new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 30

FindVehicle and VehicleFinder: A NER dataset for natural language-based vehicle retrieval and a keyword-based cross-modal vehicle retrieval system

Natural language (NL) based vehicle retrieval is a task aiming to retrieve a vehicle that is most consistent with a given NL query from among all candidate vehicles. Because NL query can be easily obtained, such a task has a promising prospect in building an interactive intelligent traffic system (ITS). Current solutions mainly focus on extracting both text and image features and mapping them to the same latent space to compare the similarity. However, existing methods usually use dependency analysis or semantic role-labelling techniques to find keywords related to vehicle attributes. These techniques may require a lot of pre-processing and post-processing work, and also suffer from extracting the wrong keyword when the NL query is complex. To tackle these problems and simplify, we borrow the idea from named entity recognition (NER) and construct FindVehicle, a NER dataset in the traffic domain. It has 42.3k labelled NL descriptions of vehicle tracks, containing information such as the location, orientation, type and colour of the vehicle. FindVehicle also adopts both overlapping entities and fine-grained entities to meet further requirements. To verify its effectiveness, we propose a baseline NL-based vehicle retrieval model called VehicleFinder. Our experiment shows that by using text encoders pre-trained by FindVehicle, VehicleFinder achieves 87.7\% precision and 89.4\% recall when retrieving a target vehicle by text command on our homemade dataset based on UA-DETRAC. The time cost of VehicleFinder is 279.35 ms on one ARM v8.2 CPU and 93.72 ms on one RTX A4000 GPU, which is much faster than the Transformer-based system. The dataset is open-source via the link https://github.com/GuanRunwei/FindVehicle, and the implementation can be found via the link https://github.com/GuanRunwei/VehicleFinder-CTIM.

  • 9 authors
·
Apr 21, 2023

HiNER: A Large Hindi Named Entity Recognition Dataset

Named Entity Recognition (NER) is a foundational NLP task that aims to provide class labels like Person, Location, Organisation, Time, and Number to words in free text. Named Entities can also be multi-word expressions where the additional I-O-B annotation information helps label them during the NER annotation process. While English and European languages have considerable annotated data for the NER task, Indian languages lack on that front -- both in terms of quantity and following annotation standards. This paper releases a significantly sized standard-abiding Hindi NER dataset containing 109,146 sentences and 2,220,856 tokens, annotated with 11 tags. We discuss the dataset statistics in all their essential detail and provide an in-depth analysis of the NER tag-set used with our data. The statistics of tag-set in our dataset show a healthy per-tag distribution, especially for prominent classes like Person, Location and Organisation. Since the proof of resource-effectiveness is in building models with the resource and testing the model on benchmark data and against the leader-board entries in shared tasks, we do the same with the aforesaid data. We use different language models to perform the sequence labelling task for NER and show the efficacy of our data by performing a comparative evaluation with models trained on another dataset available for the Hindi NER task. Our dataset helps achieve a weighted F1 score of 88.78 with all the tags and 92.22 when we collapse the tag-set, as discussed in the paper. To the best of our knowledge, no available dataset meets the standards of volume (amount) and variability (diversity), as far as Hindi NER is concerned. We fill this gap through this work, which we hope will significantly help NLP for Hindi. We release this dataset with our code and models at https://github.com/cfiltnlp/HiNER

  • 6 authors
·
Apr 28, 2022

HILGEN: Hierarchically-Informed Data Generation for Biomedical NER Using Knowledgebases and Large Language Models

We present HILGEN, a Hierarchically-Informed Data Generation approach that combines domain knowledge from the Unified Medical Language System (UMLS) with synthetic data generated by large language models (LLMs), specifically GPT-3.5. Our approach leverages UMLS's hierarchical structure to expand training data with related concepts, while incorporating contextual information from LLMs through targeted prompts aimed at automatically generating synthetic examples for sparsely occurring named entities. The performance of the HILGEN approach was evaluated across four biomedical NER datasets (MIMIC III, BC5CDR, NCBI-Disease, and Med-Mentions) using BERT-Large and DANN (Data Augmentation with Nearest Neighbor Classifier) models, applying various data generation strategies, including UMLS, GPT-3.5, and their best ensemble. For the BERT-Large model, incorporating UMLS led to an average F1 score improvement of 40.36%, while using GPT-3.5 resulted in a comparable average increase of 40.52%. The Best-Ensemble approach using BERT-Large achieved the highest improvement, with an average increase of 42.29%. DANN model's F1 score improved by 22.74% on average using the UMLS-only approach. The GPT-3.5-based method resulted in a 21.53% increase, and the Best-Ensemble DANN model showed a more notable improvement, with an average increase of 25.03%. Our proposed HILGEN approach improves NER performance in few-shot settings without requiring additional manually annotated data. Our experiments demonstrate that an effective strategy for optimizing biomedical NER is to combine biomedical knowledge curated in the past, such as the UMLS, and generative LLMs to create synthetic training instances. Our future research will focus on exploring additional innovative synthetic data generation strategies for further improving NER performance.

  • 6 authors
·
Mar 6

Reddit-Impacts: A Named Entity Recognition Dataset for Analyzing Clinical and Social Effects of Substance Use Derived from Social Media

Substance use disorders (SUDs) are a growing concern globally, necessitating enhanced understanding of the problem and its trends through data-driven research. Social media are unique and important sources of information about SUDs, particularly since the data in such sources are often generated by people with lived experiences. In this paper, we introduce Reddit-Impacts, a challenging Named Entity Recognition (NER) dataset curated from subreddits dedicated to discussions on prescription and illicit opioids, as well as medications for opioid use disorder. The dataset specifically concentrates on the lesser-studied, yet critically important, aspects of substance use--its clinical and social impacts. We collected data from chosen subreddits using the publicly available Application Programming Interface for Reddit. We manually annotated text spans representing clinical and social impacts reported by people who also reported personal nonmedical use of substances including but not limited to opioids, stimulants and benzodiazepines. Our objective is to create a resource that can enable the development of systems that can automatically detect clinical and social impacts of substance use from text-based social media data. The successful development of such systems may enable us to better understand how nonmedical use of substances affects individual health and societal dynamics, aiding the development of effective public health strategies. In addition to creating the annotated data set, we applied several machine learning models to establish baseline performances. Specifically, we experimented with transformer models like BERT, and RoBERTa, one few-shot learning model DANN by leveraging the full training dataset, and GPT-3.5 by using one-shot learning, for automatic NER of clinical and social impacts. The dataset has been made available through the 2024 SMM4H shared tasks.

