Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCan I Trust Your Answer? Visually Grounded Video Question Answering
We study visually grounded VideoQA in response to the emerging trends of utilizing pretraining techniques for video-language understanding. Specifically, by forcing vision-language models (VLMs) to answer questions and simultaneously provide visual evidence, we seek to ascertain the extent to which the predictions of such techniques are genuinely anchored in relevant video content, versus spurious correlations from language or irrelevant visual context. Towards this, we construct NExT-GQA -- an extension of NExT-QA with 10.5K temporal grounding (or location) labels tied to the original QA pairs. With NExT-GQA, we scrutinize a series of state-of-the-art VLMs. Through post-hoc attention analysis, we find that these models are extremely weak in substantiating the answers despite their strong QA performance. This exposes the limitation of current VLMs in making reliable predictions. As a remedy, we further explore and propose a grounded-QA method via Gaussian mask optimization and cross-modal learning. Experiments with different backbones demonstrate that this grounding mechanism improves both grounding and QA. With these efforts, we aim to push towards trustworthy VLMs in VQA systems. Our dataset and code are available at https://github.com/doc-doc/NExT-GQA.
NExT-QA:Next Phase of Question-Answering to Explaining Temporal Actions
We introduce NExT-QA, a rigorously designed video question answering (VideoQA) benchmark to advance video understanding from describing to explaining the temporal actions. Based on the dataset, we set up multi-choice and open-ended QA tasks targeting causal action reasoning, temporal action reasoning, and common scene comprehension. Through extensive analysis of baselines and established VideoQA techniques, we find that top-performing methods excel at shallow scene descriptions but are weak in causal and temporal action reasoning. Furthermore, the models that are effective on multi-choice QA, when adapted to open-ended QA, still struggle in generalizing the answers. This raises doubt on the ability of these models to reason and highlights possibilities for improvement. With detailed results for different question types and heuristic observations for future works, we hope NExT-QA will guide the next generation of VQA research to go beyond superficial scene description towards a deeper understanding of videos. (The dataset and related resources are available at https://github.com/doc-doc/NExT-QA.git)
LeAdQA: LLM-Driven Context-Aware Temporal Grounding for Video Question Answering
Video Question Answering (VideoQA) requires identifying sparse critical moments in long videos and reasoning about their causal relationships to answer semantically complex questions. While recent advances in multimodal learning have improved alignment and fusion, current approaches remain limited by two prevalent but fundamentally flawed strategies: (1) task-agnostic sampling indiscriminately processes all frames, overwhelming key events with irrelevant content; and (2) heuristic retrieval captures superficial patterns but misses causal-temporal structures needed for complex reasoning. To address these challenges, we introduce LeAdQA, an innovative approach that bridges these gaps through synergizing causal-aware query refinement with fine-grained visual grounding. Our method first leverages LLMs to reformulate question-option pairs, resolving causal ambiguities and sharpening temporal focus. These refined queries subsequently direct a temporal grounding model to precisely retrieve the most salient segments, complemented by an adaptive fusion mechanism dynamically integrating the evidence to maximize relevance. The integrated visual-textual cues are then processed by an MLLM to generate accurate, contextually-grounded answers. Experiments on NExT-QA, IntentQA, and NExT-GQA demonstrate that our method's precise visual grounding substantially enhances the understanding of video-question relationships, achieving state-of-the-art (SOTA) performance on complex reasoning tasks while maintaining computational efficiency.
Discovering Spatio-Temporal Rationales for Video Question Answering
This paper strives to solve complex video question answering (VideoQA) which features long video containing multiple objects and events at different time. To tackle the challenge, we highlight the importance of identifying question-critical temporal moments and spatial objects from the vast amount of video content. Towards this, we propose a Spatio-Temporal Rationalization (STR), a differentiable selection module that adaptively collects question-critical moments and objects using cross-modal interaction. The discovered video moments and objects are then served as grounded rationales to support answer reasoning. Based on STR, we further propose TranSTR, a Transformer-style neural network architecture that takes STR as the core and additionally underscores a novel answer interaction mechanism to coordinate STR for answer decoding. Experiments on four datasets show that TranSTR achieves new state-of-the-art (SoTA). Especially, on NExT-QA and Causal-VidQA which feature complex VideoQA, it significantly surpasses the previous SoTA by 5.8\% and 6.8\%, respectively. We then conduct extensive studies to verify the importance of STR as well as the proposed answer interaction mechanism. With the success of TranSTR and our comprehensive analysis, we hope this work can spark more future efforts in complex VideoQA. Code will be released at https://github.com/yl3800/TranSTR.
Vamos: Versatile Action Models for Video Understanding
What makes good video representations for video understanding, such as anticipating future activities, or answering video-conditioned questions? While earlier approaches focus on end-to-end learning directly from video pixels, we propose to revisit text-based representations, such as discrete action labels, or free-form video captions, which are interpretable and can be directly consumed by large language models (LLMs). Intuitively, different video understanding tasks may require representations that are complementary and at different granularities. To this end, we propose versatile action models (Vamos), a learning framework powered by a large language model as the "reasoner", and can flexibly leverage visual embeddings, action labels, and free-form descriptions extracted from videos as its input. We evaluate Vamos on four complementary video understanding benchmarks, Ego4D, Next-QA, IntentQA, and EgoSchema, on its capability to model temporal dynamics, encode visual history, and perform reasoning. Surprisingly, we observe that text-based representations consistently achieve competitive performance on all benchmarks, and that visual embeddings provide marginal or no performance improvement, demonstrating the effectiveness of text-based video representation in the LLM era. We perform extensive ablation study and qualitative analysis to support our observations, and achieve state-of-the-art performance on three benchmarks.
TGIF-QA: Toward Spatio-Temporal Reasoning in Visual Question Answering
Vision and language understanding has emerged as a subject undergoing intense study in Artificial Intelligence. Among many tasks in this line of research, visual question answering (VQA) has been one of the most successful ones, where the goal is to learn a model that understands visual content at region-level details and finds their associations with pairs of questions and answers in the natural language form. Despite the rapid progress in the past few years, most existing work in VQA have focused primarily on images. In this paper, we focus on extending VQA to the video domain and contribute to the literature in three important ways. First, we propose three new tasks designed specifically for video VQA, which require spatio-temporal reasoning from videos to answer questions correctly. Next, we introduce a new large-scale dataset for video VQA named TGIF-QA that extends existing VQA work with our new tasks. Finally, we propose a dual-LSTM based approach with both spatial and temporal attention, and show its effectiveness over conventional VQA techniques through empirical evaluations.
Time to Revist Exact Match
Temporal question answering is an established method for evaluating temporal reasoning in large language models. Expected answers are often numeric (e.g., dates or durations), yet model responses are evaluated like regular text with exact match (EM), unable to distinguish small from large errors. In this investigative work, we frame temporal question answering as a numerical estimation task to assess the shortcomings of EM. We introduce TempAnswerQA, a benchmark distilled from Test of Time and TempTabQA, where all questions require a numerical, temporal answer, allowing us to evaluate models beyond EM. We use the forecasting metrics symmetric mean absolute percentage error (sMAPE) and mean absolute scaled error (MASE). With sMAPE, we find that error size and EM are decoupled. Models with low EM still have low sMAPE (both ~20%), and some models have high sMAPE despite high EM. Scaling errors by the deviation of the ground truth data with MASE reshuffles model rankings compared to EM, revealing gaps in models' understanding of temporal domain knowledge, especially when trained with synthetic data. Lastly, the models' most frequent error is to deviate by only pm1 from the ground truth. sMAPE and MASE, unlike EM, adequately weight these errors. Our findings underscore the need for specialised metrics for temporal QA tasks. Code and data are available on https://github.com/aauss/temporal-answer-qa.
