the spatial coherence of token selection across consecutive Transformer layers, which can lead to performance degradation and substantial overhead in token selection. This paper introduces TidalDecode, a simple yet effective algorithm and system for fast and accurate LLM decoding through position persistent sparse attention. TidalDecode leverages the spatial coherence of tokens selected by existing sparse attention methods and introduces a few token selection layers that perform full attention to identify the tokens with the highest attention scores, while all other layers perform sparse attention with the pre-selected tokens. This design enables TidalDecode to substantially reduce the overhead of token selection for sparse attention without sacrificing the quality of the generated results. Evaluation on a diverse set of LLMs and tasks shows that TidalDecode closely matches the generative performance of full attention methods while reducing the LLM decoding latency by up to 2.1x.
I Know Which LLM Wrote Your Code Last Summer: LLM generated Code Stylometry for Authorship Attribution
Detecting AI-generated code, deepfakes, and other synthetic content is an emerging research challenge. As code generated by Large Language Models (LLMs) becomes more common, identifying the specific model behind each sample is increasingly important. This paper presents the first systematic study of LLM authorship attribution for C programs. We released CodeT5-Authorship, a novel model that uses only the encoder layers from the original CodeT5 encoder-decoder architecture, discarding the decoder to focus on classification. Our model's encoder output (first token) is passed through a two-layer classification head with GELU activation and dropout, producing a probability distribution over possible authors. To evaluate our approach, we introduce LLM-AuthorBench, a benchmark of 32,000 compilable C programs generated by eight state-of-the-art LLMs across diverse tasks. We compare our model to seven traditional ML classifiers and eight fine-tuned transformer models, including BERT, RoBERTa, CodeBERT, ModernBERT, DistilBERT, DeBERTa-V3, Longformer, and LoRA-fine-tuned Qwen2-1.5B. In binary classification, our model achieves 97.56% accuracy in distinguishing C programs generated by closely related models such as GPT-4.1 and GPT-4o, and 95.40% accuracy for multi-class attribution among five leading LLMs (Gemini 2.5 Flash, Claude 3.5 Haiku, GPT-4.1, Llama 3.3, and DeepSeek-V3). To support open science, we release the CodeT5-Authorship architecture, the LLM-AuthorBench benchmark, and all relevant Google Colab scripts on GitHub: https://github.com/LLMauthorbench/.
DOTResize: Reducing LLM Width via Discrete Optimal Transport-based Neuron Merging
Model compression offers a promising path to reducing the cost and inaccessibility of large pre-trained models, without significantly compromising their impressive performance. Large Transformer models, including large language models (LLMs), often contain computational redundancy, which can serve as a target for new model compression methods. In this work, we specifically target neuron-level redundancies in model layers by combining groups of similar neurons into fewer neurons. We frame this width reduction as a Discrete Optimal Transport problem, and propose DOTResize, a novel Transformer compression method that uses optimal transport theory to transform and compress model weights. To ensure applicability within the Transformer architecture, we motivate and incorporate entropic regularization and matrix factorization into the transportation maps produced by our method. Unlike pruning-based approaches which discard neurons based on importance measures, DOTResize re-projects the entire neuron width, allowing the retention and redistribution of useful signal across the reduced layer. Empirical results show that compared to simple or state-of-the-art neuron width-pruning techniques, DOTResize can outperform these methods across multiple LLM families and sizes, while achieving measurable reductions in real-world computational cost.
Command-V: Pasting LLM Behaviors via Activation Profiles
Retrofitting large language models (LLMs) with new behaviors typically requires full finetuning or distillation-costly steps that must be repeated for every architecture. In this work, we introduce Command-V, a backpropagation-free behavior transfer method that copies an existing residual activation adapter from a donor model and pastes its effect into a recipient model. Command-V profiles layer activations on a small prompt set, derives linear converters between corresponding layers, and applies the donor intervention in the recipient's activation space. This process does not require access to the original training data and needs minimal compute. In three case studies-safety-refusal enhancement, jailbreak facilitation, and automatic chain-of-thought reasoning--Command-V matches or exceeds the performance of direct finetuning while using orders of magnitude less compute. Our code and data are accessible at https://github.com/GithuBarry/Command-V/.
Does Representation Matter? Exploring Intermediate Layers in Large Language Models
Understanding what defines a good representation in large language models (LLMs) is fundamental to both theoretical understanding and practical applications. In this paper, we investigate the quality of intermediate representations in various LLM architectures, including Transformers and State Space Models (SSMs). We find that intermediate layers often yield more informative representations for downstream tasks than the final layers. To measure the representation quality, we adapt and apply a suite of metrics - such as prompt entropy, curvature, and augmentation-invariance - originally proposed in other contexts. Our empirical study reveals significant architectural differences, how representations evolve throughout training, and how factors like input randomness and prompt length affect each layer. Notably, we observe a bimodal pattern in the entropy of some intermediate layers and consider potential explanations tied to training data. Overall, our results illuminate the internal mechanics of LLMs and guide strategies for architectural optimization and training.
PartnerMAS: An LLM Hierarchical Multi-Agent Framework for Business Partner Selection on High-Dimensional Features
High-dimensional decision-making tasks, such as business partner selection, involve evaluating large candidate pools with heterogeneous numerical, categorical, and textual features. While large language models (LLMs) offer strong in-context reasoning capabilities, single-agent or debate-style systems often struggle with scalability and consistency in such settings. We propose PartnerMAS, a hierarchical multi-agent framework that decomposes evaluation into three layers: a Planner Agent that designs strategies, Specialized Agents that perform role-specific assessments, and a Supervisor Agent that integrates their outputs. To support systematic evaluation, we also introduce a curated benchmark dataset of venture capital co-investments, featuring diverse firm attributes and ground-truth syndicates. Across 140 cases, PartnerMAS consistently outperforms single-agent and debate-based multi-agent baselines, achieving up to 10--15\% higher match rates. Analysis of agent reasoning shows that planners are most responsive to domain-informed prompts, specialists produce complementary feature coverage, and supervisors play an important role in aggregation. Our findings demonstrate that structured collaboration among LLM agents can generate more robust outcomes than scaling individual models, highlighting PartnerMAS as a promising framework for high-dimensional decision-making in data-rich domains.
SafeConstellations: Steering LLM Safety to Reduce Over-Refusals Through Task-Specific Trajectory
LLMs increasingly exhibit over-refusal behavior, where safety mechanisms cause models to reject benign instructions that superficially resemble harmful content. This phenomena diminishes utility in production applications that repeatedly rely on common prompt templates or applications that frequently rely on LLMs for specific tasks (e.g. sentiment analysis, language translation). Through comprehensive evaluation, we demonstrate that LLMs still tend to refuse responses to harmful instructions when those instructions are reframed to appear as benign tasks. Our mechanistic analysis reveal that LLMs follow distinct "constellation" patterns in embedding space as representations traverse layers, with each task maintaining consistent trajectories that shift predictably between refusal and non-refusal cases. We introduce SafeConstellations, an inference-time trajectory-shifting approach that tracks task-specific trajectory patterns and guides representations toward non-refusal pathways. By selectively guiding model behavior only on tasks prone to over-refusal, and by preserving general model behavior, our method reduces over-refusal rates by up to 73% with minimal impact on utility-offering a principled approach to mitigating over-refusals.
Why Do Some Inputs Break Low-Bit LLM Quantization?
Low-bit weight-only quantization significantly reduces the memory footprint of large language models (LLMs), but disproportionately affects certain examples. We analyze diverse 3-4 bit methods on LLMs ranging from 7B-70B in size and find that the quantization errors of 50 pairs of methods are strongly correlated (avg. 0.82) on FineWeb examples. Moreover, the residual stream magnitudes of full-precision models are indicative of future quantization errors. We further establish a hypothesis that relates the residual stream magnitudes to error amplification and accumulation over layers. Using LLM localization techniques, early exiting, and activation patching, we show that examples with large errors rely on precise residual activations in the late layers, and that the outputs of MLP gates play a crucial role in maintaining the perplexity. Our work reveals why certain examples result in large quantization errors and which model components are most critical for performance preservation.