  • 6 authors
·
May 9, 2024

CrossNER: Evaluating Cross-Domain Named Entity Recognition

Cross-domain named entity recognition (NER) models are able to cope with the scarcity issue of NER samples in target domains. However, most of the existing NER benchmarks lack domain-specialized entity types or do not focus on a certain domain, leading to a less effective cross-domain evaluation. To address these obstacles, we introduce a cross-domain NER dataset (CrossNER), a fully-labeled collection of NER data spanning over five diverse domains with specialized entity categories for different domains. Additionally, we also provide a domain-related corpus since using it to continue pre-training language models (domain-adaptive pre-training) is effective for the domain adaptation. We then conduct comprehensive experiments to explore the effectiveness of leveraging different levels of the domain corpus and pre-training strategies to do domain-adaptive pre-training for the cross-domain task. Results show that focusing on the fractional corpus containing domain-specialized entities and utilizing a more challenging pre-training strategy in domain-adaptive pre-training are beneficial for the NER domain adaptation, and our proposed method can consistently outperform existing cross-domain NER baselines. Nevertheless, experiments also illustrate the challenge of this cross-domain NER task. We hope that our dataset and baselines will catalyze research in the NER domain adaptation area. The code and data are available at https://github.com/zliucr/CrossNER.

  • 8 authors
·
Dec 8, 2020

ProKD: An Unsupervised Prototypical Knowledge Distillation Network for Zero-Resource Cross-Lingual Named Entity Recognition

For named entity recognition (NER) in zero-resource languages, utilizing knowledge distillation methods to transfer language-independent knowledge from the rich-resource source languages to zero-resource languages is an effective means. Typically, these approaches adopt a teacher-student architecture, where the teacher network is trained in the source language, and the student network seeks to learn knowledge from the teacher network and is expected to perform well in the target language. Despite the impressive performance achieved by these methods, we argue that they have two limitations. Firstly, the teacher network fails to effectively learn language-independent knowledge shared across languages due to the differences in the feature distribution between the source and target languages. Secondly, the student network acquires all of its knowledge from the teacher network and ignores the learning of target language-specific knowledge. Undesirably, these limitations would hinder the model's performance in the target language. This paper proposes an unsupervised prototype knowledge distillation network (ProKD) to address these issues. Specifically, ProKD presents a contrastive learning-based prototype alignment method to achieve class feature alignment by adjusting the distance among prototypes in the source and target languages, boosting the teacher network's capacity to acquire language-independent knowledge. In addition, ProKD introduces a prototypical self-training method to learn the intrinsic structure of the language by retraining the student network on the target data using samples' distance information from prototypes, thereby enhancing the student network's ability to acquire language-specific knowledge. Extensive experiments on three benchmark cross-lingual NER datasets demonstrate the effectiveness of our approach.

  • 5 authors
·
Jan 20, 2023

EL4NER: Ensemble Learning for Named Entity Recognition via Multiple Small-Parameter Large Language Models

In-Context Learning (ICL) technique based on Large Language Models (LLMs) has gained prominence in Named Entity Recognition (NER) tasks for its lower computing resource consumption, less manual labeling overhead, and stronger generalizability. Nevertheless, most ICL-based NER methods depend on large-parameter LLMs: the open-source models demand substantial computational resources for deployment and inference, while the closed-source ones incur high API costs, raise data-privacy concerns, and hinder community collaboration. To address this question, we propose an Ensemble Learning Method for Named Entity Recognition (EL4NER), which aims at aggregating the ICL outputs of multiple open-source, small-parameter LLMs to enhance overall performance in NER tasks at less deployment and inference cost. Specifically, our method comprises three key components. First, we design a task decomposition-based pipeline that facilitates deep, multi-stage ensemble learning. Second, we introduce a novel span-level sentence similarity algorithm to establish an ICL demonstration retrieval mechanism better suited for NER tasks. Third, we incorporate a self-validation mechanism to mitigate the noise introduced during the ensemble process. We evaluated EL4NER on multiple widely adopted NER datasets from diverse domains. Our experimental results indicate that EL4NER surpasses most closed-source, large-parameter LLM-based methods at a lower parameter cost and even attains state-of-the-art (SOTA) performance among ICL-based methods on certain datasets. These results show the parameter efficiency of EL4NER and underscore the feasibility of employing open-source, small-parameter LLMs within the ICL paradigm for NER tasks.

  • 9 authors
·
May 28

Small Language Model Makes an Effective Long Text Extractor

Named Entity Recognition (NER) is a fundamental problem in natural language processing (NLP). However, the task of extracting longer entity spans (e.g., awards) from extended texts (e.g., homepages) is barely explored. Current NER methods predominantly fall into two categories: span-based methods and generation-based methods. Span-based methods require the enumeration of all possible token-pair spans, followed by classification on each span, resulting in substantial redundant computations and excessive GPU memory usage. In contrast, generation-based methods involve prompting or fine-tuning large language models (LLMs) to adapt to downstream NER tasks. However, these methods struggle with the accurate generation of longer spans and often incur significant time costs for effective fine-tuning. To address these challenges, this paper introduces a lightweight span-based NER method called SeNER, which incorporates a bidirectional arrow attention mechanism coupled with LogN-Scaling on the [CLS] token to embed long texts effectively, and comprises a novel bidirectional sliding-window plus-shaped attention (BiSPA) mechanism to reduce redundant candidate token-pair spans significantly and model interactions between token-pair spans simultaneously. Extensive experiments demonstrate that our method achieves state-of-the-art extraction accuracy on three long NER datasets and is capable of extracting entities from long texts in a GPU-memory-friendly manner. Code: https://github.com/THUDM/scholar-profiling/tree/main/sener

  • 3 authors
·
Feb 11

CRENER: A Character Relation Enhanced Chinese NER Model

Chinese Named Entity Recognition (NER) is an important task in information extraction, which has a significant impact on downstream applications. Due to the lack of natural separators in Chinese, previous NER methods mostly relied on external dictionaries to enrich the semantic and boundary information of Chinese words. However, such methods may introduce noise that affects the accuracy of named entity recognition. To this end, we propose a character relation enhanced Chinese NER model (CRENER). This model defines four types of tags that reflect the relationships between characters, and proposes a fine-grained modeling of the relationships between characters based on three types of relationships: adjacency relations between characters, relations between characters and tags, and relations between tags, to more accurately identify entity boundaries and improve Chinese NER accuracy. Specifically, we transform the Chinese NER task into a character-character relationship classification task, ensuring the accuracy of entity boundary recognition through joint modeling of relation tags. To enhance the model's ability to understand contextual information, WRENER further constructed an adapted transformer encoder that combines unscaled direction-aware and distance-aware masked self-attention mechanisms. Moreover, a relationship representation enhancement module was constructed to model predefined relationship tags, effectively mining the relationship representations between characters and tags. Experiments conducted on four well-known Chinese NER benchmark datasets have shown that the proposed model outperforms state-of-the-art baselines. The ablation experiment also demonstrated the effectiveness of the proposed model.