ITFormer: Bridging Time Series and Natural Language for Multi-Modal QA with Large-Scale Multitask Dataset
Time-series data are critical in diverse applications, such as industrial monitoring, medical diagnostics, and climate research. However, effectively integrating these high-dimensional temporal signals with natural language for dynamic, interactive tasks remains a significant challenge. To address this, we introduce the Time-Series Question Answering (Time-Series QA) task and release EngineMT-QA, the first large-scale, multi-task, temporal-textual QA dataset designed to capture complex interactions between time-series signals and natural language. Building on this resource, we propose the Instruct Time Transformer (ITFormer), a novel framework that bridges time-series encoders with frozen large language models (LLMs). ITFormer effectively extracts, aligns, and fuses temporal and textual features, achieving a strong improvement in QA accuracy over strong baselines with fewer than 1\% additional trainable parameters. By combining computational efficiency with robust cross-modal modeling, our work establishes a adaptable paradigm for integrating temporal data with natural language, paving the way for new research and applications in multi-modal AI. More details about the project, including datasets and code, are available at: https://pandalin98.github.io/itformer_site/
A Dataset for Answering Time-Sensitive Questions
Time is an important dimension in our physical world. Lots of facts can evolve with respect to time. For example, the U.S. President might change every four years. Therefore, it is important to consider the time dimension and empower the existing QA models to reason over time. However, the existing QA datasets contain rather few time-sensitive questions, hence not suitable for diagnosing or benchmarking the model's temporal reasoning capability. In order to promote research in this direction, we propose to construct a time-sensitive QA dataset. The dataset is constructed by 1) mining time-evolving facts from WikiData and aligning them to their corresponding Wikipedia page, 2) employing crowd workers to verify and calibrate these noisy facts, 3) generating question-answer pairs based on the annotated time-sensitive facts. Our dataset poses challenges in the aspect of both temporal understanding and temporal reasoning. We evaluate different SoTA long-document QA systems like BigBird and FiD on our dataset. The best-performing model FiD can only achieve 46\% accuracy, still far behind the human performance of 87\%. We demonstrate that these models are still lacking the ability to perform consistent temporal reasoning. Therefore, we believe that our dataset could serve as a benchmark to develop NLP models more sensitive to temporal shifts. The dataset and code are released in~https://github.com/wenhuchen/Time-Sensitive-QA.
Towards Benchmarking and Improving the Temporal Reasoning Capability of Large Language Models
Reasoning about time is of fundamental importance. Many facts are time-dependent. For example, athletes change teams from time to time, and different government officials are elected periodically. Previous time-dependent question answering (QA) datasets tend to be biased in either their coverage of time spans or question types. In this paper, we introduce a comprehensive probing dataset \tempreason to evaluate the temporal reasoning capability of large language models. Our dataset includes questions of three temporal reasoning levels. In addition, we also propose a novel learning framework to improve the temporal reasoning capability of large language models, based on temporal span extraction and time-sensitive reinforcement learning. We conducted experiments in closed book QA, open book QA, and reasoning QA settings and demonstrated the effectiveness of our approach. Our code and data are released on https://github.com/DAMO-NLP-SG/TempReason.
RTime-QA: A Benchmark for Atomic Temporal Event Understanding in Large Multi-modal Models
Understanding accurate atomic temporal event is essential for video comprehension. However, current video-language benchmarks often fall short to evaluate Large Multi-modal Models' (LMMs) temporal event understanding capabilities, as they can be effectively addressed using image-language models. In this paper, we introduce RTime-QA, a novel benchmark specifically designed to assess the atomic temporal event understanding ability of LMMs. RTime-QA comprises 822 high-quality, carefully-curated video-text questions, each meticulously annotated by human experts. Each question features a video depicting an atomic temporal event, paired with both correct answers and temporal negative descriptions, specifically designed to evaluate temporal understanding. To advance LMMs' temporal event understanding ability, we further introduce RTime-IT, a 14k instruction-tuning dataset that employs a similar annotation process as RTime-QA. Extensive experimental analysis demonstrates that RTime-QA presents a significant challenge for LMMs: the state-of-the-art model Qwen2-VL achieves only 34.6 on strict-ACC metric, substantially lagging behind human performance. Furthermore, our experiments reveal that RTime-IT effectively enhance LMMs' capacity in temporal understanding. By fine-tuning on RTime-IT, our Qwen2-VL achieves 65.9 on RTime-QA.
UnSeenTimeQA: Time-Sensitive Question-Answering Beyond LLMs' Memorization
This paper introduces UnSeenTimeQA, a novel time-sensitive question-answering (TSQA) benchmark that diverges from traditional TSQA benchmarks by avoiding factual and web-searchable queries. We present a series of time-sensitive event scenarios decoupled from real-world factual information. It requires large language models (LLMs) to engage in genuine temporal reasoning, disassociating from the knowledge acquired during the pre-training phase. Our evaluation of six open-source LLMs (ranging from 2B to 70B in size) and three closed-source LLMs reveal that the questions from the UnSeenTimeQA present substantial challenges. This indicates the models' difficulties in handling complex temporal reasoning scenarios. Additionally, we present several analyses shedding light on the models' performance in answering time-sensitive questions.
RAG Meets Temporal Graphs: Time-Sensitive Modeling and Retrieval for Evolving Knowledge
Knowledge is inherently time-sensitive and continuously evolves over time. Although current Retrieval-Augmented Generation (RAG) systems enrich LLMs with external knowledge, they largely ignore this temporal nature. This raises two challenges for RAG. First, current RAG methods lack effective time-aware representations. Same facts of different time are difficult to distinguish with vector embeddings or conventional knowledge graphs. Second, most RAG evaluations assume a static corpus, leaving a blind spot regarding update costs and retrieval stability as knowledge evolves. To make RAG time-aware, we propose Temporal GraphRAG (TG-RAG), which models external corpora as a bi-level temporal graph consisting of a temporal knowledge graph with timestamped relations and a hierarchical time graph. Multi-granularity temporal summaries are generated for each time node to capture both key events and broader trends at that time. The design supports incremental updates by extracting new temporal facts from the incoming corpus and merging them into the existing graph. The temporal graph explicitly represents identical facts at different times as distinct edges to avoid ambiguity, and the time hierarchy graph allows only generating reports for new leaf time nodes and their ancestors, ensuring effective and efficient updates. During inference, TG-RAG dynamically retrieves a subgraph within the temporal and semantic scope of the query, enabling precise evidence gathering. Moreover, we introduce ECT-QA, a time-sensitive question-answering dataset featuring both specific and abstract queries, along with a comprehensive evaluation protocol designed to assess incremental update capabilities of RAG systems. Extensive experiments show that TG-RAG significantly outperforms existing baselines, demonstrating the effectiveness of our method in handling temporal knowledge and incremental updates.
MemoTime: Memory-Augmented Temporal Knowledge Graph Enhanced Large Language Model Reasoning
Large Language Models (LLMs) have achieved impressive reasoning abilities, but struggle with temporal understanding, especially when questions involve multiple entities, compound operators, and evolving event sequences. Temporal Knowledge Graphs (TKGs), which capture vast amounts of temporal facts in a structured format, offer a reliable source for temporal reasoning. However, existing TKG-based LLM reasoning methods still struggle with four major challenges: maintaining temporal faithfulness in multi-hop reasoning, achieving multi-entity temporal synchronization, adapting retrieval to diverse temporal operators, and reusing prior reasoning experience for stability and efficiency. To address these issues, we propose MemoTime, a memory-augmented temporal knowledge graph framework that enhances LLM reasoning through structured grounding, recursive reasoning, and continual experience learning. MemoTime decomposes complex temporal questions into a hierarchical Tree of Time, enabling operator-aware reasoning that enforces monotonic timestamps and co-constrains multiple entities under unified temporal bounds. A dynamic evidence retrieval layer adaptively selects operator-specific retrieval strategies, while a self-evolving experience memory stores verified reasoning traces, toolkit decisions, and sub-question embeddings for cross-type reuse. Comprehensive experiments on multiple temporal QA benchmarks show that MemoTime achieves overall state-of-the-art results, outperforming the strong baseline by up to 24.0%. Furthermore, MemoTime enables smaller models (e.g., Qwen3-4B) to achieve reasoning performance comparable to that of GPT-4-Turbo.