A Modular Dataset to Demonstrate LLM Abstraction Capability
Large language models (LLMs) exhibit impressive capabilities but struggle with reasoning errors due to hallucinations and flawed logic. To investigate their internal representations of reasoning, we introduce ArrangementPuzzle, a novel puzzle dataset with structured solutions and automated stepwise correctness verification. We trained a classifier model on LLM activations on this dataset and found that it achieved over 80% accuracy in predicting reasoning correctness, implying that LLMs internally distinguish between correct and incorrect reasoning steps, with the strongest representations in middle-late Transformer layers. Further analysis reveals that LLMs encode abstract reasoning concepts within the middle activation layers of the transformer architecture, distinguishing logical from semantic equivalence. These findings provide insights into LLM reasoning mechanisms and contribute to improving AI reliability and interpretability, thereby offering the possibility to manipulate and refine LLM reasoning.
CHESS: Optimizing LLM Inference via Channel-Wise Thresholding and Selective Sparsification
Deploying large language models (LLMs) on edge devices presents significant challenges due to the substantial computational overhead and memory requirements. Activation sparsification can mitigate these challenges by reducing the number of activated neurons during inference. Existing methods typically employ thresholding-based sparsification based on the statistics of activation tensors. However, these methods do not explicitly model the impact of activation sparsification on performance, leading to suboptimal performance degradation. To address this issue, this paper reformulates the activation sparsification problem by introducing a new objective that optimizes the sparsification decisions. Building on this reformulation, we propose CHESS, a general activation sparsification approach via CHannel-wise thrEsholding and Selective Sparsification. First, channel-wise thresholding assigns a unique threshold to each activation channel in the feed-forward network (FFN) layers. Then, selective sparsification involves applying thresholding-based activation sparsification to specific layers within the attention modules. Finally, we detail the implementation of sparse kernels to accelerate LLM inference. Experimental results demonstrate that the proposed CHESS achieves lower performance degradation over 8 downstream tasks while activating fewer parameters compared to existing methods, thus speeding up the LLM inference by up to 1.27x.
Exploring Concept Depth: How Large Language Models Acquire Knowledge at Different Layers?
Large language models (LLMs) have shown remarkable performances across a wide range of tasks. However, the mechanisms by which these models encode tasks of varying complexities remain poorly understood. In this paper, we explore the hypothesis that LLMs process concepts of varying complexities in different layers, introducing the idea of "Concept Depth" to suggest that more complex concepts are typically acquired in deeper layers. Specifically, we categorize concepts based on their level of abstraction, defining them in the order of increasing complexity within factual, emotional, and inferential tasks. We conduct extensive probing experiments using layer-wise representations across various LLM families (Gemma, LLaMA, QWen) on various datasets spanning the three domains of tasks. Our findings reveal that models could efficiently conduct probing for simpler tasks in shallow layers, and more complex tasks typically necessitate deeper layers for accurate understanding. Additionally, we examine how external factors, such as adding noise to the input and quantizing the model weights, might affect layer-wise representations. Our findings suggest that these factors can impede the development of a conceptual understanding of LLMs until deeper layers are explored. We hope that our proposed concept and experimental insights will enhance the understanding of the mechanisms underlying LLMs. Our codes are available at https://github.com/Luckfort/CD.
TroL: Traversal of Layers for Large Language and Vision Models
Large language and vision models (LLVMs) have been driven by the generalization power of large language models (LLMs) and the advent of visual instruction tuning. Along with scaling them up directly, these models enable LLVMs to showcase powerful vision language (VL) performances by covering diverse tasks via natural language instructions. However, existing open-source LLVMs that perform comparably to closed-source LLVMs such as GPT-4V are often considered too large (e.g., 26B, 34B, and 110B parameters), having a larger number of layers. These large models demand costly, high-end resources for both training and inference. To address this issue, we present a new efficient LLVM family with 1.8B, 3.8B, and 7B LLM model sizes, Traversal of Layers (TroL), which enables the reuse of layers in a token-wise manner. This layer traversing technique simulates the effect of looking back and retracing the answering stream while increasing the number of forward propagation layers without physically adding more layers. We demonstrate that TroL employs a simple layer traversing approach yet efficiently outperforms the open-source LLVMs with larger model sizes and rivals the performances of the closed-source LLVMs with substantial sizes.
EE-LLM: Large-Scale Training and Inference of Early-Exit Large Language Models with 3D Parallelism
We present EE-LLM, a framework for large-scale training and inference of early-exit large language models (LLMs). While recent works have shown preliminary evidence for the efficacy of early exiting in accelerating LLM inference, EE-LLM makes a foundational step towards scaling up early-exit LLMs by supporting their training and inference with massive 3D parallelism. Built upon Megatron-LM, EE-LLM implements a variety of algorithmic innovations and performance optimizations tailored to early exiting, including a lightweight method that facilitates backpropagation for the early-exit training objective with pipeline parallelism, techniques of leveraging idle resources in the original pipeline schedule for computation related to early-exit layers, and two approaches of early-exit inference that are compatible with KV caching for autoregressive generation. Our analytical and empirical study shows that EE-LLM achieves great training efficiency with negligible computational overhead compared to standard LLM training, as well as outstanding inference speedup without compromising output quality. To facilitate further research and adoption, we release EE-LLM at https://github.com/pan-x-c/EE-LLM.
GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the residual path to dominate over sub-layer outputs and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings.
GOAT-TTS: LLM-based Text-To-Speech Generation Optimized via A Dual-Branch Architecture
While large language models (LLMs) have revolutionized text-to-speech (TTS) synthesis through discrete tokenization paradigms, current architectures exhibit fundamental tensions between three critical dimensions: 1) irreversible loss of acoustic characteristics caused by quantization of speech prompts; 2) stringent dependence on precisely aligned prompt speech-text pairs that limit real-world deployment; and 3) catastrophic forgetting of the LLM's native text comprehension during optimization for speech token generation. To address these challenges, we propose an LLM-based text-to-speech Generation approach Optimized via a novel dual-branch ArchiTecture (GOAT-TTS). Our framework introduces two key innovations: (1) The modality-alignment branch combines a speech encoder and projector to capture continuous acoustic embeddings, enabling bidirectional correlation between paralinguistic features (language, timbre, emotion) and semantic text representations without transcript dependency; (2) The speech-generation branch employs modular fine-tuning on top-k layers of an LLM for speech token prediction while freezing the bottom-k layers to preserve foundational linguistic knowledge. Moreover, multi-token prediction is introduced to support real-time streaming TTS synthesis. Experimental results demonstrate that our GOAT-TTS achieves performance comparable to state-of-the-art TTS models while validating the efficacy of synthesized dialect speech data.
SqueezeAttention: 2D Management of KV-Cache in LLM Inference via Layer-wise Optimal Budget
Optimizing the Key-Value (KV) cache of the Large Language Model (LLM) has been considered critical to saving the cost of inference. Most of the existing KV-cache compression algorithms attempted to sparsify the sequence of tokens by taking advantage of the different importance of tokens. In this work, we found that by identifying the importance of attention layers, we could optimize the KV-cache jointly from two dimensions. Based on our observations regarding layer-wise importance in inference, we propose SqueezeAttention to precisely optimize the allocation of KV-cache budget among layers on-the-fly and then incorporate three representative token sparsification algorithms to compress the KV-cache for each layer with its very own budget. By optimizing the KV-cache from both sequence's and layer's dimensions, SqueezeAttention achieves around 30% to 70% of the memory reductions and up to 2.2 times of throughput improvements in a wide range of LLMs and benchmarks. The code is available at https://github.com/hetailang/SqueezeAttention.