  • 2 authors
·
Dec 14, 2024

BioRED: A Rich Biomedical Relation Extraction Dataset

Automated relation extraction (RE) from biomedical literature is critical for many downstream text mining applications in both research and real-world settings. However, most existing benchmarking datasets for bio-medical RE only focus on relations of a single type (e.g., protein-protein interactions) at the sentence level, greatly limiting the development of RE systems in biomedicine. In this work, we first review commonly used named entity recognition (NER) and RE datasets. Then we present BioRED, a first-of-its-kind biomedical RE corpus with multiple entity types (e.g., gene/protein, disease, chemical) and relation pairs (e.g., gene-disease; chemical-chemical) at the document level, on a set of 600 PubMed abstracts. Further, we label each relation as describing either a novel finding or previously known background knowledge, enabling automated algorithms to differentiate between novel and background information. We assess the utility of BioRED by benchmarking several existing state-of-the-art methods, including BERT-based models, on the NER and RE tasks. Our results show that while existing approaches can reach high performance on the NER task (F-score of 89.3%), there is much room for improvement for the RE task, especially when extracting novel relations (F-score of 47.7%). Our experiments also demonstrate that such a rich dataset can successfully facilitate the development of more accurate, efficient, and robust RE systems for biomedicine. The BioRED dataset and annotation guideline are freely available at https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/.

  • 5 authors
·
Apr 8, 2022

NERetrieve: Dataset for Next Generation Named Entity Recognition and Retrieval

Recognizing entities in texts is a central need in many information-seeking scenarios, and indeed, Named Entity Recognition (NER) is arguably one of the most successful examples of a widely adopted NLP task and corresponding NLP technology. Recent advances in large language models (LLMs) appear to provide effective solutions (also) for NER tasks that were traditionally handled with dedicated models, often matching or surpassing the abilities of the dedicated models. Should NER be considered a solved problem? We argue to the contrary: the capabilities provided by LLMs are not the end of NER research, but rather an exciting beginning. They allow taking NER to the next level, tackling increasingly more useful, and increasingly more challenging, variants. We present three variants of the NER task, together with a dataset to support them. The first is a move towards more fine-grained -- and intersectional -- entity types. The second is a move towards zero-shot recognition and extraction of these fine-grained types based on entity-type labels. The third, and most challenging, is the move from the recognition setup to a novel retrieval setup, where the query is a zero-shot entity type, and the expected result is all the sentences from a large, pre-indexed corpus that contain entities of these types, and their corresponding spans. We show that all of these are far from being solved. We provide a large, silver-annotated corpus of 4 million paragraphs covering 500 entity types, to facilitate research towards all of these three goals.

  • 4 authors
·
Oct 22, 2023 6

Malaysian English News Decoded: A Linguistic Resource for Named Entity and Relation Extraction

Standard English and Malaysian English exhibit notable differences, posing challenges for natural language processing (NLP) tasks on Malaysian English. Unfortunately, most of the existing datasets are mainly based on standard English and therefore inadequate for improving NLP tasks in Malaysian English. An experiment using state-of-the-art Named Entity Recognition (NER) solutions on Malaysian English news articles highlights that they cannot handle morphosyntactic variations in Malaysian English. To the best of our knowledge, there is no annotated dataset available to improvise the model. To address these issues, we constructed a Malaysian English News (MEN) dataset, which contains 200 news articles that are manually annotated with entities and relations. We then fine-tuned the spaCy NER tool and validated that having a dataset tailor-made for Malaysian English could improve the performance of NER in Malaysian English significantly. This paper presents our effort in the data acquisition, annotation methodology, and thorough analysis of the annotated dataset. To validate the quality of the annotation, inter-annotator agreement was used, followed by adjudication of disagreements by a subject matter expert. Upon completion of these tasks, we managed to develop a dataset with 6,061 entities and 3,268 relation instances. Finally, we discuss on spaCy fine-tuning setup and analysis on the NER performance. This unique dataset will contribute significantly to the advancement of NLP research in Malaysian English, allowing researchers to accelerate their progress, particularly in NER and relation extraction. The dataset and annotation guideline has been published on Github.

  • 4 authors
·
Feb 22, 2024

Datasets for Large Language Models: A Comprehensive Survey

This paper embarks on an exploration into the Large Language Model (LLM) datasets, which play a crucial role in the remarkable advancements of LLMs. The datasets serve as the foundational infrastructure analogous to a root system that sustains and nurtures the development of LLMs. Consequently, examination of these datasets emerges as a critical topic in research. In order to address the current lack of a comprehensive overview and thorough analysis of LLM datasets, and to gain insights into their current status and future trends, this survey consolidates and categorizes the fundamental aspects of LLM datasets from five perspectives: (1) Pre-training Corpora; (2) Instruction Fine-tuning Datasets; (3) Preference Datasets; (4) Evaluation Datasets; (5) Traditional Natural Language Processing (NLP) Datasets. The survey sheds light on the prevailing challenges and points out potential avenues for future investigation. Additionally, a comprehensive review of the existing available dataset resources is also provided, including statistics from 444 datasets, covering 8 language categories and spanning 32 domains. Information from 20 dimensions is incorporated into the dataset statistics. The total data size surveyed surpasses 774.5 TB for pre-training corpora and 700M instances for other datasets. We aim to present the entire landscape of LLM text datasets, serving as a comprehensive reference for researchers in this field and contributing to future studies. Related resources are available at: https://github.com/lmmlzn/Awesome-LLMs-Datasets.

  • 5 authors
·
Feb 27, 2024 1

Familiarity: Better Evaluation of Zero-Shot Named Entity Recognition by Quantifying Label Shifts in Synthetic Training Data

Zero-shot named entity recognition (NER) is the task of detecting named entities of specific types (such as 'Person' or 'Medicine') without any training examples. Current research increasingly relies on large synthetic datasets, automatically generated to cover tens of thousands of distinct entity types, to train zero-shot NER models. However, in this paper, we find that these synthetic datasets often contain entity types that are semantically highly similar to (or even the same as) those in standard evaluation benchmarks. Because of this overlap, we argue that reported F1 scores for zero-shot NER overestimate the true capabilities of these approaches. Further, we argue that current evaluation setups provide an incomplete picture of zero-shot abilities since they do not quantify the label shift (i.e., the similarity of labels) between training and evaluation datasets. To address these issues, we propose Familiarity, a novel metric that captures both the semantic similarity between entity types in training and evaluation, as well as their frequency in the training data, to provide an estimate of label shift. It allows researchers to contextualize reported zero-shot NER scores when using custom synthetic training datasets. Further, it enables researchers to generate evaluation setups of various transfer difficulties for fine-grained analysis of zero-shot NER.