TIME: A Multi-level Benchmark for Temporal Reasoning of LLMs in Real-World Scenarios
Temporal reasoning is pivotal for Large Language Models (LLMs) to comprehend the real world. However, existing works neglect the real-world challenges for temporal reasoning: (1) intensive temporal information, (2) fast-changing event dynamics, and (3) complex temporal dependencies in social interactions. To bridge this gap, we propose a multi-level benchmark TIME, designed for temporal reasoning in real-world scenarios. TIME consists of 38,522 QA pairs, covering 3 levels with 11 fine-grained sub-tasks. This benchmark encompasses 3 sub-datasets reflecting different real-world challenges: TIME-Wiki, TIME-News, and TIME-Dial. We conduct extensive experiments on reasoning models and non-reasoning models. And we conducted an in-depth analysis of temporal reasoning performance across diverse real-world scenarios and tasks, and summarized the impact of test-time scaling on temporal reasoning capabilities. Additionally, we release TIME-Lite, a human-annotated subset to foster future research and standardized evaluation in temporal reasoning. The code is available at https://github.com/sylvain-wei/TIME , and the dataset is available at https://huggingface.co/datasets/SylvainWei/TIME .
TimelineQA: A Benchmark for Question Answering over Timelines
Lifelogs are descriptions of experiences that a person had during their life. Lifelogs are created by fusing data from the multitude of digital services, such as online photos, maps, shopping and content streaming services. Question answering over lifelogs can offer personal assistants a critical resource when they try to provide advice in context. However, obtaining answers to questions over lifelogs is beyond the current state of the art of question answering techniques for a variety of reasons, the most pronounced of which is that lifelogs combine free text with some degree of structure such as temporal and geographical information. We create and publicly release TimelineQA1, a benchmark for accelerating progress on querying lifelogs. TimelineQA generates lifelogs of imaginary people. The episodes in the lifelog range from major life episodes such as high school graduation to those that occur on a daily basis such as going for a run. We describe a set of experiments on TimelineQA with several state-of-the-art QA models. Our experiments reveal that for atomic queries, an extractive QA system significantly out-performs a state-of-the-art retrieval-augmented QA system. For multi-hop queries involving aggregates, we show that the best result is obtained with a state-of-the-art table QA technique, assuming the ground truth set of episodes for deriving the answer is available.
RealTime QA: What's the Answer Right Now?
We introduce REALTIME QA, a dynamic question answering (QA) platform that announces questions and evaluates systems on a regular basis (weekly in this version). REALTIME QA inquires about the current world, and QA systems need to answer questions about novel events or information. It therefore challenges static, conventional assumptions in open-domain QA datasets and pursues instantaneous applications. We build strong baseline models upon large pretrained language models, including GPT-3 and T5. Our benchmark is an ongoing effort, and this paper presents real-time evaluation results over the past year. Our experimental results show that GPT-3 can often properly update its generation results, based on newly-retrieved documents, highlighting the importance of up-to-date information retrieval. Nonetheless, we find that GPT-3 tends to return outdated answers when retrieved documents do not provide sufficient information to find an answer. This suggests an important avenue for future research: can an open-domain QA system identify such unanswerable cases and communicate with the user or even the retrieval module to modify the retrieval results? We hope that REALTIME QA will spur progress in instantaneous applications of question answering and beyond.
A Question Answering Dataset for Temporal-Sensitive Retrieval-Augmented Generation
We introduce ChronoQA, a large-scale benchmark dataset for Chinese question answering, specifically designed to evaluate temporal reasoning in Retrieval-Augmented Generation (RAG) systems. ChronoQA is constructed from over 300,000 news articles published between 2019 and 2024, and contains 5,176 high-quality questions covering absolute, aggregate, and relative temporal types with both explicit and implicit time expressions. The dataset supports both single- and multi-document scenarios, reflecting the real-world requirements for temporal alignment and logical consistency. ChronoQA features comprehensive structural annotations and has undergone multi-stage validation, including rule-based, LLM-based, and human evaluation, to ensure data quality. By providing a dynamic, reliable, and scalable resource, ChronoQA enables structured evaluation across a wide range of temporal tasks, and serves as a robust benchmark for advancing time-sensitive retrieval-augmented question answering systems.
Complex Temporal Question Answering on Knowledge Graphs
Question answering over knowledge graphs (KG-QA) is a vital topic in IR. Questions with temporal intent are a special class of practical importance, but have not received much attention in research. This work presents EXAQT, the first end-to-end system for answering complex temporal questions that have multiple entities and predicates, and associated temporal conditions. EXAQT answers natural language questions over KGs in two stages, one geared towards high recall, the other towards precision at top ranks. The first step computes question-relevant compact subgraphs within the KG, and judiciously enhances them with pertinent temporal facts, using Group Steiner Trees and fine-tuned BERT models. The second step constructs relational graph convolutional networks (R-GCNs) from the first step's output, and enhances the R-GCNs with time-aware entity embeddings and attention over temporal relations. We evaluate EXAQT on TimeQuestions, a large dataset of 16k temporal questions we compiled from a variety of general purpose KG-QA benchmarks. Results show that EXAQT outperforms three state-of-the-art systems for answering complex questions over KGs, thereby justifying specialized treatment of temporal QA.
QuAnTS: Question Answering on Time Series
Text offers intuitive access to information. This can, in particular, complement the density of numerical time series, thereby allowing improved interactions with time series models to enhance accessibility and decision-making. While the creation of question-answering datasets and models has recently seen remarkable growth, most research focuses on question answering (QA) on vision and text, with time series receiving minute attention. To bridge this gap, we propose a challenging novel time series QA (TSQA) dataset, QuAnTS, for Question Answering on Time Series data. Specifically, we pose a wide variety of questions and answers about human motion in the form of tracked skeleton trajectories. We verify that the large-scale QuAnTS dataset is well-formed and comprehensive through extensive experiments. Thoroughly evaluating existing and newly proposed baselines then lays the groundwork for a deeper exploration of TSQA using QuAnTS. Additionally, we provide human performances as a key reference for gauging the practical usability of such models. We hope to encourage future research on interacting with time series models through text, enabling better decision-making and more transparent systems.
TemporalBench: Benchmarking Fine-grained Temporal Understanding for Multimodal Video Models
Understanding fine-grained temporal dynamics is crucial for multimodal video comprehension and generation. Due to the lack of fine-grained temporal annotations, existing video benchmarks mostly resemble static image benchmarks and are incompetent at evaluating models for temporal understanding. In this paper, we introduce TemporalBench, a new benchmark dedicated to evaluating fine-grained temporal understanding in videos. TemporalBench consists of ~10K video question-answer pairs, derived from ~2K high-quality human annotations detailing the temporal dynamics in video clips. As a result, our benchmark provides a unique testbed for evaluating various temporal understanding and reasoning abilities such as action frequency, motion magnitude, event order, etc. Moreover, it enables evaluations on various tasks like both video question answering and captioning, both short and long video understanding, as well as different models such as multimodal video embedding models and text generation models. Results show that state-of-the-art models like GPT-4o achieve only 38.5% question answering accuracy on TemporalBench, demonstrating a significant gap (~30%) between humans and AI in temporal understanding. Furthermore, we notice a critical pitfall for multi-choice QA where LLMs can detect the subtle changes in negative captions and find a centralized description as a cue for its prediction, where we propose Multiple Binary Accuracy (MBA) to correct such bias. We hope that TemporalBench can foster research on improving models' temporal reasoning capabilities. Both dataset and evaluation code will be made available.