KVComm: Enabling Efficient LLM Communication through Selective KV Sharing
Large Language Models (LLMs) are increasingly deployed in multi-agent systems, where effective inter-model communication is crucial. Existing communication protocols either rely on natural language, incurring high inference costs and information loss, or on hidden states, which suffer from information concentration bias and inefficiency. To address these limitations, we propose KVComm, a novel communication framework that enables efficient communication between LLMs through selective sharing of KV pairs. KVComm leverages the rich information encoded in the KV pairs while avoiding the pitfalls of hidden states. We introduce a KV layer-wise selection strategy based on attention importance scores with a Gaussian prior to identify the most informative KV pairs for communication. Extensive experiments across diverse tasks and model pairs demonstrate that KVComm achieves comparable performance to the upper-bound method, which directly merges inputs to one model without any communication, while transmitting as few as 30\% of layers' KV pairs. Our study highlights the potential of KV pairs as an effective medium for inter-LLM communication, paving the way for scalable and efficient multi-agent systems.
SAIL: SRAM-Accelerated LLM Inference System with Lookup-Table-based GEMV
Large Language Model (LLM) inference requires substantial computational resources, yet CPU-based inference remains essential for democratizing AI due to the widespread availability of CPUs compared to specialized accelerators. However, efficient LLM inference on CPUs faces two fundamental challenges: (1) existing CPU architectures struggle with low-precision arithmetic required by quantized models, where optimal bit precision varies across models and layers; and (2) the memory-bound nature of the token generation phase creates severe performance bottlenecks. To address these challenges, we propose SAIL (SRAM-Accelerated Inference of LLMs), a CPU-based inference solution that efficiently supports arbitrary bit precisions with minimal overhead. SAIL integrates three key innovations: First, we introduce Batched LUT-based General Matrix-Vector Multiplication (LUT-GEMV) with SRAM-based processing-in-memory, enabling high data reuse through lookup tables and reducing memory movement. Second, our Pattern-Aware LUT optimization identifies and exploits redundancy in input activation patterns, reducing computation cycles by 13.8\%. Third, we develop an in-memory type conversion algorithm that leverages PIM's parallelism for efficient de-/quantization operations, alleviating pressure on CPU's vector units. Our architecture requires only 2\% hardware overhead and a single new instruction, while maintaining dual functionality as both compute and storage units. Experimental evaluations using a modified gem5 simulator demonstrate that SAIL achieves up to 10.7x speedup and 19.9x higher tokens per dollar compared to ARM Neoverse-N1 CPU baselines, and up to 7.04x better cost efficiency than NVIDIA V100 GPUs, establishing a practical path for efficient CPU-based LLM inference.
The New LLM Bottleneck: A Systems Perspective on Latent Attention and Mixture-of-Experts
Computational workloads composing traditional Transformer models are starkly bifurcated. Multi-Head Attention (MHA) is memory-bound, with low arithmetic intensity, while feedforward layers are compute-bound. This dichotomy has long motivated research into specialized hardware to mitigate the MHA bottleneck. This paper argues that recent architectural shifts, namely Multi-head Latent Attention (MLA) and Mixture-of-Experts (MoE), challenge the premise of specialized attention hardware. We make two key observations. First, the arithmetic intensity of MLA is over two orders of magnitude greater than that of MHA, shifting it close to a compute-bound regime well-suited for modern accelerators like GPUs. Second, by distributing MoE experts across a pool of accelerators, their arithmetic intensity can be tuned through batching to match that of the dense layers, creating a more balanced computational profile. These findings reveal a diminishing need for specialized attention hardware. The central challenge for next-generation Transformers is no longer accelerating a single memory-bound layer. Instead, the focus must shift to designing balanced systems with sufficient compute, memory capacity, memory bandwidth, and high-bandwidth interconnects to manage the diverse demands of large-scale models.
LoRA-BAM: Input Filtering for Fine-tuned LLMs via Boxed Abstraction Monitors over LoRA Layers
Fine-tuning large language models (LLMs) improves performance on domain-specific tasks but can lead to overfitting, making them unreliable on out-of-distribution (OoD) queries. We propose LoRA-BAM - a method that adds OoD detection monitors to the LoRA layer using boxed abstraction to filter questions beyond the model's competence. Feature vectors from the fine-tuning data are extracted via the LLM and clustered. Clusters are enclosed in boxes; a question is flagged as OoD if its feature vector falls outside all boxes. To improve interpretability and robustness, we introduce a regularization loss during fine-tuning that encourages paraphrased questions to stay close in the feature space, and the enlargement of the decision boundary is based on the feature variance within a cluster. Our method complements existing defenses by providing lightweight and interpretable OoD detection.
R-Sparse: Rank-Aware Activation Sparsity for Efficient LLM Inference
Large Language Models (LLMs), while demonstrating remarkable capabilities across various applications, present significant challenges during inference due to their substantial model size, especially when deployed on edge devices. Activation sparsity offers a promising solution to reduce computation and memory movement, enabling more efficient inference, particularly for small-batch on-device applications. However, current approaches face limitations with non-ReLU activation function, which are foundational to most advanced LLMs, or require heavy continual training. Additionally, the difficulty in predicting active channels and limited achievable sparsity ratios constrain the effectiveness of activation sparsity-based methods. In this paper, we introduce R-Sparse, a training-free activation sparsity approach capable of achieving high sparsity levels in advanced LLMs. We conducted two preliminary investigations into how different components contribute to the output within a single linear layer and found two key observations: (i) the non-sparse components of the input function can be regarded as a few bias terms, and (ii) The full computation can be effectively approximated by an appropriate combination of input channels and weight singular values. Building on this, we replace the linear layers in LLMs with a rank-aware sparse inference method that leverages the sparsity of input channels and singular value components, eliminating the need for active channel prediction like the output sparsity based approaches. Experiments on Llama-2/3 and Mistral models across ten diverse tasks demonstrate that R-Sparse achieves comparable performance at 50% model-level sparsity, resulting in a significant 43% end-to-end efficient improvements with customized kernels.
Shakespearean Sparks: The Dance of Hallucination and Creativity in LLMs' Decoding Layers
Large language models (LLMs) are known to hallucinate, a phenomenon often linked to creativity. While previous research has primarily explored this connection through theoretical or qualitative lenses, our work takes a quantitative approach to systematically examine the relationship between hallucination and creativity in LLMs. Given the complex nature of creativity, we propose a narrow definition tailored to LLMs and introduce an evaluation framework, HCL, which quantifies Hallucination and Creativity across different Layers of LLMs during decoding. Our empirical analysis reveals a tradeoff between hallucination and creativity that is consistent across layer depth, model type, and model size. Notably, across different model architectures, we identify a specific layer at each model size that optimally balances this tradeoff. Additionally, the optimal layer tends to appear in the early layers of larger models, and the confidence of the model is also significantly higher at this layer. These findings provide a quantitative perspective that offers new insights into the interplay between LLM creativity and hallucination. The code and data for our experiments are available at https://github.com/ZicongHe2002/HCL-Spark.
A Systematic Study of Cross-Layer KV Sharing for Efficient LLM Inference
Recently, sharing key-value (KV) cache across layers has been found effective in efficient inference of large language models (LLMs). To systematically investigate different techniques of cross-layer KV sharing, we propose a unified framework that covers several recent methods and their novel variants. We conduct comprehensive experiments on all the configurations of the framework, evaluating their generation throughput and performance in language modeling and downstream tasks. We find that when reducing the size of the KV cache by 2x, most configurations can achieve competitive performance to and higher throughput than standard transformers, but when further reducing the size of the KV cache, pairing queries of all layers with KVs of upper layers can better maintain performance, although it also introduces additional training cost and prefilling latency. We hope that this work will help users choose the appropriate approach according to their requirements and facilitate research on the acceleration of LLM inference.
SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration
Speculative decoding (SD) has emerged as a widely used paradigm to accelerate the inference of large language models (LLMs) without compromising generation quality. It works by first employing a compact model to draft multiple tokens efficiently and then using the target LLM to verify them in parallel. While this technique has achieved notable speedups, most existing approaches necessitate either additional parameters or extensive training to construct effective draft models, thereby restricting their applicability across different LLMs and tasks. To address this limitation, we explore a novel plug-and-play SD solution with layer-skipping, which skips intermediate layers of the target LLM as the compact draft model. Our analysis reveals that LLMs exhibit great potential for self-acceleration through layer sparsity and the task-specific nature of this sparsity. Building on these insights, we introduce SWIFT, an on-the-fly self-speculative decoding algorithm that adaptively selects intermediate layers of LLMs to skip during inference. SWIFT does not require auxiliary models or additional training, making it a plug-and-play solution for accelerating LLM inference across diverse input data streams. Our extensive experiments across a wide range of models and downstream tasks demonstrate that SWIFT can achieve over a 1.3x-1.6x speedup while preserving the original distribution of the generated text.