  • 6 authors
·
Dec 13, 2024

Alloprof: a new French question-answer education dataset and its use in an information retrieval case study

Teachers and students are increasingly relying on online learning resources to supplement the ones provided in school. This increase in the breadth and depth of available resources is a great thing for students, but only provided they are able to find answers to their queries. Question-answering and information retrieval systems have benefited from public datasets to train and evaluate their algorithms, but most of these datasets have been in English text written by and for adults. We introduce a new public French question-answering dataset collected from Alloprof, a Quebec-based primary and high-school help website, containing 29 349 questions and their explanations in a variety of school subjects from 10 368 students, with more than half of the explanations containing links to other questions or some of the 2 596 reference pages on the website. We also present a case study of this dataset in an information retrieval task. This dataset was collected on the Alloprof public forum, with all questions verified for their appropriateness and the explanations verified both for their appropriateness and their relevance to the question. To predict relevant documents, architectures using pre-trained BERT models were fine-tuned and evaluated. This dataset will allow researchers to develop question-answering, information retrieval and other algorithms specifically for the French speaking education context. Furthermore, the range of language proficiency, images, mathematical symbols and spelling mistakes will necessitate algorithms based on a multimodal comprehension. The case study we present as a baseline shows an approach that relies on recent techniques provides an acceptable performance level, but more work is necessary before it can reliably be used and trusted in a production setting.

  • 3 authors
·
Feb 10, 2023

Computer Science Named Entity Recognition in the Open Research Knowledge Graph

Domain-specific named entity recognition (NER) on Computer Science (CS) scholarly articles is an information extraction task that is arguably more challenging for the various annotation aims that can beset the task and has been less studied than NER in the general domain. Given that significant progress has been made on NER, we believe that scholarly domain-specific NER will receive increasing attention in the years to come. Currently, progress on CS NER -- the focus of this work -- is hampered in part by its recency and the lack of a standardized annotation aim for scientific entities/terms. This work proposes a standardized task by defining a set of seven contribution-centric scholarly entities for CS NER viz., research problem, solution, resource, language, tool, method, and dataset. Following which, its main contributions are: combines existing CS NER resources that maintain their annotation focus on the set or subset of contribution-centric scholarly entities we consider; further, noting the need for big data to train neural NER models, this work additionally supplies thousands of contribution-centric entity annotations from article titles and abstracts, thus releasing a cumulative large novel resource for CS NER; and, finally, trains a sequence labeling CS NER model inspired after state-of-the-art neural architectures from the general domain NER task. Throughout the work, several practical considerations are made which can be useful to information technology designers of the digital libraries.

  • 2 authors
·
Mar 28, 2022

Named entity recognition for Serbian legal documents: Design, methodology and dataset development

Recent advancements in the field of natural language processing (NLP) and especially large language models (LLMs) and their numerous applications have brought research attention to design of different document processing tools and enhancements in the process of document archiving, search and retrieval. Domain of official, legal documents is especially interesting due to vast amount of data generated on the daily basis, as well as the significant community of interested practitioners (lawyers, law offices, administrative workers, state institutions and citizens). Providing efficient ways for automation of everyday work involving legal documents is therefore expected to have significant impact in different fields. In this work we present one LLM based solution for Named Entity Recognition (NER) in the case of legal documents written in Serbian language. It leverages on the pre-trained bidirectional encoder representations from transformers (BERT), which had been carefully adapted to the specific task of identifying and classifying specific data points from textual content. Besides novel dataset development for Serbian language (involving public court rulings), presented system design and applied methodology, the paper also discusses achieved performance metrics and their implications for objective assessment of the proposed solution. Performed cross-validation tests on the created manually labeled dataset with mean F_1 score of 0.96 and additional results on the examples of intentionally modified text inputs confirm applicability of the proposed system design and robustness of the developed NER solution.

  • 2 authors
·
Feb 14

Exploring the Effectiveness of Instruction Tuning in Biomedical Language Processing

Large Language Models (LLMs), particularly those similar to ChatGPT, have significantly influenced the field of Natural Language Processing (NLP). While these models excel in general language tasks, their performance in domain-specific downstream tasks such as biomedical and clinical Named Entity Recognition (NER), Relation Extraction (RE), and Medical Natural Language Inference (NLI) is still evolving. In this context, our study investigates the potential of instruction tuning for biomedical language processing, applying this technique to two general LLMs of substantial scale. We present a comprehensive, instruction-based model trained on a dataset that consists of approximately 200,000 instruction-focused samples. This dataset represents a carefully curated compilation of existing data, meticulously adapted and reformatted to align with the specific requirements of our instruction-based tasks. This initiative represents an important step in utilising such models to achieve results on par with specialised encoder-only models like BioBERT and BioClinicalBERT for various classical biomedical NLP tasks. Our work includes an analysis of the dataset's composition and its impact on model performance, providing insights into the intricacies of instruction tuning. By sharing our codes, models, and the distinctively assembled instruction-based dataset, we seek to encourage ongoing research and development in this area.

  • 3 authors
·
Dec 31, 2023

Benchmarks for Pirá 2.0, a Reading Comprehension Dataset about the Ocean, the Brazilian Coast, and Climate Change

Pir\'a is a reading comprehension dataset focused on the ocean, the Brazilian coast, and climate change, built from a collection of scientific abstracts and reports on these topics. This dataset represents a versatile language resource, particularly useful for testing the ability of current machine learning models to acquire expert scientific knowledge. Despite its potential, a detailed set of baselines has not yet been developed for Pir\'a. By creating these baselines, researchers can more easily utilize Pir\'a as a resource for testing machine learning models across a wide range of question answering tasks. In this paper, we define six benchmarks over the Pir\'a dataset, covering closed generative question answering, machine reading comprehension, information retrieval, open question answering, answer triggering, and multiple choice question answering. As part of this effort, we have also produced a curated version of the original dataset, where we fixed a number of grammar issues, repetitions, and other shortcomings. Furthermore, the dataset has been extended in several new directions, so as to face the aforementioned benchmarks: translation of supporting texts from English into Portuguese, classification labels for answerability, automatic paraphrases of questions and answers, and multiple choice candidates. The results described in this paper provide several points of reference for researchers interested in exploring the challenges provided by the Pir\'a dataset.