Can Multimodal LLMs do Visual Temporal Understanding and Reasoning? The answer is No!
Multimodal Large Language Models (MLLMs) have achieved significant advancements in tasks like Visual Question Answering (VQA) by leveraging foundational Large Language Models (LLMs). However, their abilities in specific areas such as temporal understanding, which is crucial for comprehending real-world dynamics, remain underexplored. To address this, we propose a challenging evaluation benchmark named TemporalVQA, consisting of two parts: (1) Temporal Order Understanding and (2) Time-lapse Estimation. The first part requires MLLMs to determine the sequence of events by analyzing temporally consecutive video frames. The second part presents image pairs with varying time differences, framed as multiple-choice questions, asking MLLMs to estimate the time-lapse between images with options ranging from seconds to years. Our evaluations of advanced MLLMs, including models like GPT-4o and Gemini-1.5-Pro, reveal significant challenges: GPT-4o achieved only 43.8% average consistent accuracy in temporal order tasks and 70% in time-lapse estimation, with open-source models performing even less effectively. These findings underscore the limitations of current MLLMs in visual temporal understanding and reasoning, highlighting the need for further improvements in their temporal capabilities. Our dataset can be found at https://huggingface.co/datasets/fazliimam/temporal-vqa.
Self-Improvement Programming for Temporal Knowledge Graph Question Answering
Temporal Knowledge Graph Question Answering (TKGQA) aims to answer questions with temporal intent over Temporal Knowledge Graphs (TKGs). The core challenge of this task lies in understanding the complex semantic information regarding multiple types of time constraints (e.g., before, first) in questions. Existing end-to-end methods implicitly model the time constraints by learning time-aware embeddings of questions and candidate answers, which is far from understanding the question comprehensively. Motivated by semantic-parsing-based approaches that explicitly model constraints in questions by generating logical forms with symbolic operators, we design fundamental temporal operators for time constraints and introduce a novel self-improvement Programming method for TKGQA (Prog-TQA). Specifically, Prog-TQA leverages the in-context learning ability of Large Language Models (LLMs) to understand the combinatory time constraints in the questions and generate corresponding program drafts with a few examples given. Then, it aligns these drafts to TKGs with the linking module and subsequently executes them to generate the answers. To enhance the ability to understand questions, Prog-TQA is further equipped with a self-improvement strategy to effectively bootstrap LLMs using high-quality self-generated drafts. Extensive experiments demonstrate the superiority of the proposed Prog-TQA on MultiTQ and CronQuestions datasets, especially in the Hits@1 metric.
Question-Aware Gaussian Experts for Audio-Visual Question Answering
Audio-Visual Question Answering (AVQA) requires not only question-based multimodal reasoning but also precise temporal grounding to capture subtle dynamics for accurate prediction. However, existing methods mainly use question information implicitly, limiting focus on question-specific details. Furthermore, most studies rely on uniform frame sampling, which can miss key question-relevant frames. Although recent Top-K frame selection methods aim to address this, their discrete nature still overlooks fine-grained temporal details. This paper proposes QA-TIGER, a novel framework that explicitly incorporates question information and models continuous temporal dynamics. Our key idea is to use Gaussian-based modeling to adaptively focus on both consecutive and non-consecutive frames based on the question, while explicitly injecting question information and applying progressive refinement. We leverage a Mixture of Experts (MoE) to flexibly implement multiple Gaussian models, activating temporal experts specifically tailored to the question. Extensive experiments on multiple AVQA benchmarks show that QA-TIGER consistently achieves state-of-the-art performance. Code is available at https://aim-skku.github.io/QA-TIGER/
MenatQA: A New Dataset for Testing the Temporal Comprehension and Reasoning Abilities of Large Language Models
Large language models (LLMs) have shown nearly saturated performance on many natural language processing (NLP) tasks. As a result, it is natural for people to believe that LLMs have also mastered abilities such as time understanding and reasoning. However, research on the temporal sensitivity of LLMs has been insufficiently emphasized. To fill this gap, this paper constructs Multiple Sensitive Factors Time QA (MenatQA), which encompasses three temporal factors (scope factor, order factor, counterfactual factor) with total 2,853 samples for evaluating the time comprehension and reasoning abilities of LLMs. This paper tests current mainstream LLMs with different parameter sizes, ranging from billions to hundreds of billions. The results show most LLMs fall behind smaller temporal reasoning models with different degree on these factors. In specific, LLMs show a significant vulnerability to temporal biases and depend heavily on the temporal information provided in questions. Furthermore, this paper undertakes a preliminary investigation into potential improvement strategies by devising specific prompts and leveraging external tools. These approaches serve as valuable baselines or references for future research endeavors.
Time-MQA: Time Series Multi-Task Question Answering with Context Enhancement
Time series data are foundational in finance, healthcare, and energy domains. However, most existing methods and datasets remain focused on a narrow spectrum of tasks, such as forecasting or anomaly detection. To bridge this gap, we introduce Time Series Multi-Task Question Answering (Time-MQA), a unified framework that enables natural language queries across multiple time series tasks - numerical analytical tasks and open-ended question answering with reasoning. Central to Time-MQA is the TSQA dataset, a large-scale dataset containing sim200k question-answer pairs derived from diverse time series spanning environment, traffic, etc. This comprehensive resource covers various time series lengths and promotes robust model development. We further demonstrate how continually pre-training large language models (Mistral 7B, Llama-3 8B, and Qwen-2.5 7B) on the TSQA dataset enhanced time series reasoning capabilities, moving beyond mere numeric tasks and enabling more advanced and intuitive interactions with temporal data. The complete TSQA dataset, models, executable codes, user study questionnaires for evaluation, and results have all been open-sourced.
AssistGPT: A General Multi-modal Assistant that can Plan, Execute, Inspect, and Learn
Recent research on Large Language Models (LLMs) has led to remarkable advancements in general NLP AI assistants. Some studies have further explored the use of LLMs for planning and invoking models or APIs to address more general multi-modal user queries. Despite this progress, complex visual-based tasks still remain challenging due to the diverse nature of visual tasks. This diversity is reflected in two aspects: 1) Reasoning paths. For many real-life applications, it is hard to accurately decompose a query simply by examining the query itself. Planning based on the specific visual content and the results of each step is usually required. 2) Flexible inputs and intermediate results. Input forms could be flexible for in-the-wild cases, and involves not only a single image or video but a mixture of videos and images, e.g., a user-view image with some reference videos. Besides, a complex reasoning process will also generate diverse multimodal intermediate results, e.g., video narrations, segmented video clips, etc. To address such general cases, we propose a multi-modal AI assistant, AssistGPT, with an interleaved code and language reasoning approach called Plan, Execute, Inspect, and Learn (PEIL) to integrate LLMs with various tools. Specifically, the Planner is capable of using natural language to plan which tool in Executor should do next based on the current reasoning progress. Inspector is an efficient memory manager to assist the Planner to feed proper visual information into a specific tool. Finally, since the entire reasoning process is complex and flexible, a Learner is designed to enable the model to autonomously explore and discover the optimal solution. We conducted experiments on A-OKVQA and NExT-QA benchmarks, achieving state-of-the-art results. Moreover, showcases demonstrate the ability of our system to handle questions far more complex than those found in the benchmarks.