PyramidInfer: Pyramid KV Cache Compression for High-throughput LLM Inference
Large Language Models (LLMs) have shown remarkable comprehension abilities but face challenges in GPU memory usage during inference, hindering their scalability for real-time applications like chatbots. To accelerate inference, we store computed keys and values (KV cache) in the GPU memory. Existing methods study the KV cache compression to reduce memory by pruning the pre-computed KV cache. However, they neglect the inter-layer dependency between layers and huge memory consumption in pre-computation. To explore these deficiencies, we find that the number of crucial keys and values that influence future generations decreases layer by layer and we can extract them by the consistency in attention weights. Based on the findings, we propose PyramidInfer, a method that compresses the KV cache by layer-wise retaining crucial context. PyramidInfer saves significant memory by computing fewer keys and values without sacrificing performance. Experimental results show PyramidInfer improves 2.2x throughput compared to Accelerate with over 54% GPU memory reduction in KV cache.
A Simple LLM Framework for Long-Range Video Question-Answering
We present LLoVi, a language-based framework for long-range video question-answering (LVQA). Unlike prior long-range video understanding methods, which are often costly and require specialized long-range video modeling design (e.g., memory queues, state-space layers, etc.), our approach uses a frame/clip-level visual captioner (e.g., BLIP2, LaViLa, LLaVA) coupled with a Large Language Model (GPT-3.5, GPT-4) leading to a simple yet surprisingly effective LVQA framework. Specifically, we decompose short and long-range modeling aspects of LVQA into two stages. First, we use a short-term visual captioner to generate textual descriptions of short video clips (0.5-8s in length) densely sampled from a long input video. Afterward, an LLM aggregates the densely extracted short-term captions to perform long-range temporal reasoning needed to understand the whole video and answer a question. To analyze what makes our simple framework so effective, we thoroughly evaluate various components of our system. Our empirical analysis reveals that the choice of the visual captioner and LLM is critical for good LVQA performance. Furthermore, we show that a specialized prompt that asks the LLM first to summarize the noisy short-term visual captions and then answer a given input question leads to a significant LVQA performance boost. On EgoSchema, which is best known as a very long-form video question-answering benchmark, our method achieves 50.3% accuracy, outperforming the previous best-performing approach by 18.1% (absolute gain). In addition, our approach outperforms the previous state-of-the-art by 4.1% and 3.1% on NeXT-QA and IntentQA. We also extend LLoVi to grounded LVQA and show that it outperforms all prior methods on the NeXT-GQA dataset. We will release our code at https://github.com/CeeZh/LLoVi.
XQuant: Breaking the Memory Wall for LLM Inference with KV Cache Rematerialization
Although LLM inference has emerged as a critical workload for many downstream applications, efficiently inferring LLMs is challenging due to the substantial memory footprint and bandwidth requirements. In parallel, compute capabilities have steadily outpaced both memory capacity and bandwidth over the last few decades, a trend that remains evident in modern GPU hardware and exacerbates the challenge of LLM inference. As such, new algorithms are emerging that trade increased computation for reduced memory operations. To that end, we present XQuant, which takes advantage of this trend, enabling an order-of-magnitude reduction in memory consumption through low-bit quantization with substantial accuracy benefits relative to state-of-the-art KV cache quantization methods. We accomplish this by quantizing and caching the layer input activations X, instead of using standard KV caching, and then rematerializing the Keys and Values on-the-fly during inference. This results in an immediate 2times memory savings compared to KV caching. By applying XQuant, we achieve up to sim 7.7times memory savings with <0.1 perplexity degradation compared to the FP16 baseline. Furthermore, our approach leverages the fact that X values are similar across layers. Building on this observation, we introduce XQuant-CL, which exploits the cross-layer similarity in the X embeddings for extreme compression. Across different models, XQuant-CL attains up to 10times memory savings relative to the FP16 baseline with only 0.01 perplexity degradation, and 12.5times memory savings with only 0.1 perplexity degradation. XQuant exploits the rapidly increasing compute capabilities of hardware platforms to eliminate the memory bottleneck, while surpassing state-of-the-art KV cache quantization methods and achieving near-FP16 accuracy across a wide range of models.
Efficiently Training 7B LLM with 1 Million Sequence Length on 8 GPUs
Nowadays, Large Language Models (LLMs) have been trained using extended context lengths to foster more creative applications. However, long context training poses great challenges considering the constraint of GPU memory. It not only leads to substantial activation memory consumption during training, but also incurs considerable memory fragmentation. To facilitate long context training, existing frameworks have adopted strategies such as recomputation and various forms of parallelisms. Nevertheless, these techniques rely on redundant computation or extensive communication, resulting in low Model FLOPS Utilization (MFU). In this paper, we propose MEMO, a novel LLM training framework designed for fine-grained activation memory management. Given the quadratic scaling of computation and linear scaling of memory with sequence lengths when using FlashAttention, we offload memory-consuming activations to CPU memory after each layer's forward pass and fetch them during the backward pass. To maximize the swapping of activations without hindering computation, and to avoid exhausting limited CPU memory, we implement a token-wise activation recomputation and swapping mechanism. Furthermore, we tackle the memory fragmentation issue by employing a bi-level Mixed Integer Programming (MIP) approach, optimizing the reuse of memory across transformer layers. Empirical results demonstrate that MEMO achieves an average of 2.42x and 2.26x MFU compared to Megatron-LM and DeepSpeed, respectively. This improvement is attributed to MEMO's ability to minimize memory fragmentation, reduce recomputation and intensive communication, and circumvent the delays associated with the memory reorganization process due to fragmentation. By leveraging fine-grained activation memory management, MEMO facilitates efficient training of 7B LLM with 1 million sequence length on just 8 A800 GPUs, achieving an MFU of 52.30%.
LayAlign: Enhancing Multilingual Reasoning in Large Language Models via Layer-Wise Adaptive Fusion and Alignment Strategy
Despite being pretrained on multilingual corpora, large language models (LLMs) exhibit suboptimal performance on low-resource languages. Recent approaches have leveraged multilingual encoders alongside LLMs by introducing trainable parameters connecting the two models. However, these methods typically focus on the encoder's output, overlooking valuable information from other layers. We propose \aname (\mname), a framework that integrates representations from all encoder layers, coupled with the \attaname mechanism to enable layer-wise interaction between the LLM and the multilingual encoder. Extensive experiments on multilingual reasoning tasks, along with analyses of learned representations, show that our approach consistently outperforms existing baselines.
PRIMA.CPP: Speeding Up 70B-Scale LLM Inference on Low-Resource Everyday Home Clusters
Emergency of DeepSeek R1 and QwQ 32B have broken through performance barriers for running frontier large language models (LLMs) on home devices. While consumer hardware is getting stronger and model quantization is improving, existing end-side solutions still demand GPU clusters, large RAM/VRAM, and high bandwidth, far beyond what a common home cluster can handle. This paper introduces prima.cpp, a distributed inference system that runs 70B-scale models on everyday home devices using a mix of CPU/GPU, low RAM/VRAM, Wi-Fi, and cross-platform support. It uses mmap to manage model weights and introduces piped-ring parallelism with prefetching to hide disk loading. By modeling heterogeneity in computation, communication, disk, memory (and its management behavior), and OS, it optimally assigns model layers to each device's CPU and GPU, further reducing token latency. An elegant algorithm named Halda is proposed to solve this NP-hard assignment problem. We evaluate prima.cpp on a common four-node home cluster. It outperforms llama.cpp, exo, and dllama on 30B+ models while keeping memory pressure below 6%. This brings frontier 30B-70B models, such as Llama 3, DeepSeek R1, Qwen 2.5, and QwQ to home assistants, making advanced AI truly accessible to individuals. The code is open source and available at https://github.com/Lizonghang/prima.cpp.