  • 8 authors
·
Sep 19, 2023

EasyNER: A Customizable Easy-to-Use Pipeline for Deep Learning- and Dictionary-based Named Entity Recognition from Medical Text

Medical research generates a large number of publications with the PubMed database already containing >35 million research articles. Integration of the knowledge scattered across this large body of literature could provide key insights into physiological mechanisms and disease processes leading to novel medical interventions. However, it is a great challenge for researchers to utilize this information in full since the scale and complexity of the data greatly surpasses human processing abilities. This becomes especially problematic in cases of extreme urgency like the COVID-19 pandemic. Automated text mining can help extract and connect information from the large body of medical research articles. The first step in text mining is typically the identification of specific classes of keywords (e.g., all protein or disease names), so called Named Entity Recognition (NER). Here we present an end-to-end pipeline for NER of typical entities found in medical research articles, including diseases, cells, chemicals, genes/proteins, and species. The pipeline can access and process large medical research article collections (PubMed, CORD-19) or raw text and incorporates a series of deep learning models fine-tuned on the HUNER corpora collection. In addition, the pipeline can perform dictionary-based NER related to COVID-19 and other medical topics. Users can also load their own NER models and dictionaries to include additional entities. The output consists of publication-ready ranked lists and graphs of detected entities and files containing the annotated texts. An associated script allows rapid inspection of the results for specific entities of interest. As model use cases, the pipeline was deployed on two collections of autophagy-related abstracts from PubMed and on the CORD19 dataset, a collection of 764 398 research article abstracts related to COVID-19.

  • 11 authors
·
Apr 16, 2023

DuoRC: Towards Complex Language Understanding with Paraphrased Reading Comprehension

We propose DuoRC, a novel dataset for Reading Comprehension (RC) that motivates several new challenges for neural approaches in language understanding beyond those offered by existing RC datasets. DuoRC contains 186,089 unique question-answer pairs created from a collection of 7680 pairs of movie plots where each pair in the collection reflects two versions of the same movie - one from Wikipedia and the other from IMDb - written by two different authors. We asked crowdsourced workers to create questions from one version of the plot and a different set of workers to extract or synthesize answers from the other version. This unique characteristic of DuoRC where questions and answers are created from different versions of a document narrating the same underlying story, ensures by design, that there is very little lexical overlap between the questions created from one version and the segments containing the answer in the other version. Further, since the two versions have different levels of plot detail, narration style, vocabulary, etc., answering questions from the second version requires deeper language understanding and incorporating external background knowledge. Additionally, the narrative style of passages arising from movie plots (as opposed to typical descriptive passages in existing datasets) exhibits the need to perform complex reasoning over events across multiple sentences. Indeed, we observe that state-of-the-art neural RC models which have achieved near human performance on the SQuAD dataset, even when coupled with traditional NLP techniques to address the challenges presented in DuoRC exhibit very poor performance (F1 score of 37.42% on DuoRC v/s 86% on SQuAD dataset). This opens up several interesting research avenues wherein DuoRC could complement other RC datasets to explore novel neural approaches for studying language understanding.

  • 4 authors
·
Apr 21, 2018

IndicSTR12: A Dataset for Indic Scene Text Recognition

The importance of Scene Text Recognition (STR) in today's increasingly digital world cannot be overstated. Given the significance of STR, data intensive deep learning approaches that auto-learn feature mappings have primarily driven the development of STR solutions. Several benchmark datasets and substantial work on deep learning models are available for Latin languages to meet this need. On more complex, syntactically and semantically, Indian languages spoken and read by 1.3 billion people, there is less work and datasets available. This paper aims to address the Indian space's lack of a comprehensive dataset by proposing the largest and most comprehensive real dataset - IndicSTR12 - and benchmarking STR performance on 12 major Indian languages. A few works have addressed the same issue, but to the best of our knowledge, they focused on a small number of Indian languages. The size and complexity of the proposed dataset are comparable to those of existing Latin contemporaries, while its multilingualism will catalyse the development of robust text detection and recognition models. It was created specifically for a group of related languages with different scripts. The dataset contains over 27000 word-images gathered from various natural scenes, with over 1000 word-images for each language. Unlike previous datasets, the images cover a broader range of realistic conditions, including blur, illumination changes, occlusion, non-iconic texts, low resolution, perspective text etc. Along with the new dataset, we provide a high-performing baseline on three models - PARSeq, CRNN, and STARNet.

  • 3 authors
·
Mar 12, 2024

Fine-grained Contract NER using instruction based model

Lately, instruction-based techniques have made significant strides in improving performance in few-shot learning scenarios. They achieve this by bridging the gap between pre-trained language models and fine-tuning for specific downstream tasks. Despite these advancements, the performance of Large Language Models (LLMs) in information extraction tasks like Named Entity Recognition (NER), using prompts or instructions, still falls short of supervised baselines. The reason for this performance gap can be attributed to the fundamental disparity between NER and LLMs. NER is inherently a sequence labeling task, where the model must assign entity-type labels to individual tokens within a sentence. In contrast, LLMs are designed as a text generation task. This distinction between semantic labeling and text generation leads to subpar performance. In this paper, we transform the NER task into a text-generation task that can be readily adapted by LLMs. This involves enhancing source sentences with task-specific instructions and answer choices, allowing for the identification of entities and their types within natural language. We harness the strength of LLMs by integrating supervised learning within them. The goal of this combined strategy is to boost the performance of LLMs in extraction tasks like NER while simultaneously addressing hallucination issues often observed in LLM-generated content. A novel corpus Contract NER comprising seven frequently observed contract categories, encompassing named entities associated with 18 distinct legal entity types is released along with our baseline models. Our models and dataset are available to the community for future research * .

  • 3 authors
·
Jan 24, 2024

The SourceData-NLP dataset: integrating curation into scientific publishing for training large language models

Introduction: The scientific publishing landscape is expanding rapidly, creating challenges for researchers to stay up-to-date with the evolution of the literature. Natural Language Processing (NLP) has emerged as a potent approach to automating knowledge extraction from this vast amount of publications and preprints. Tasks such as Named-Entity Recognition (NER) and Named-Entity Linking (NEL), in conjunction with context-dependent semantic interpretation, offer promising and complementary approaches to extracting structured information and revealing key concepts. Results: We present the SourceData-NLP dataset produced through the routine curation of papers during the publication process. A unique feature of this dataset is its emphasis on the annotation of bioentities in figure legends. We annotate eight classes of biomedical entities (small molecules, gene products, subcellular components, cell lines, cell types, tissues, organisms, and diseases), their role in the experimental design, and the nature of the experimental method as an additional class. SourceData-NLP contains more than 620,000 annotated biomedical entities, curated from 18,689 figures in 3,223 papers in molecular and cell biology. We illustrate the dataset's usefulness by assessing BioLinkBERT and PubmedBERT, two transformers-based models, fine-tuned on the SourceData-NLP dataset for NER. We also introduce a novel context-dependent semantic task that infers whether an entity is the target of a controlled intervention or the object of measurement. Conclusions: SourceData-NLP's scale highlights the value of integrating curation into publishing. Models trained with SourceData-NLP will furthermore enable the development of tools able to extract causal hypotheses from the literature and assemble them into knowledge graphs.