Will It Still Be True Tomorrow? Multilingual Evergreen Question Classification to Improve Trustworthy QA
Large Language Models (LLMs) often hallucinate in question answering (QA) tasks. A key yet underexplored factor contributing to this is the temporality of questions -- whether they are evergreen (answers remain stable over time) or mutable (answers change). In this work, we introduce EverGreenQA, the first multilingual QA dataset with evergreen labels, supporting both evaluation and training. Using EverGreenQA, we benchmark 12 modern LLMs to assess whether they encode question temporality explicitly (via verbalized judgments) or implicitly (via uncertainty signals). We also train EG-E5, a lightweight multilingual classifier that achieves SoTA performance on this task. Finally, we demonstrate the practical utility of evergreen classification across three applications: improving self-knowledge estimation, filtering QA datasets, and explaining GPT-4o retrieval behavior.
Time-R1: Towards Comprehensive Temporal Reasoning in LLMs
Large Language Models (LLMs) demonstrate impressive capabilities but lack robust temporal intelligence, struggling to integrate reasoning about the past with predictions and plausible generations of the future. Meanwhile, existing methods typically target isolated temporal skills, such as question answering about past events or basic forecasting, and exhibit poor generalization, particularly when dealing with events beyond their knowledge cutoff or requiring creative foresight. To address these limitations, we introduce Time-R1, the first framework to endow a moderate-sized (3B-parameter) LLM with comprehensive temporal abilities: understanding, prediction, and creative generation. Our approach features a novel three-stage development path; the first two constitute a reinforcement learning (RL) curriculum driven by a meticulously designed dynamic rule-based reward system. This framework progressively builds (1) foundational temporal understanding and logical event-time mappings from historical data, (2) future event prediction skills for events beyond its knowledge cutoff, and finally (3) enables remarkable generalization to creative future scenario generation without any fine-tuning. Strikingly, experiments demonstrate that Time-R1 outperforms models over 200 times larger, including the state-of-the-art 671B DeepSeek-R1, on highly challenging future event prediction and creative scenario generation benchmarks. This work provides strong evidence that thoughtfully engineered, progressive RL fine-tuning allows smaller, efficient models to achieve superior temporal performance, offering a practical and scalable path towards truly time-aware AI. To foster further research, we also release Time-Bench, a large-scale multi-task temporal reasoning dataset derived from 10 years of news data, and our series of Time-R1 checkpoints.
Fostering Video Reasoning via Next-Event Prediction
Next-token prediction serves as the foundational learning task enabling reasoning in LLMs. But what should the learning task be when aiming to equip MLLMs with temporal reasoning capabilities over video inputs? Existing tasks such as video question answering often rely on annotations from humans or much stronger MLLMs, while video captioning tends to entangle temporal reasoning with spatial information. To address this gap, we propose next-event prediction (NEP), a learning task that harnesses future video segments as a rich, self-supervised signal to foster temporal reasoning. We segment each video into past and future frames: the MLLM takes the past frames as input and predicts a summary of events derived from the future frames, thereby encouraging the model to reason temporally in order to complete the task. To support this task, we curate V1-33K, a dataset comprising 33,000 automatically extracted video segments spanning diverse real-world scenarios. We further explore a range of video instruction-tuning strategies to study their effects on temporal reasoning. To evaluate progress, we introduce FutureBench to assess coherence in predicting unseen future events. Experiments validate that NEP offers a scalable and effective training paradigm for fostering temporal reasoning in MLLMs.
Plan of Knowledge: Retrieval-Augmented Large Language Models for Temporal Knowledge Graph Question Answering
Temporal Knowledge Graph Question Answering (TKGQA) aims to answer time-sensitive questions by leveraging factual information from Temporal Knowledge Graphs (TKGs). While previous studies have employed pre-trained TKG embeddings or graph neural networks to inject temporal knowledge, they fail to fully understand the complex semantic information of time constraints. Recently, Large Language Models (LLMs) have shown remarkable progress, benefiting from their strong semantic understanding and reasoning generalization capabilities. However, their temporal reasoning ability remains limited. LLMs frequently suffer from hallucination and a lack of knowledge. To address these limitations, we propose the Plan of Knowledge framework with a contrastive temporal retriever, which is named PoK. Specifically, the proposed Plan of Knowledge module decomposes a complex temporal question into a sequence of sub-objectives from the pre-defined tools, serving as intermediate guidance for reasoning exploration. In parallel, we construct a Temporal Knowledge Store (TKS) with a contrastive retrieval framework, enabling the model to selectively retrieve semantically and temporally aligned facts from TKGs. By combining structured planning with temporal knowledge retrieval, PoK effectively enhances the interpretability and factual consistency of temporal reasoning. Extensive experiments on four benchmark TKGQA datasets demonstrate that PoK significantly improves the retrieval precision and reasoning accuracy of LLMs, surpassing the performance of the state-of-the-art TKGQA methods by 56.0% at most.
It's High Time: A Survey of Temporal Information Retrieval and Question Answering
Time plays a critical role in how information is generated, retrieved, and interpreted. In this survey, we provide a comprehensive overview of Temporal Information Retrieval and Temporal Question Answering, two research areas aimed at handling and understanding time-sensitive information. As the amount of time-stamped content from sources like news articles, web archives, and knowledge bases increases, systems must address challenges such as detecting temporal intent, normalizing time expressions, ordering events, and reasoning over evolving or ambiguous facts. These challenges are critical across many dynamic and time-sensitive domains, from news and encyclopedias to science, history, and social media. We review both traditional approaches and modern neural methods, including those that use transformer models and Large Language Models (LLMs). We also review recent advances in temporal language modeling, multi-hop reasoning, and retrieval-augmented generation (RAG), alongside benchmark datasets and evaluation strategies that test temporal robustness, recency awareness, and generalization.
MTPChat: A Multimodal Time-Aware Persona Dataset for Conversational Agents
Understanding temporal dynamics is critical for conversational agents, enabling effective content analysis and informed decision-making. However, time-aware datasets, particularly for persona-grounded conversations, are still limited, which narrows their scope and diminishes their complexity. To address this gap, we introduce MTPChat, a multimodal, time-aware persona dialogue dataset that integrates linguistic, visual, and temporal elements within dialogue and persona memory. Leveraging MTPChat, we propose two time-sensitive tasks: Temporal Next Response Prediction (TNRP) and Temporal Grounding Memory Prediction (TGMP), both designed to assess a model's ability to understand implicit temporal cues and dynamic interactions. Additionally, we present an innovative framework featuring an adaptive temporal module to effectively integrate multimodal streams and capture temporal dependencies. Experimental results validate the challenges posed by MTPChat and demonstrate the effectiveness of our framework in multimodal time-sensitive scenarios.
Back to the Future: Towards Explainable Temporal Reasoning with Large Language Models
Temporal reasoning is a crucial NLP task, providing a nuanced understanding of time-sensitive contexts within textual data. Although recent advancements in LLMs have demonstrated their potential in temporal reasoning, the predominant focus has been on tasks such as temporal expression and temporal relation extraction. These tasks are primarily designed for the extraction of direct and past temporal cues and to engage in simple reasoning processes. A significant gap remains when considering complex reasoning tasks such as event forecasting, which requires multi-step temporal reasoning on events and prediction on the future timestamp. Another notable limitation of existing methods is their incapability to provide an illustration of their reasoning process, hindering explainability. In this paper, we introduce the first task of explainable temporal reasoning, to predict an event's occurrence at a future timestamp based on context which requires multiple reasoning over multiple events, and subsequently provide a clear explanation for their prediction. Our task offers a comprehensive evaluation of both the LLMs' complex temporal reasoning ability, the future event prediction ability, and explainability-a critical attribute for AI applications. To support this task, we present the first multi-source instruction-tuning dataset of explainable temporal reasoning (ExpTime) with 26k derived from the temporal knowledge graph datasets and their temporal reasoning paths, using a novel knowledge-graph-instructed-generation strategy. Based on the dataset, we propose the first open-source LLM series TimeLlaMA based on the foundation LlaMA2, with the ability of instruction following for explainable temporal reasoning. We compare the performance of our method and a variety of LLMs, where our method achieves the state-of-the-art performance of temporal prediction and explanation.