NExT-GPT: Any-to-Any Multimodal LLM
While recently Multimodal Large Language Models (MM-LLMs) have made exciting strides, they mostly fall prey to the limitation of only input-side multimodal understanding, without the ability to produce content in multiple modalities. As we humans always perceive the world and communicate with people through various modalities, developing any-to-any MM-LLMs capable of accepting and delivering content in any modality becomes essential to human-level AI. To fill the gap, we present an end-to-end general-purpose any-to-any MM-LLM system, NExT-GPT. We connect an LLM with multimodal adaptors and different diffusion decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary combinations of text, images, videos, and audio. By leveraging the existing well-trained highly-performing encoders and decoders, NExT-GPT is tuned with only a small amount of parameter (1%) of certain projection layers, which not only benefits low-cost training and also facilitates convenient expansion to more potential modalities. Moreover, we introduce a modality-switching instruction tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on which NExT-GPT is empowered with complex cross-modal semantic understanding and content generation. Overall, our research showcases the promising possibility of building an AI agent capable of modeling universal modalities, paving the way for more human-like AI research in the community.
Branch-Train-MiX: Mixing Expert LLMs into a Mixture-of-Experts LLM
We investigate efficient methods for training Large Language Models (LLMs) to possess capabilities in multiple specialized domains, such as coding, math reasoning and world knowledge. Our method, named Branch-Train-MiX (BTX), starts from a seed model, which is branched to train experts in embarrassingly parallel fashion with high throughput and reduced communication cost. After individual experts are asynchronously trained, BTX brings together their feedforward parameters as experts in Mixture-of-Expert (MoE) layers and averages the remaining parameters, followed by an MoE-finetuning stage to learn token-level routing. BTX generalizes two special cases, the Branch-Train-Merge method, which does not have the MoE finetuning stage to learn routing, and sparse upcycling, which omits the stage of training experts asynchronously. Compared to alternative approaches, BTX achieves the best accuracy-efficiency tradeoff.
Where to find Grokking in LLM Pretraining? Monitor Memorization-to-Generalization without Test
Grokking, i.e., test performance keeps improving long after training loss converged, has been recently witnessed in neural network training, making the mechanism of generalization and other emerging capabilities such as reasoning mysterious. While prior studies usually train small models on a few toy or highly-specific tasks for thousands of epochs, we conduct the first study of grokking on checkpoints during one-pass pretraining of a 7B large language model (LLM), i.e., OLMoE. We compute the training loss and evaluate generalization on diverse benchmark tasks, including math reasoning, code generation, and commonsense/domain-specific knowledge retrieval tasks. Our study, for the first time, verifies that grokking still happens in the pretraining of large-scale foundation models, though different data may enter grokking stages asynchronously. We further demystify grokking's "emergence of generalization" by investigating LLM internal dynamics. Specifically, we find that training samples' pathways (i.e., expert choices across layers) evolve from random, instance-specific to more structured and shareable between samples during grokking. Also, the complexity of a sample's pathway reduces despite the converged loss. These indicate a memorization-to-generalization conversion, providing a mechanistic explanation of delayed generalization. In the study, we develop two novel metrics to quantify pathway distance and the complexity of a single pathway. We show their ability to predict the generalization improvement on diverse downstream tasks. They are efficient, simple to compute and solely dependent on training data. Hence, they have practical value for pretraining, enabling us to monitor the generalization performance without finetuning and test. Theoretically, we show that more structured pathways reduce model complexity and improve the generalization bound.
Mix-LN: Unleashing the Power of Deeper Layers by Combining Pre-LN and Post-LN
Large Language Models (LLMs) have achieved remarkable success, yet recent findings reveal that their deeper layers often contribute minimally and can be pruned without affecting overall performance. While some view this as an opportunity for model compression, we identify it as a training shortfall rooted in the widespread use of Pre-Layer Normalization (Pre-LN). We demonstrate that Pre-LN, commonly employed in models like GPT and LLaMA, leads to diminished gradient norms in its deeper layers, reducing their effectiveness. In contrast, Post-Layer Normalization (Post-LN) preserves larger gradient norms in deeper layers but suffers from vanishing gradients in earlier layers. To address this, we introduce Mix-LN, a novel normalization technique that combines the strengths of Pre-LN and Post-LN within the same model. Mix-LN applies Post-LN to the earlier layers and Pre-LN to the deeper layers, ensuring more uniform gradients across layers. This allows all parts of the network--both shallow and deep layers--to contribute effectively to training. Extensive experiments with various model sizes from 70M to 7B demonstrate that Mix-LN consistently outperforms both Pre-LN and Post-LN, promoting more balanced, healthier gradient norms throughout the network, and enhancing the overall quality of LLM pre-training. Furthermore, we demonstrate that models pre-trained with Mix-LN learn better compared to those using Pre-LN or Post-LN during supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), highlighting the critical importance of high-quality deep layers. By effectively addressing the inefficiencies of deep layers in current LLMs, Mix-LN unlocks their potential, enhancing model capacity without increasing model size. Our code is available at https://github.com/pixeli99/MixLN.
SkipDecode: Autoregressive Skip Decoding with Batching and Caching for Efficient LLM Inference
Autoregressive large language models (LLMs) have made remarkable progress in various natural language generation tasks. However, they incur high computation cost and latency resulting from the autoregressive token-by-token generation. To address this issue, several approaches have been proposed to reduce computational cost using early-exit strategies. These strategies enable faster text generation using reduced computation without applying the full computation graph to each token. While existing token-level early exit methods show promising results for online inference, they cannot be readily applied for batch inferencing and Key-Value caching. This is because they have to wait until the last token in a batch exits before they can stop computing. This severely limits the practical application of such techniques. In this paper, we propose a simple and effective token-level early exit method, SkipDecode, designed to work seamlessly with batch inferencing and KV caching. It overcomes prior constraints by setting up a singular exit point for every token in a batch at each sequence position. It also guarantees a monotonic decrease in exit points, thereby eliminating the need to recompute KV Caches for preceding tokens. Rather than terminating computation prematurely as in prior works, our approach bypasses lower to middle layers, devoting most of the computational resources to upper layers, allowing later tokens to benefit from the compute expenditure by earlier tokens. Our experimental results show that SkipDecode can obtain 2x to 5x inference speedups with negligible regression across a variety of tasks. This is achieved using OPT models of 1.3 billion and 6.7 billion parameters, all the while being directly compatible with batching and KV caching optimization techniques.
COSMIC: Generalized Refusal Direction Identification in LLM Activations
Large Language Models (LLMs) encode behaviors such as refusal within their activation space, yet identifying these behaviors remains a significant challenge. Existing methods often rely on predefined refusal templates detectable in output tokens or require manual analysis. We introduce COSMIC (Cosine Similarity Metrics for Inversion of Concepts), an automated framework for direction selection that identifies viable steering directions and target layers using cosine similarity - entirely independent of model outputs. COSMIC achieves steering performance comparable to prior methods without requiring assumptions about a model's refusal behavior, such as the presence of specific refusal tokens. It reliably identifies refusal directions in adversarial settings and weakly aligned models, and is capable of steering such models toward safer behavior with minimal increase in false refusals, demonstrating robustness across a wide range of alignment conditions.
ChunkKV: Semantic-Preserving KV Cache Compression for Efficient Long-Context LLM Inference
To reduce memory costs in long-context inference with Large Language Models (LLMs), many recent works focus on compressing the key-value (KV) cache of different tokens. However, we identify that the previous KV cache compression methods measure token importance individually, neglecting the dependency between different tokens in the real-world language characterics. In light of this, we introduce ChunkKV, grouping the tokens in a chunk as a basic compressing unit, and retaining the most informative semantic chunks while discarding the less important ones. Furthermore, observing that ChunkKV exhibits higher similarity in the preserved indices across different layers, we propose layer-wise index reuse to further reduce computational overhead. We evaluated ChunkKV on cutting-edge long-context benchmarks including LongBench and Needle-In-A-HayStack, as well as the GSM8K and JailbreakV in-context learning benchmark. Our experiments with instruction tuning and multi-step reasoning (O1 and R1) LLMs, achieve up to 10\% performance improvement under aggressive compression ratios compared to existing methods.