  • 4 authors
·
Oct 31, 2023

Biomedical and Clinical Language Models for Spanish: On the Benefits of Domain-Specific Pretraining in a Mid-Resource Scenario

This work presents biomedical and clinical language models for Spanish by experimenting with different pretraining choices, such as masking at word and subword level, varying the vocabulary size and testing with domain data, looking for better language representations. Interestingly, in the absence of enough clinical data to train a model from scratch, we applied mixed-domain pretraining and cross-domain transfer approaches to generate a performant bio-clinical model suitable for real-world clinical data. We evaluated our models on Named Entity Recognition (NER) tasks for biomedical documents and challenging hospital discharge reports. When compared against the competitive mBERT and BETO models, we outperform them in all NER tasks by a significant margin. Finally, we studied the impact of the model's vocabulary on the NER performances by offering an interesting vocabulary-centric analysis. The results confirm that domain-specific pretraining is fundamental to achieving higher performances in downstream NER tasks, even within a mid-resource scenario. To the best of our knowledge, we provide the first biomedical and clinical transformer-based pretrained language models for Spanish, intending to boost native Spanish NLP applications in biomedicine. Our best models are freely available in the HuggingFace hub: https://huggingface.co/BSC-TeMU.

  • 7 authors
·
Sep 8, 2021

Classifying Textual Data with Pre-trained Vision Models through Transfer Learning and Data Transformations

Knowledge is acquired by humans through experience, and no boundary is set between the kinds of knowledge or skill levels we can achieve on different tasks at the same time. When it comes to Neural Networks, that is not the case. The breakthroughs in the field are extremely task and domain-specific. Vision and language are dealt with in separate manners, using separate methods and different datasets. Current text classification methods, mostly rely on obtaining contextual embeddings for input text samples, then training a classifier on the embedded dataset. Transfer learning in Language-related tasks in general, is heavily used in obtaining the contextual text embeddings for the input samples. In this work, we propose to use the knowledge acquired by benchmark Vision Models which are trained on ImageNet to help a much smaller architecture learn to classify text. A data transformation technique is used to create a new image dataset, where each image represents a sentence embedding from the last six layers of BERT, projected on a 2D plane using a t-SNE based method. We trained five models containing early layers sliced from vision models which are pretrained on ImageNet, on the created image dataset for the IMDB dataset embedded with the last six layers of BERT. Despite the challenges posed by the very different datasets, experimental results achieved by this approach which links large pretrained models on both language and vision, are very promising, without employing compute resources. Specifically, Sentiment Analysis is achieved by five different models on the same image dataset obtained after BERT embeddings are transformed into gray scale images. Index Terms: BERT, Convolutional Neural Networks, Domain Adaptation, image classification, Natural Language Processing, t-SNE, text classification, Transfer Learning

  • 1 authors
·
Jun 23, 2021

A Survey on Data Selection for Language Models

A major factor in the recent success of large language models is the use of enormous and ever-growing text datasets for unsupervised pre-training. However, naively training a model on all available data may not be optimal (or feasible), as the quality of available text data can vary. Filtering out data can also decrease the carbon footprint and financial costs of training models by reducing the amount of training required. Data selection methods aim to determine which candidate data points to include in the training dataset and how to appropriately sample from the selected data points. The promise of improved data selection methods has caused the volume of research in the area to rapidly expand. However, because deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive, few organizations have the resources for extensive data selection research. Consequently, knowledge of effective data selection practices has become concentrated within a few organizations, many of which do not openly share their findings and methodologies. To narrow this gap in knowledge, we present a comprehensive review of existing literature on data selection methods and related research areas, providing a taxonomy of existing approaches. By describing the current landscape of research, this work aims to accelerate progress in data selection by establishing an entry point for new and established researchers. Additionally, throughout this review we draw attention to noticeable holes in the literature and conclude the paper by proposing promising avenues for future research.

  • 14 authors
·
Feb 26, 2024

Utilizing BERT for Information Retrieval: Survey, Applications, Resources, and Challenges

Recent years have witnessed a substantial increase in the use of deep learning to solve various natural language processing (NLP) problems. Early deep learning models were constrained by their sequential or unidirectional nature, such that they struggled to capture the contextual relationships across text inputs. The introduction of bidirectional encoder representations from transformers (BERT) leads to a robust encoder for the transformer model that can understand the broader context and deliver state-of-the-art performance across various NLP tasks. This has inspired researchers and practitioners to apply BERT to practical problems, such as information retrieval (IR). A survey that focuses on a comprehensive analysis of prevalent approaches that apply pretrained transformer encoders like BERT to IR can thus be useful for academia and the industry. In light of this, we revisit a variety of BERT-based methods in this survey, cover a wide range of techniques of IR, and group them into six high-level categories: (i) handling long documents, (ii) integrating semantic information, (iii) balancing effectiveness and efficiency, (iv) predicting the weights of terms, (v) query expansion, and (vi) document expansion. We also provide links to resources, including datasets and toolkits, for BERT-based IR systems. A key highlight of our survey is the comparison between BERT's encoder-based models and the latest generative Large Language Models (LLMs), such as ChatGPT, which rely on decoders. Despite the popularity of LLMs, we find that for specific tasks, finely tuned BERT encoders still outperform, and at a lower deployment cost. Finally, we summarize the comprehensive outcomes of the survey and suggest directions for future research in the area.

  • 7 authors
·
Feb 18, 2024

When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data

Many methods now exist for conditioning model outputs on task instructions, retrieved documents, and user-provided explanations and feedback. Rather than relying solely on examples of task inputs and outputs, these approaches use valuable additional data for improving model correctness and aligning learned models with human priors. Meanwhile, a growing body of evidence suggests that some language models can (1) store a large amount of knowledge in their parameters, and (2) perform inference over tasks in textual inputs at test time. These results raise the possibility that, for some tasks, humans cannot explain to a model any more about the task than it already knows or could infer on its own. In this paper, we study the circumstances under which explanations of individual data points can (or cannot) improve modeling performance. In order to carefully control important properties of the data and explanations, we introduce a synthetic dataset for experiments, and we also make use of three existing datasets with explanations: e-SNLI, TACRED, and SemEval. We first give a formal framework for the available modeling approaches, in which explanation data can be used as model inputs, as targets, or as a prior. After arguing that the most promising role for explanation data is as model inputs, we propose to use a retrieval-based method and show that it solves our synthetic task with accuracies upwards of 95%, while baselines without explanation data achieve below 65% accuracy. We then identify properties of datasets for which retrieval-based modeling fails. With the three existing datasets, we find no improvements from explanation retrieval. Drawing on findings from our synthetic task, we suggest that at least one of six preconditions for successful modeling fails to hold with these datasets. Our code is publicly available at https://github.com/peterbhase/ExplanationRoles

  • 2 authors
·
Feb 3, 2021

OpenMed NER: Open-Source, Domain-Adapted State-of-the-Art Transformers for Biomedical NER Across 12 Public Datasets