TimeAudio: Bridging Temporal Gaps in Large Audio-Language Models
Recent Large Audio-Language Models (LALMs) exhibit impressive capabilities in understanding audio content for conversational QA tasks. However, these models struggle to accurately understand timestamps for temporal localization (e.g., Temporal Audio Grounding) and are restricted to short audio perception, leading to constrained capabilities on fine-grained tasks. We identify three key aspects that limit their temporal localization and long audio understanding: (i) timestamp representation, (ii) architecture, and (iii) data. To address this, we introduce TimeAudio, a novel method that empowers LALMs to connect their understanding of audio content with precise temporal perception. Specifically, we incorporate unique temporal markers to improve time-sensitive reasoning and apply an absolute time-aware encoding that explicitly grounds the acoustic features with absolute time information. Moreover, to achieve end-to-end long audio understanding, we introduce a segment-level token merging module to substantially reduce audio token redundancy and enhance the efficiency of information extraction. Due to the lack of suitable datasets and evaluation metrics, we consolidate existing audio datasets into a new dataset focused on temporal tasks and establish a series of metrics to evaluate the fine-grained performance. Evaluations show strong performance across a variety of fine-grained tasks, such as dense captioning, temporal grounding, and timeline speech summarization, demonstrating TimeAudio's robust temporal localization and reasoning capabilities.
Are LLMs Prescient? A Continuous Evaluation using Daily News as the Oracle
Many existing evaluation benchmarks for Large Language Models (LLMs) quickly become outdated due to the emergence of new models and training data. These benchmarks also fall short in assessing how LLM performance changes over time, as they consist of static questions without a temporal dimension. To address these limitations, we propose using future event prediction as a continuous evaluation method to assess LLMs' temporal generalization and forecasting abilities. Our benchmark, Daily Oracle, automatically generates question-answer (QA) pairs from daily news, challenging LLMs to predict "future" event outcomes. Our findings reveal that as pre-training data becomes outdated, LLM performance degrades over time. While Retrieval Augmented Generation (RAG) has the potential to enhance prediction accuracy, the performance degradation pattern persists, highlighting the need for continuous model updates.
TimeScope: Towards Task-Oriented Temporal Grounding In Long Videos
Identifying key moments in long videos is essential for downstream understanding and reasoning tasks. In this paper, we introduce a new problem, Taskoriented Temporal Grounding ToTG, which aims to localize time intervals containing the necessary information based on a task's natural description. Along with the definition, we also present ToTG Bench, a comprehensive benchmark for evaluating the performance on ToTG. ToTG is particularly challenging for traditional approaches due to their limited generalizability and difficulty in handling long videos. To address these challenges, we propose TimeScope, a novel framework built upon progressive reasoning. TimeScope first identifies a coarse-grained temporal scope in the long video that likely contains the key moments, and then refines this scope through finegrained moment partitioning. Additionally, we curate a highquality dataset, namely ToTG Pile, to enhance TimeScope's ability to perform progressive temporal grounding effectively. Extensive experiments demonstrate that TimeScope consistently outperforms both existing temporalgrounding methods and popular MLLMs across various settings, highlighting its effectiveness in addressing this new challenging problem.
Time Awareness in Large Language Models: Benchmarking Fact Recall Across Time
Who is the US President? The answer changes depending on when the question is asked. While large language models (LLMs) are evaluated on various reasoning tasks, they often miss a crucial dimension: time. In real-world scenarios, the correctness of answers is frequently tied to temporal context. In this paper, we introduce a novel dataset designed to rigorously test LLMs' ability to handle time-sensitive facts. Our benchmark offers a systematic way to measure how well LLMs align their knowledge with the correct time context, filling a key gap in current evaluation methods and offering a valuable tool for improving real-world applicability in future models.
Narrative-of-Thought: Improving Temporal Reasoning of Large Language Models via Recounted Narratives
Reasoning about time and temporal relations is an integral aspect of human cognition, essential for perceiving the world and navigating our experiences. Though large language models (LLMs) have demonstrated impressive performance in many reasoning tasks, temporal reasoning remains challenging due to its intrinsic complexity. In this work, we first study an essential task of temporal reasoning -- temporal graph generation, to unveil LLMs' inherent, global reasoning capabilities. We show that this task presents great challenges even for the most powerful LLMs, such as GPT-3.5/4. We also notice a significant performance gap by small models (<10B) that lag behind LLMs by 50%. Next, we study how to close this gap with a budget constraint, e.g., not using model finetuning. We propose a new prompting technique tailored for temporal reasoning, Narrative-of-Thought (NoT), that first converts the events set to a Python class, then prompts a small model to generate a temporally grounded narrative, guiding the final generation of a temporal graph. Extensive experiments showcase the efficacy of NoT in improving various metrics. Notably, NoT attains the highest F1 on the Schema-11 evaluation set, while securing an overall F1 on par with GPT-3.5. NoT also achieves the best structural similarity across the board, even compared with GPT-3.5/4. Our code is available at https://github.com/launchnlp/NoT.
ChronoSense: Exploring Temporal Understanding in Large Language Models with Time Intervals of Events
Large Language Models (LLMs) have achieved remarkable success in various NLP tasks, yet they still face significant challenges in reasoning and arithmetic. Temporal reasoning, a critical component of natural language understanding, has raised increasing research attention. However, comprehensive testing of Allen's interval relations (e.g., before, after, during) -- a fundamental framework for temporal relationships -- remains underexplored. To fill this gap, we present ChronoSense, a new benchmark for evaluating LLMs' temporal understanding. It includes 16 tasks, focusing on identifying the Allen relation between two temporal events and temporal arithmetic, using both abstract events and real-world data from Wikidata. We assess the performance of seven recent LLMs using this benchmark and the results indicate that models handle Allen relations, even symmetrical ones, quite differently. Moreover, the findings suggest that the models may rely on memorization to answer time-related questions. Overall, the models' low performance highlights the need for improved temporal understanding in LLMs and ChronoSense offers a robust framework for future research in this area. Our dataset and the source code are available at https://github.com/duyguislakoglu/chronosense.
Timo: Towards Better Temporal Reasoning for Language Models
Reasoning about time is essential for Large Language Models (LLMs) to understand the world. Previous works focus on solving specific tasks, primarily on time-sensitive question answering. While these methods have proven effective, they cannot generalize to a wider spectrum of temporal reasoning tasks. Therefore, we propose a crucial question: Can we build a universal framework to handle a variety of temporal reasoning tasks? To that end, we systematically study 38 temporal reasoning tasks. Based on the observation that 19 tasks are directly related to mathematics, we first leverage the available mathematical dataset to set a solid foundation for temporal reasoning. However, the in-depth study indicates that focusing solely on mathematical enhancement falls short of addressing pure temporal reasoning tasks. To mitigate this limitation, we propose a simple but effective self-critic temporal optimization method to enhance the model's temporal reasoning capabilities without sacrificing general task abilities. Finally, we develop Timo, a model designed to excel in temporal reasoning at the 7B and 13B scales. Notably, Timo outperforms the counterpart LLMs by 10.0 and 7.6 in average accuracy scores and achieves the new state-of-the-art (SOTA) performance of comparable size. Extensive experiments further validate our framework's effectiveness and its generalization across diverse temporal tasks. The code is available at https://github.com/zhaochen0110/Timo.