Pooling And Attention: What Are Effective Designs For LLm-Based Embedding Models?
The significant advancements of Large Language Models (LLMs) in generative tasks have led to a growing body of work exploring LLM-based embedding models. While these models, employing different pooling and attention strategies, have achieved state-of-the-art performance on public embedding benchmarks, questions still arise about what constitutes an effective design for LLM-based embedding models. However, these models are often trained on different datasets, using different LLM base models or training settings. Moreover, evaluations on public embedding benchmarks often fail to report statistical significance, making it difficult to determine which designs truly contribute to final performance. This complicates the process for practitioners seeking optimal training recipes for LLM-based embedding models. In this study, we conduct a large-scale experiment by training a series of LLM-based embedding models using the same training data and base model but differing in their pooling and attention strategies. The results show that there is no one-size-fits-all solution: while bidirectional attention and an additional trainable pooling layer outperform in text similarity and information retrieval tasks, they do not significantly surpass simpler designs like EOS-last token pooling and default causal attention in clustering and classification tasks. Furthermore, we propose a new pooling strategy, Multi-Layers Trainable Pooling, which transforms the outputs of all hidden layers, rather than just the last layer, using a cross-attention network. This method proves to be statistically superior in text similarity and retrieval tasks compared to existing pooling methods. Overall, this paper sheds light on effective training strategies for LLM-based embedding models.
OwLore: Outlier-weighed Layerwise Sampled Low-Rank Projection for Memory-Efficient LLM Fine-tuning
The rapid advancements in Large Language Models (LLMs) have revolutionized various natural language processing tasks. However, the substantial size of LLMs presents significant challenges in training or fine-tuning. While parameter-efficient approaches such as low-rank adaptation (LoRA) have gained popularity, they often compromise performance compared to full-rank fine-tuning. In this paper, we propose Outlier-weighed Layerwise Sampled Low-Rank Projection (OwLore), a new memory-efficient fine-tuning approach, inspired by the layerwise outlier distribution of LLMs, which dynamically samples pre-trained layers to fine-tune instead of adding additional adaptors. We first interpret the outlier phenomenon through the lens of Heavy-Tailed Self-Regularization theory (HT-SR), discovering that layers with more outliers tend to be more heavy-tailed and consequently better trained. Inspired by this finding, OwLore strategically assigns higher sampling probabilities to layers with more outliers to better leverage the knowledge stored in pre-trained LLMs. To further mitigate the memory demands of fine-tuning, we integrate gradient low-rank projection into our approach, which facilitates each layer to be efficiently trained in a low-rank manner. By incorporating the efficient characteristics of low-rank and optimal layerwise sampling, OwLore significantly improves the memory-performance trade-off in LLM pruning. Our extensive experiments across various architectures, including LLaMa2, LLaMa3, and Mistral, demonstrate that OwLore consistently outperforms baseline approaches, including full fine-tuning. Specifically, it achieves up to a 1.1% average accuracy gain on the Commonsense Reasoning benchmark, a 3.0% improvement on MMLU, and a notable 10% boost on MT-Bench, while being more memory efficient. OwLore allows us to fine-tune LLaMa2-7B with only 21GB of memory.
Frozen Transformers in Language Models Are Effective Visual Encoder Layers
This paper reveals that large language models (LLMs), despite being trained solely on textual data, are surprisingly strong encoders for purely visual tasks in the absence of language. Even more intriguingly, this can be achieved by a simple yet previously overlooked strategy -- employing a frozen transformer block from pre-trained LLMs as a constituent encoder layer to directly process visual tokens. Our work pushes the boundaries of leveraging LLMs for computer vision tasks, significantly departing from conventional practices that typically necessitate a multi-modal vision-language setup with associated language prompts, inputs, or outputs. We demonstrate that our approach consistently enhances performance across a diverse range of tasks, encompassing pure 2D and 3D visual recognition tasks (e.g., image and point cloud classification), temporal modeling tasks (e.g., action recognition), non-semantic tasks (e.g., motion forecasting), and multi-modal tasks (e.g., 2D/3D visual question answering and image-text retrieval). Such improvements are a general phenomenon, applicable to various types of LLMs (e.g., LLaMA and OPT) and different LLM transformer blocks. We additionally propose the information filtering hypothesis to explain the effectiveness of pre-trained LLMs in visual encoding -- the pre-trained LLM transformer blocks discern informative visual tokens and further amplify their effect. This hypothesis is empirically supported by the observation that the feature activation, after training with LLM transformer blocks, exhibits a stronger focus on relevant regions. We hope that our work inspires new perspectives on utilizing LLMs and deepening our understanding of their underlying mechanisms. Code is available at https://github.com/ziqipang/LM4VisualEncoding.
EvolKV: Evolutionary KV Cache Compression for LLM Inference
Existing key-value (KV) cache compression methods typically rely on heuristics, such as uniform cache allocation across layers or static eviction policies, however, they ignore the critical interplays among layer-specific feature patterns and task performance, which can lead to degraded generalization. In this paper, we propose EvolKV, an adaptive framework for layer-wise, task-driven KV cache compression that jointly optimizes the memory efficiency and task performance. By reformulating cache allocation as a multi-objective optimization problem, EvolKV leverages evolutionary search to dynamically configure layer budgets while directly maximizing downstream performance. Extensive experiments on 11 tasks demonstrate that our approach outperforms all baseline methods across a wide range of KV cache budgets on long-context tasks and surpasses heuristic baselines by up to 7 percentage points on GSM8K. Notably, EvolKV achieves superior performance over the full KV cache setting on code completion while utilizing only 1.5% of the original budget, suggesting the untapped potential in learned compression strategies for KV cache budget allocation.
Breaking the Boundaries of Long-Context LLM Inference: Adaptive KV Management on a Single Commodity GPU
Advanced Large Language Models (LLMs) have achieved impressive performance across a wide range of complex and long-context natural language tasks. However, performing long-context LLM inference locally on a commodity GPU (a PC) with privacy concerns remains challenging due to the increasing memory demands of the key-value (KV) cache. Existing systems typically identify important tokens and selectively offload their KV data to GPU and CPU memory. The KV data needs to be offloaded to disk due to the limited memory on a commodity GPU, but the process is bottlenecked by token importance evaluation overhead and the disk's low bandwidth. In this paper, we present LeoAM, the first efficient importance-aware long-context LLM inference system for a single commodity GPU with adaptive hierarchical GPU-CPU-Disk KV management. Our system employs an adaptive KV management strategy that partitions KV data into variable-sized chunks based on the skewed distribution of attention weights across different layers to reduce computational and additional transmission overheads. Moreover, we propose a lightweight KV abstract method, which minimizes transmission latency by storing and extracting the KV abstract of each chunk on disk instead of the full KV data. LeoAM also leverages the dynamic compression and pipeline techniques to further accelerate inference. Experimental results demonstrate that LongInfer achieves an average inference latency speedup of 3.46x, while maintaining comparable LLM response quality. In scenarios with larger batch sizes, it achieves up to a 5.47x speedup.
Breaking Quadratic Barriers: A Non-Attention LLM for Ultra-Long Context Horizons
We present a novel non attention based architecture for large language models (LLMs) that efficiently handles very long context windows, on the order of hundreds of thousands to potentially millions of tokens. Unlike traditional Transformer designs, which suffer from quadratic memory and computation overload due to the nature of the self attention mechanism, our model avoids token to token attention entirely. Instead, it combines the following complementary components: State Space blocks (inspired by S4) that learn continuous time convolution kernels and scale near linearly with sequence length, Multi Resolution Convolution layers that capture local context at different dilation levels, a lightweight Recurrent Supervisor to maintain a global hidden state across sequential chunks, and Retrieval Augmented External Memory that stores and retrieves high-level chunk embeddings without reintroducing quadratic operations.