Named-entity recognition (NER) is fundamental to extracting structured information from the >80% of healthcare data that resides in unstructured clinical notes and biomedical literature. Despite recent advances with large language models, achieving state-of-the-art performance across diverse entity types while maintaining computational efficiency remains a significant challenge. We introduce OpenMed NER, a suite of open-source, domain-adapted transformer models that combine lightweight domain-adaptive pre-training (DAPT) with parameter-efficient Low-Rank Adaptation (LoRA). Our approach performs cost-effective DAPT on a 350k-passage corpus compiled from ethically sourced, publicly available research repositories and de-identified clinical notes (PubMed, arXiv, and MIMIC-III) using DeBERTa-v3, PubMedBERT, and BioELECTRA backbones. This is followed by task-specific fine-tuning with LoRA, which updates less than 1.5% of model parameters. We evaluate our models on 12 established biomedical NER benchmarks spanning chemicals, diseases, genes, and species. OpenMed NER achieves new state-of-the-art micro-F1 scores on 10 of these 12 datasets, with substantial gains across diverse entity types. Our models advance the state-of-the-art on foundational disease and chemical benchmarks (e.g., BC5CDR-Disease, +2.70 pp), while delivering even larger improvements of over 5.3 and 9.7 percentage points on more specialized gene and clinical cell line corpora. This work demonstrates that strategically adapted open-source models can surpass closed-source solutions. This performance is achieved with remarkable efficiency: training completes in under 12 hours on a single GPU with a low carbon footprint (< 1.2 kg CO2e), producing permissively licensed, open-source checkpoints designed to help practitioners facilitate compliance with emerging data protection and AI regulations, such as the EU AI Act.

  • 1 authors
·
Aug 3 4

LEMUR Neural Network Dataset: Towards Seamless AutoML

Neural networks are fundamental in artificial intelligence, driving progress in computer vision and natural language processing. High-quality datasets are crucial for their development, and there is growing interest in datasets composed of neural networks themselves to support benchmarking, automated machine learning (AutoML), and model analysis. We introduce LEMUR, an open source dataset of neural network models with well-structured code for diverse architectures across tasks such as object detection, image classification, segmentation, and natural language processing. LEMUR is primarily designed to provide a rich source of structured model representations and associated performance data, enabling the fine-tuning of large language models for AutoML applications. Leveraging Python and PyTorch, LEMUR enables seamless extension to new datasets and models while maintaining consistency. It integrates an Optuna-powered framework for evaluation, hyperparameter optimization, statistical analysis, and graphical insights. LEMUR VR extension enables the seamless deployment of models in virtual reality, optimizing their performance on resource-constrained devices. Providing tools for model evaluation, preprocessing, and database management, LEMUR supports researchers and practitioners in developing, testing, and analyzing neural networks. It offers an API that delivers comprehensive information about neural network models and their complete performance statistics with a single request, which can be used in experiments with code-generating large language models. The LEMUR and its plugins are accessible as open source projects under the MIT license at https://github.com/ABrain-One/nn-dataset, https://github.com/ABrain-One/nn-plots and https://github.com/ABrain-One/nn-vr.

  • 10 authors
·
Apr 14

Single and Multi-Hop Question-Answering Datasets for Reticular Chemistry with GPT-4-Turbo

The rapid advancement in artificial intelligence and natural language processing has led to the development of large-scale datasets aimed at benchmarking the performance of machine learning models. Herein, we introduce 'RetChemQA,' a comprehensive benchmark dataset designed to evaluate the capabilities of such models in the domain of reticular chemistry. This dataset includes both single-hop and multi-hop question-answer pairs, encompassing approximately 45,000 Q&As for each type. The questions have been extracted from an extensive corpus of literature containing about 2,530 research papers from publishers including NAS, ACS, RSC, Elsevier, and Nature Publishing Group, among others. The dataset has been generated using OpenAI's GPT-4 Turbo, a cutting-edge model known for its exceptional language understanding and generation capabilities. In addition to the Q&A dataset, we also release a dataset of synthesis conditions extracted from the corpus of literature used in this study. The aim of RetChemQA is to provide a robust platform for the development and evaluation of advanced machine learning algorithms, particularly for the reticular chemistry community. The dataset is structured to reflect the complexities and nuances of real-world scientific discourse, thereby enabling nuanced performance assessments across a variety of tasks. The dataset is available at the following link: https://github.com/nakulrampal/RetChemQA

  • 14 authors
·
May 3, 2024

NER4all or Context is All You Need: Using LLMs for low-effort, high-performance NER on historical texts. A humanities informed approach

Named entity recognition (NER) is a core task for historical research in automatically establishing all references to people, places, events and the like. Yet, do to the high linguistic and genre diversity of sources, only limited canonisation of spellings, the level of required historical domain knowledge, and the scarcity of annotated training data, established approaches to natural language processing (NLP) have been both extremely expensive and yielded only unsatisfactory results in terms of recall and precision. Our paper introduces a new approach. We demonstrate how readily-available, state-of-the-art LLMs significantly outperform two leading NLP frameworks, spaCy and flair, for NER in historical documents by seven to twentytwo percent higher F1-Scores. Our ablation study shows how providing historical context to the task and a bit of persona modelling that turns focus away from a purely linguistic approach are core to a successful prompting strategy. We also demonstrate that, contrary to our expectations, providing increasing numbers of examples in few-shot approaches does not improve recall or precision below a threshold of 16-shot. In consequence, our approach democratises access to NER for all historians by removing the barrier of scripting languages and computational skills required for established NLP tools and instead leveraging natural language prompts and consumer-grade tools and frontends.

Question Answering over Electronic Devices: A New Benchmark Dataset and a Multi-Task Learning based QA Framework

Answering questions asked from instructional corpora such as E-manuals, recipe books, etc., has been far less studied than open-domain factoid context-based question answering. This can be primarily attributed to the absence of standard benchmark datasets. In this paper we meticulously create a large amount of data connected with E-manuals and develop suitable algorithm to exploit it. We collect E-Manual Corpus, a huge corpus of 307,957 E-manuals and pretrain RoBERTa on this large corpus. We create various benchmark QA datasets which include question answer pairs curated by experts based upon two E-manuals, real user questions from Community Question Answering Forum pertaining to E-manuals etc. We introduce EMQAP (E-Manual Question Answering Pipeline) that answers questions pertaining to electronics devices. Built upon the pretrained RoBERTa, it harbors a supervised multi-task learning framework which efficiently performs the dual tasks of identifying the section in the E-manual where the answer can be found and the exact answer span within that section. For E-Manual annotated question-answer pairs, we show an improvement of about 40% in ROUGE-L F1 scores over the most competitive baseline. We perform a detailed ablation study and establish the versatility of EMQAP across different circumstances. The code and datasets are shared at https://github.com/abhi1nandy2/EMNLP-2021-Findings, and the corresponding project website is https://sites.google.com/view/emanualqa/home.