MUSEG: Reinforcing Video Temporal Understanding via Timestamp-Aware Multi-Segment Grounding
Video temporal understanding is crucial for multimodal large language models (MLLMs) to reason over events in videos. Despite recent advances in general video understanding, current MLLMs still struggle with fine-grained temporal reasoning. While reinforcement learning (RL) has been explored to address this issue recently, existing RL approaches remain limited in effectiveness. In this work, we propose MUSEG, a novel RL-based method that enhances temporal understanding by introducing timestamp-aware multi-segment grounding. MUSEG enables MLLMs to align queries with multiple relevant video segments, promoting more comprehensive temporal reasoning. To facilitate effective learning, we design a customized RL training recipe with phased rewards that progressively guides the model toward temporally grounded reasoning. Extensive experiments on temporal grounding and time-sensitive video QA tasks demonstrate that MUSEG significantly outperforms existing methods and generalizes well across diverse temporal understanding scenarios. View our project at https://github.com/THUNLP-MT/MUSEG.
Formulation Comparison for Timeline Construction using LLMs
Constructing a timeline requires identifying the chronological order of events in an article. In prior timeline construction datasets, temporal orders are typically annotated by either event-to-time anchoring or event-to-event pairwise ordering, both of which suffer from missing temporal information. To mitigate the issue, we develop a new evaluation dataset, TimeSET, consisting of single-document timelines with document-level order annotation. TimeSET features saliency-based event selection and partial ordering, which enable a practical annotation workload. Aiming to build better automatic timeline construction systems, we propose a novel evaluation framework to compare multiple task formulations with TimeSET by prompting open LLMs, i.e., Llama 2 and Flan-T5. Considering that identifying temporal orders of events is a core subtask in timeline construction, we further benchmark open LLMs on existing event temporal ordering datasets to gain a robust understanding of their capabilities. Our experiments show that (1) NLI formulation with Flan-T5 demonstrates a strong performance among others, while (2) timeline construction and event temporal ordering are still challenging tasks for few-shot LLMs. Our code and data are available at https://github.com/kimihiroh/timeset.
ReXTime: A Benchmark Suite for Reasoning-Across-Time in Videos
We introduce ReXTime, a benchmark designed to rigorously test AI models' ability to perform temporal reasoning within video events. Specifically, ReXTime focuses on reasoning across time, i.e. human-like understanding when the question and its corresponding answer occur in different video segments. This form of reasoning, requiring advanced understanding of cause-and-effect relationships across video segments, poses significant challenges to even the frontier multimodal large language models. To facilitate this evaluation, we develop an automated pipeline for generating temporal reasoning question-answer pairs, significantly reducing the need for labor-intensive manual annotations. Our benchmark includes 921 carefully vetted validation samples and 2,143 test samples, each manually curated for accuracy and relevance. Evaluation results show that while frontier large language models outperform academic models, they still lag behind human performance by a significant 14.3% accuracy gap. Additionally, our pipeline creates a training dataset of 9,695 machine generated samples without manual effort, which empirical studies suggest can enhance the across-time reasoning via fine-tuning.
MVBench: A Comprehensive Multi-modal Video Understanding Benchmark
With the rapid development of Multi-modal Large Language Models (MLLMs), a number of diagnostic benchmarks have recently emerged to evaluate the comprehension capabilities of these models. However, most benchmarks predominantly assess spatial understanding in the static image tasks, while overlooking temporal understanding in the dynamic video tasks. To alleviate this issue, we introduce a comprehensive Multi-modal Video understanding Benchmark, namely MVBench, which covers 20 challenging video tasks that cannot be effectively solved with a single frame. Specifically, we first introduce a novel static-to-dynamic method to define these temporal-related tasks. By transforming various static tasks into dynamic ones, we enable the systematic generation of video tasks that require a broad spectrum of temporal skills, ranging from perception to cognition. Then, guided by the task definition, we automatically convert public video annotations into multiple-choice QA to evaluate each task. On one hand, such a distinct paradigm allows us to build MVBench efficiently, without much manual intervention. On the other hand, it guarantees evaluation fairness with ground-truth video annotations, avoiding the biased scoring of LLMs. Moreover, we further develop a robust video MLLM baseline, i.e., VideoChat2, by progressive multi-modal training with diverse instruction-tuning data. The extensive results on our MVBench reveal that, the existing MLLMs are far from satisfactory in temporal understanding, while our VideoChat2 largely surpasses these leading models by over 15% on MVBench. All models and data are available at https://github.com/OpenGVLab/Ask-Anything.
Complex QA and language models hybrid architectures, Survey
This paper reviews the state-of-the-art of language models architectures and strategies for "complex" question-answering (QA, CQA, CPS) with a focus on hybridization. Large Language Models (LLM) are good at leveraging public data on standard problems but once you want to tackle more specific complex questions or problems (e.g. How does the concept of personal freedom vary between different cultures ? What is the best mix of power generation methods to reduce climate change ?) you may need specific architecture, knowledge, skills, methods, sensitive data protection, explainability, human approval and versatile feedback... Recent projects like ChatGPT and GALACTICA have allowed non-specialists to grasp the great potential as well as the equally strong limitations of LLM in complex QA. In this paper, we start by reviewing required skills and evaluation techniques. We integrate findings from the robust community edited research papers BIG, BLOOM and HELM which open source, benchmark and analyze limits and challenges of LLM in terms of tasks complexity and strict evaluation on accuracy (e.g. fairness, robustness, toxicity, ...) as a baseline. We discuss some challenges associated with complex QA, including domain adaptation, decomposition and efficient multi-step QA, long form and non-factoid QA, safety and multi-sensitivity data protection, multimodal search, hallucinations, explainability and truthfulness, temporal reasoning. We analyze current solutions and promising research trends, using elements such as: hybrid LLM architectural patterns, training and prompting strategies, active human reinforcement learning supervised with AI, neuro-symbolic and structured knowledge grounding, program synthesis, iterated decomposition and others.
MRAG: A Modular Retrieval Framework for Time-Sensitive Question Answering
Understanding temporal relations and answering time-sensitive questions is crucial yet a challenging task for question-answering systems powered by large language models (LLMs). Existing approaches either update the parametric knowledge of LLMs with new facts, which is resource-intensive and often impractical, or integrate LLMs with external knowledge retrieval (i.e., retrieval-augmented generation). However, off-the-shelf retrievers often struggle to identify relevant documents that require intensive temporal reasoning. To systematically study time-sensitive question answering, we introduce the TempRAGEval benchmark, which repurposes existing datasets by incorporating temporal perturbations and gold evidence labels. As anticipated, all existing retrieval methods struggle with these temporal reasoning-intensive questions. We further propose Modular Retrieval (MRAG), a trainless framework that includes three modules: (1) Question Processing that decomposes question into a main content and a temporal constraint; (2) Retrieval and Summarization that retrieves evidence and uses LLMs to summarize according to the main content; (3) Semantic-Temporal Hybrid Ranking that scores each evidence summarization based on both semantic and temporal relevance. On TempRAGEval, MRAG significantly outperforms baseline retrievers in retrieval performance, leading to further improvements in final answer accuracy.