Zero-Shot Vision Encoder Grafting via LLM Surrogates
Vision language models (VLMs) typically pair a modestly sized vision encoder with a large language model (LLM), e.g., Llama-70B, making the decoder the primary computational burden during training. To reduce costs, a potential promising strategy is to first train the vision encoder using a small language model before transferring it to the large one. We construct small "surrogate models" that share the same embedding space and representation language as the large target LLM by directly inheriting its shallow layers. Vision encoders trained on the surrogate can then be directly transferred to the larger model, a process we call zero-shot grafting -- when plugged directly into the full-size target LLM, the grafted pair surpasses the encoder-surrogate pair and, on some benchmarks, even performs on par with full decoder training with the target LLM. Furthermore, our surrogate training approach reduces overall VLM training costs by ~45% when using Llama-70B as the decoder.
Personality as a Probe for LLM Evaluation: Method Trade-offs and Downstream Effects
Personality manipulation in large language models (LLMs) is increasingly applied in customer service and agentic scenarios, yet its mechanisms and trade-offs remain unclear. We present a systematic study of personality control using the Big Five traits, comparing in-context learning (ICL), parameter-efficient fine-tuning (PEFT), and mechanistic steering (MS). Our contributions are fourfold. First, we construct a contrastive dataset with balanced high/low trait responses, enabling effective steering vector computation and fair cross-method evaluation. Second, we introduce a unified evaluation framework based on within-run Delta analysis that disentangles, reasoning capability, agent performance, and demographic bias across MMLU, GAIA, and BBQ benchmarks. Third, we develop trait purification techniques to separate openness from conscientiousness, addressing representational overlap in trait encoding. Fourth, we propose a three-level stability framework that quantifies method-, trait-, and combination-level robustness, offering practical guidance under deployment constraints. Experiments on Gemma-2-2B-IT and LLaMA-3-8B-Instruct reveal clear trade-offs: ICL achieves strong alignment with minimal capability loss, PEFT delivers the highest alignment at the cost of degraded task performance, and MS provides lightweight runtime control with competitive effectiveness. Trait-level analysis shows openness as uniquely challenging, agreeableness as most resistant to ICL, and personality encoding consolidating around intermediate layers. Taken together, these results establish personality manipulation as a multi-level probe into behavioral representation, linking surface conditioning, parameter encoding, and activation-level steering, and positioning mechanistic steering as a lightweight alternative to fine-tuning for both deployment and interpretability.
Speculative Decoding via Early-exiting for Faster LLM Inference with Thompson Sampling Control Mechanism
The recent advancements in large language models (LLMs) have been extraordinary, yet the escalating inference costs associated with them present challenges in real-world applications. To address these challenges, we propose a novel approach called Early-exiting Speculative Decoding (EESD) with lossless acceleration. Specifically, EESD utilizes a segment of the LLM to generate draft tokens, incorporating Early-exiting structures after the first N layers. To enhance the quality of draft tokens, a self-distillation method is integrated. This early-exiting design not only reduces deployment and training costs but also significantly accelerates the token generation speed. Moreover, we introduce a novel sampling mechanism that leverages Thompson Sampling to regulate the generation processes, automatically determining the quantity of draft tokens in each round. The original LLM is then employed to validate these draft tokens through a single forward pass, and thus guarantees that the final output text maintains a distribution consistent with vanilla auto-regressive decoding. The experimental results on both 13B and 70B models demonstrate that our approach decodes tokens at a markedly accelerated rate compared to prior methods, showing the effectiveness of our approach.
From Internal Representations to Text Quality: A Geometric Approach to LLM Evaluation
This paper bridges internal and external analysis approaches to large language models (LLMs) by demonstrating that geometric properties of internal model representations serve as reliable proxies for evaluating generated text quality. We validate a set of metrics including Maximum Explainable Variance, Effective Rank, Intrinsic Dimensionality, MAUVE score, and Schatten Norms measured across different layers of LLMs, demonstrating that Intrinsic Dimensionality and Effective Rank can serve as universal assessments of text naturalness and quality. Our key finding reveals that different models consistently rank text from various sources in the same order based on these geometric properties, indicating that these metrics reflect inherent text characteristics rather than model-specific artifacts. This allows a reference-free text quality evaluation that does not require human-annotated datasets, offering practical advantages for automated evaluation pipelines.
Latent Fusion Jailbreak: Blending Harmful and Harmless Representations to Elicit Unsafe LLM Outputs
Large language models (LLMs) demonstrate impressive capabilities in various language tasks but are susceptible to jailbreak attacks that circumvent their safety alignments. This paper introduces Latent Fusion Jailbreak (LFJ), a representation-based attack that interpolates hidden states from harmful and benign query pairs to elicit prohibited responses. LFJ begins by selecting query pairs with high thematic and syntactic similarity, then performs gradient-guided interpolation at influential layers and tokens, followed by optimization to balance attack success, output fluency, and computational efficiency. Evaluations on models such as Vicuna and LLaMA-2 across benchmarks like AdvBench and MaliciousInstruct yield an average attack success rate (ASR) of 94.01%, outperforming existing methods. To mitigate LFJ, we propose an adversarial training defense that fine-tunes models on interpolated examples, reducing ASR by over 80% without degrading performance on benign inputs. Ablation studies validate the importance of query pair selection, hidden state interpolation components, and optimization strategies in LFJ's effectiveness.
TM-TREK at SemEval-2024 Task 8: Towards LLM-Based Automatic Boundary Detection for Human-Machine Mixed Text
With the increasing prevalence of text generated by large language models (LLMs), there is a growing concern about distinguishing between LLM-generated and human-written texts in order to prevent the misuse of LLMs, such as the dissemination of misleading information and academic dishonesty. Previous research has primarily focused on classifying text as either entirely human-written or LLM-generated, neglecting the detection of mixed texts that contain both types of content. This paper explores LLMs' ability to identify boundaries in human-written and machine-generated mixed texts. We approach this task by transforming it into a token classification problem and regard the label turning point as the boundary. Notably, our ensemble model of LLMs achieved first place in the 'Human-Machine Mixed Text Detection' sub-task of the SemEval'24 Competition Task 8. Additionally, we investigate factors that influence the capability of LLMs in detecting boundaries within mixed texts, including the incorporation of extra layers on top of LLMs, combination of segmentation loss, and the impact of pretraining. Our findings aim to provide valuable insights for future research in this area.
XC-Cache: Cross-Attending to Cached Context for Efficient LLM Inference
In-context learning (ICL) approaches typically leverage prompting to condition decoder-only language model generation on reference information. Just-in-time processing of a context is inefficient due to the quadratic cost of self-attention operations, and caching is desirable. However, caching transformer states can easily require almost as much space as the model parameters. When the right context isn't known in advance, caching ICL can be challenging. This work addresses these limitations by introducing models that, inspired by the encoder-decoder architecture, use cross-attention to condition generation on reference text without the prompt. More precisely, we leverage pre-trained decoder-only models and only train a small number of added layers. We use Question-Answering (QA) as a testbed to evaluate the ability of our models to perform conditional generation and observe that they outperform ICL, are comparable to fine-tuned prompted LLMs, and drastically reduce the space footprint relative to standard KV caching by two orders of magnitude.
Compressing KV Cache for Long-Context LLM Inference with Inter-Layer Attention Similarity
The increasing context window size in Large Language Models (LLMs), such as the GPT and LLaMA series, has improved their ability to tackle complex, long-text tasks, but at the cost of inference efficiency, particularly regarding memory and computational complexity. Existing methods, including selective token retention and window-based attention, improve efficiency but risk discarding important tokens needed for future text generation. In this paper, we propose an approach that enhances LLM efficiency without token loss by reducing the memory and computational load of less important tokens, rather than discarding them.We address two challenges: 1) investigating the distribution of important tokens in the context, discovering recent tokens are more important than distant tokens in context, and 2) optimizing resources for distant tokens by sharing attention scores across layers. The experiments show that our method saves 35% KV cache without compromising the performance.