  • 6 authors
·
Sep 13, 2021

A Massive Scale Semantic Similarity Dataset of Historical English

A diversity of tasks use language models trained on semantic similarity data. While there are a variety of datasets that capture semantic similarity, they are either constructed from modern web data or are relatively small datasets created in the past decade by human annotators. This study utilizes a novel source, newly digitized articles from off-copyright, local U.S. newspapers, to assemble a massive-scale semantic similarity dataset spanning 70 years from 1920 to 1989 and containing nearly 400M positive semantic similarity pairs. Historically, around half of articles in U.S. local newspapers came from newswires like the Associated Press. While local papers reproduced articles from the newswire, they wrote their own headlines, which form abstractive summaries of the associated articles. We associate articles and their headlines by exploiting document layouts and language understanding. We then use deep neural methods to detect which articles are from the same underlying source, in the presence of substantial noise and abridgement. The headlines of reproduced articles form positive semantic similarity pairs. The resulting publicly available HEADLINES dataset is significantly larger than most existing semantic similarity datasets and covers a much longer span of time. It will facilitate the application of contrastively trained semantic similarity models to a variety of tasks, including the study of semantic change across space and time.

  • 2 authors
·
Jun 30, 2023

MMSci: A Multimodal Multi-Discipline Dataset for PhD-Level Scientific Comprehension

The rapid advancement of Large Language Models (LLMs) and Large Multimodal Models (LMMs) has heightened the demand for AI-based scientific assistants capable of understanding scientific articles and figures. Despite progress, there remains a significant gap in evaluating models' comprehension of professional, graduate-level, and even PhD-level scientific content. Current datasets and benchmarks primarily focus on relatively simple scientific tasks and figures, lacking comprehensive assessments across diverse advanced scientific disciplines. To bridge this gap, we collected a multimodal, multidisciplinary dataset from open-access scientific articles published in Nature Communications journals. This dataset spans 72 scientific disciplines, ensuring both diversity and quality. We created benchmarks with various tasks and settings to comprehensively evaluate LMMs' capabilities in understanding scientific figures and content. Our evaluation revealed that these tasks are highly challenging: many open-source models struggled significantly, and even GPT-4V and GPT-4o faced difficulties. We also explored using our dataset as training resources by constructing visual instruction-following data, enabling the 7B LLaVA model to achieve performance comparable to GPT-4V/o on our benchmark. Additionally, we investigated the use of our interleaved article texts and figure images for pre-training LMMs, resulting in improvements on the material generation task. The source dataset, including articles, figures, constructed benchmarks, and visual instruction-following data, is open-sourced.

  • 14 authors
·
Jul 5, 2024

Newswire: A Large-Scale Structured Database of a Century of Historical News

In the U.S. historically, local newspapers drew their content largely from newswires like the Associated Press. Historians argue that newswires played a pivotal role in creating a national identity and shared understanding of the world, but there is no comprehensive archive of the content sent over newswires. We reconstruct such an archive by applying a customized deep learning pipeline to hundreds of terabytes of raw image scans from thousands of local newspapers. The resulting dataset contains 2.7 million unique public domain U.S. newswire articles, written between 1878 and 1977. Locations in these articles are georeferenced, topics are tagged using customized neural topic classification, named entities are recognized, and individuals are disambiguated to Wikipedia using a novel entity disambiguation model. To construct the Newswire dataset, we first recognize newspaper layouts and transcribe around 138 millions structured article texts from raw image scans. We then use a customized neural bi-encoder model to de-duplicate reproduced articles, in the presence of considerable abridgement and noise, quantifying how widely each article was reproduced. A text classifier is used to ensure that we only include newswire articles, which historically are in the public domain. The structured data that accompany the texts provide rich information about the who (disambiguated individuals), what (topics), and where (georeferencing) of the news that millions of Americans read over the course of a century. We also include Library of Congress metadata information about the newspapers that ran the articles on their front pages. The Newswire dataset is useful both for large language modeling - expanding training data beyond what is available from modern web texts - and for studying a diversity of questions in computational linguistics, social science, and the digital humanities.

  • 4 authors
·
Jun 13, 2024

UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity Recognition

Large language models (LLMs) have demonstrated remarkable generalizability, such as understanding arbitrary entities and relations. Instruction tuning has proven effective for distilling LLMs into more cost-efficient models such as Alpaca and Vicuna. Yet such student models still trail the original LLMs by large margins in downstream applications. In this paper, we explore targeted distillation with mission-focused instruction tuning to train student models that can excel in a broad application class such as open information extraction. Using named entity recognition (NER) for case study, we show how ChatGPT can be distilled into much smaller UniversalNER models for open NER. For evaluation, we assemble the largest NER benchmark to date, comprising 43 datasets across 9 diverse domains such as biomedicine, programming, social media, law, finance. Without using any direct supervision, UniversalNER attains remarkable NER accuracy across tens of thousands of entity types, outperforming general instruction-tuned models such as Alpaca and Vicuna by over 30 absolute F1 points in average. With a tiny fraction of parameters, UniversalNER not only acquires ChatGPT's capability in recognizing arbitrary entity types, but also outperforms its NER accuracy by 7-9 absolute F1 points in average. Remarkably, UniversalNER even outperforms by a large margin state-of-the-art multi-task instruction-tuned systems such as InstructUIE, which uses supervised NER examples. We also conduct thorough ablation studies to assess the impact of various components in our distillation approach. We will release the distillation recipe, data, and UniversalNER models to facilitate future research on targeted distillation.

  • 5 authors
·
Aug 6, 2023 2

A Vietnamese Dataset for Evaluating Machine Reading Comprehension

Over 97 million people speak Vietnamese as their native language in the world. However, there are few research studies on machine reading comprehension (MRC) for Vietnamese, the task of understanding a text and answering questions related to it. Due to the lack of benchmark datasets for Vietnamese, we present the Vietnamese Question Answering Dataset (UIT-ViQuAD), a new dataset for the low-resource language as Vietnamese to evaluate MRC models. This dataset comprises over 23,000 human-generated question-answer pairs based on 5,109 passages of 174 Vietnamese articles from Wikipedia. In particular, we propose a new process of dataset creation for Vietnamese MRC. Our in-depth analyses illustrate that our dataset requires abilities beyond simple reasoning like word matching and demands single-sentence and multiple-sentence inferences. Besides, we conduct experiments on state-of-the-art MRC methods for English and Chinese as the first experimental models on UIT-ViQuAD. We also estimate human performance on the dataset and compare it to the experimental results of powerful machine learning models. As a result, the substantial differences between human performance and the best model performance on the dataset indicate that improvements can be made on UIT-ViQuAD in future research. Our dataset is freely available on our website to encourage the research community to overcome challenges in Vietnamese MRC.

  • 4 authors
·
Sep 30, 2020