SmoothQuant+: Accurate and Efficient 4-bit Post-Training WeightQuantization for LLM
Large language models (LLMs) have shown remarkable capabilities in various tasks. However their huge model size and the consequent demand for computational and memory resources also pose challenges to model deployment. Currently, 4-bit post-training quantization (PTQ) has achieved some success in LLMs, reducing the memory footprint by approximately 75% compared to FP16 models, albeit with some accuracy loss. In this paper, we propose SmoothQuant+, an accurate and efficient 4-bit weight-only PTQ that requires no additional training, which enables lossless in accuracy for LLMs for the first time. Based on the fact that the loss of weight quantization is amplified by the activation outliers, SmoothQuant+ smoothes the activation outliers by channel before quantization, while adjusting the corresponding weights for mathematical equivalence, and then performs group-wise 4-bit weight quantization for linear layers. We have integrated SmoothQuant+ into the vLLM framework, an advanced high-throughput inference engine specially developed for LLMs, and equipped it with an efficient W4A16 CUDA kernels, so that vLLM can seamlessly support SmoothQuant+ 4-bit weight quantization. Our results show that, with SmoothQuant+, the Code Llama-34B model can be quantized and deployed on a A100 40GB GPU, achieving lossless accuracy and a throughput increase of 1.9 to 4.0 times compared to the FP16 model deployed on two A100 40GB GPUs. Moreover, the latency per token is only 68% of the FP16 model deployed on two A100 40GB GPUs. This is the state-of-the-art 4-bit weight quantization for LLMs as we know.
Diagnose, Localize, Align: A Full-Stack Framework for Reliable LLM Multi-Agent Systems under Instruction Conflicts
Large Language Model (LLM)-powered multi-agent systems (MAS) have rapidly advanced collaborative reasoning, tool use, and role-specialized coordination in complex tasks. However, reliability-critical deployment remains hindered by a systemic failure mode: hierarchical compliance under instruction conflicts (system-user, peer-peer), where agents misprioritize system-level rules in the presence of competing demands. Moreover, widely used macro-level metrics (e.g., pass@k) obscure these micro-level violations and offer little actionable guidance for remedy. In this work, we present a full-stack, three-stage framework: (1) Diagnose - Contextualized Role Adherence Score (CRAS), a query-wise, context-aware scoring metric that decomposes role adherence into four measurable dimensions; (2) Localize - attention drift analysis revealing that instruction conflicts are resolved by attention heads that are largely concentrated in middle layers; (3) Align - Surgical Alignment of Instruction Layers (SAIL), which installs LoRA only on the localized focal layers and optimizes a token-weighted DPO-style preference objective that credits tokens by their focal attentional contribution. Across standard benchmarks and MAS frameworks, our surgical approach improves instruction hierarchy compliance (e.g., +5.60% with AutoGen on MedQA) without full-model finetuning.
Reassessing Layer Pruning in LLMs: New Insights and Methods
Although large language models (LLMs) have achieved remarkable success across various domains, their considerable scale necessitates substantial computational resources, posing significant challenges for deployment in resource-constrained environments. Layer pruning, as a simple yet effective compression method, removes layers of a model directly, reducing computational overhead. However, what are the best practices for layer pruning in LLMs? Are sophisticated layer selection metrics truly effective? Does the LoRA (Low-Rank Approximation) family, widely regarded as a leading method for pruned model fine-tuning, truly meet expectations when applied to post-pruning fine-tuning? To answer these questions, we dedicate thousands of GPU hours to benchmarking layer pruning in LLMs and gaining insights across multiple dimensions. Our results demonstrate that a simple approach, i.e., pruning the final 25\% of layers followed by fine-tuning the lm\_head and the remaining last three layer, yields remarkably strong performance. Following this guide, we prune Llama-3.1-8B-It and obtain a model that outperforms many popular LLMs of similar size, such as ChatGLM2-6B, Vicuna-7B-v1.5, Qwen1.5-7B and Baichuan2-7B. We release the optimal model weights on Huggingface, and the code is available on GitHub.
Layer-Wise Quantization: A Pragmatic and Effective Method for Quantizing LLMs Beyond Integer Bit-Levels
We present a simple meta quantization approach that quantizes different layers of a large language model (LLM) at different bit levels, and is independent of the underlying quantization technique. Specifically, we quantize the most important layers to higher bit precision and less important layers to lower bits. We propose two effective strategies to measure the importance of layers within LLMs: the first measures the importance of a layer based on how different its output embeddings are from the input embeddings (higher is better); the second estimates the importance of a layer using the number of layer weights that are much larger than average (smaller is better). We show that quantizing different layers at varying bits according to our importance scores results in minimal performance drop with a far more compressed model size. Finally, we present several practical key takeaways from our variable layer-wise quantization experiments: (a) LLM performance under variable quantization remains close to the original model until 25-50% of layers are moved in lower quantization using our proposed ordering but only until 5-10% if moved using no specific ordering; (b) Adding layer importance to inherently dynamic quantization techniques can further improve their performance, showing that our approach is complementary to other dynamic quantization methods; (c) Quantizing LLMs to lower bits performs substantially better than pruning unless extreme quantization (2-bit) is used; and (d) Layer-wise quantization to lower bits works better in the case of larger LLMs with more layers compared to smaller LLMs with fewer layers. Our code is publicly available at https://github.com/RazvanDu/LayerwiseQuant/.
How Large Language Models Encode Context Knowledge? A Layer-Wise Probing Study
Previous work has showcased the intriguing capability of large language models (LLMs) in retrieving facts and processing context knowledge. However, only limited research exists on the layer-wise capability of LLMs to encode knowledge, which challenges our understanding of their internal mechanisms. In this paper, we devote the first attempt to investigate the layer-wise capability of LLMs through probing tasks. We leverage the powerful generative capability of ChatGPT to construct probing datasets, providing diverse and coherent evidence corresponding to various facts. We employ mathcal V-usable information as the validation metric to better reflect the capability in encoding context knowledge across different layers. Our experiments on conflicting and newly acquired knowledge show that LLMs: (1) prefer to encode more context knowledge in the upper layers; (2) primarily encode context knowledge within knowledge-related entity tokens at lower layers while progressively expanding more knowledge within other tokens at upper layers; and (3) gradually forget the earlier context knowledge retained within the intermediate layers when provided with irrelevant evidence. Code is publicly available at https://github.com/Jometeorie/probing_llama.
How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective
Recent studies have shown that large language models (LLMs) can assess relevance and support information retrieval (IR) tasks such as document ranking and relevance judgment generation. However, the internal mechanisms by which off-the-shelf LLMs understand and operationalize relevance remain largely unexplored. In this paper, we systematically investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability. Using activation patching techniques, we analyze the roles of various model components and identify a multi-stage, progressive process in generating either pointwise or pairwise relevance judgment. Specifically, LLMs first extract query and document information in the early layers, then process relevance information according to instructions in the middle layers, and finally utilize specific attention heads in the later layers to generate relevance judgments in the required format. Our findings provide insights into the mechanisms underlying relevance assessment in LLMs, offering valuable implications for future research on leveraging LLMs for IR tasks.
Direct Multi-Token Decoding
Decoder-only transformers have become the standard architecture for large language models (LLMs) due to their strong performance. Recent studies suggest that, in pre-trained LLMs, early, middle, and late layers may serve distinct roles: Early layers focus on understanding the input context, middle layers handle task-specific processing, and late layers convert abstract representations into output tokens. We hypothesize that once representations have been processed by the early and middle layers, the resulting hidden states may encapsulate sufficient information to support the generation of multiple tokens using only the late layers, eliminating the need to repeatedly traverse the early and middle layers. We refer to this inference paradigm as Direct Multi-Token Decoding (DMTD). Unlike speculative decoding, our method introduces no additional parameters, auxiliary routines, or post-generation verification. Despite being trained on a limited dataset, a fine-tuned DMTD Qwen3-4B model has already demonstrated promising results, achieving up to a 2x speedup with only minor performance loss. Moreover, as shown in our scaling analysis, its performance is expected to further improve with larger training datasets.