TRAM: Benchmarking Temporal Reasoning for Large Language Models
Reasoning about time is essential for understanding the nuances of events described in natural language. Previous research on this topic has been limited in scope, characterized by a lack of standardized benchmarks that would allow for consistent evaluations across different studies. In this paper, we introduce TRAM, a temporal reasoning benchmark composed of ten datasets, encompassing various temporal aspects of events such as order, arithmetic, frequency, and duration, designed to facilitate a comprehensive evaluation of the TeR capabilities of large language models (LLMs). We evaluate popular LLMs like GPT-4 and Llama2 in zero-shot and few-shot scenarios, and establish baselines with BERT-based and domain-specific models. Our findings indicate that the best-performing model lags significantly behind human performance. It is our aspiration that TRAM will spur further progress in enhancing the TeR capabilities of LLMs.
TempCompass: Do Video LLMs Really Understand Videos?
Recently, there is a surge in interest surrounding video large language models (Video LLMs). However, existing benchmarks fail to provide a comprehensive feedback on the temporal perception ability of Video LLMs. On the one hand, most of them are unable to distinguish between different temporal aspects (e.g., speed, direction) and thus cannot reflect the nuanced performance on these specific aspects. On the other hand, they are limited in the diversity of task formats (e.g., only multi-choice QA), which hinders the understanding of how temporal perception performance may vary across different types of tasks. Motivated by these two problems, we propose the TempCompass benchmark, which introduces a diversity of temporal aspects and task formats. To collect high-quality test data, we devise two novel strategies: (1) In video collection, we construct conflicting videos that share the same static content but differ in a specific temporal aspect, which prevents Video LLMs from leveraging single-frame bias or language priors. (2) To collect the task instructions, we propose a paradigm where humans first annotate meta-information for a video and then an LLM generates the instruction. We also design an LLM-based approach to automatically and accurately evaluate the responses from Video LLMs. Based on TempCompass, we comprehensively evaluate 8 state-of-the-art (SOTA) Video LLMs and 3 Image LLMs, and reveal the discerning fact that these models exhibit notably poor temporal perception ability. The data and evaluation code are available at https://github.com/llyx97/TempCompass.
VLM-3R: Vision-Language Models Augmented with Instruction-Aligned 3D Reconstruction
The rapid advancement of Large Multimodal Models (LMMs) for 2D images and videos has motivated extending these models to understand 3D scenes, aiming for human-like visual-spatial intelligence. Nevertheless, achieving deep spatial understanding comparable to human capabilities poses significant challenges in model encoding and data acquisition. Existing methods frequently depend on external depth sensors for geometry capture or utilize off-the-shelf algorithms for pre-constructing 3D maps, thereby limiting their scalability, especially with prevalent monocular video inputs and for time-sensitive applications. In this work, we introduce VLM-3R, a unified framework for Vision-Language Models (VLMs) that incorporates 3D Reconstructive instruction tuning. VLM-3R processes monocular video frames by employing a geometry encoder to derive implicit 3D tokens that represent spatial understanding. Leveraging our Spatial-Visual-View Fusion and over 200K curated 3D reconstructive instruction tuning question-answer (QA) pairs, VLM-3R effectively aligns real-world spatial context with language instructions. This enables monocular 3D spatial assistance and embodied reasoning. To facilitate the evaluation of temporal reasoning, we introduce the Vision-Spatial-Temporal Intelligence benchmark, featuring over 138.6K QA pairs across five distinct tasks focused on evolving spatial relationships. Extensive experiments demonstrate that our model, VLM-3R, not only facilitates robust visual-spatial reasoning but also enables the understanding of temporal 3D context changes, excelling in both accuracy and scalability.
Respecting Temporal-Causal Consistency: Entity-Event Knowledge Graphs for Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) based on large language models often falters on narrative documents with inherent temporal structures. Standard unstructured RAG methods rely solely on embedding-similarity matching and lack any general mechanism to encode or exploit chronological information, while knowledge graph RAG (KG-RAG) frameworks collapse every mention of an entity into a single node, erasing the evolving context that drives many queries. To formalize this challenge and draw the community's attention, we construct ChronoQA, a robust and discriminative QA benchmark that measures temporal, causal, and character consistency understanding in narrative documents (e.g., novels) under the RAG setting. We then introduce Entity-Event RAG (E^2RAG), a dual-graph framework that keeps separate entity and event subgraphs linked by a bipartite mapping, thereby preserving the temporal and causal facets needed for fine-grained reasoning. Across ChronoQA, our approach outperforms state-of-the-art unstructured and KG-based RAG baselines, with notable gains on causal and character consistency queries. E^2RAG therefore offers a practical path to more context-aware retrieval for tasks that require precise answers grounded in chronological information.
MTGER: Multi-view Temporal Graph Enhanced Temporal Reasoning over Time-Involved Document
The facts and time in the document are intricately intertwined, making temporal reasoning over documents challenging. Previous work models time implicitly, making it difficult to handle such complex relationships. To address this issue, we propose MTGER, a novel Multi-view Temporal Graph Enhanced Temporal Reasoning framework for temporal reasoning over time-involved documents. Concretely, MTGER explicitly models the temporal relationships among facts by multi-view temporal graphs. On the one hand, the heterogeneous temporal graphs explicitly model the temporal and discourse relationships among facts; on the other hand, the multi-view mechanism captures both time-focused and fact-focused information, allowing the two views to complement each other through adaptive fusion. To further improve the implicit reasoning capability of the model, we design a self-supervised time-comparing objective. Extensive experimental results demonstrate the effectiveness of our method on the TimeQA and SituatedQA datasets. Furthermore, MTGER gives more consistent answers under question perturbations.
Perception Test 2024: Challenge Summary and a Novel Hour-Long VideoQA Benchmark
Following the successful 2023 edition, we organised the Second Perception Test challenge as a half-day workshop alongside the IEEE/CVF European Conference on Computer Vision (ECCV) 2024, with the goal of benchmarking state-of-the-art video models and measuring the progress since last year using the Perception Test benchmark. This year, the challenge had seven tracks (up from six last year) and covered low-level and high-level tasks, with language and non-language interfaces, across video, audio, and text modalities; the additional track covered hour-long video understanding and introduced a novel video QA benchmark 1h-walk VQA. Overall, the tasks in the different tracks were: object tracking, point tracking, temporal action localisation, temporal sound localisation, multiple-choice video question-answering, grounded video question-answering, and hour-long video question-answering. We summarise in this report the challenge tasks and results, and introduce in detail the novel hour-long video QA benchmark 1h-walk VQA.
DateLogicQA: Benchmarking Temporal Biases in Large Language Models
This paper introduces DateLogicQA, a benchmark with 190 questions covering diverse date formats, temporal contexts, and reasoning types. We propose the Semantic Integrity Metric to assess tokenization quality and analyse two biases: Representation-Level Bias, affecting embeddings, and Logical-Level Bias, influencing reasoning outputs. Our findings provide a comprehensive evaluation of LLMs' capabilities and limitations in temporal reasoning, highlighting key challenges in handling temporal data accurately. The GitHub repository for our work is available at https://github.com/gagan3012/EAIS-Temporal-Bias
NAAQA: A Neural Architecture for Acoustic Question Answering
The goal of the Acoustic Question Answering (AQA) task is to answer a free-form text question about the content of an acoustic scene. It was inspired by the Visual Question Answering (VQA) task. In this paper, based on the previously introduced CLEAR dataset, we propose a new benchmark for AQA, namely CLEAR2, that emphasizes the specific challenges of acoustic inputs. These include handling of variable duration scenes, and scenes built with elementary sounds that differ between training and test set. We also introduce NAAQA, a neural architecture that leverages specific properties of acoustic inputs. The use of 1D convolutions in time and frequency to process 2D spectro-temporal representations of acoustic content shows promising results and enables reductions in model complexity. We show that time coordinate maps augment temporal localization capabilities which enhance performance of the network by ~17 percentage points. On the other hand, frequency coordinate maps have little influence on this task. NAAQA achieves 79.5% of accuracy on the AQA task with ~4 times fewer parameters than the previously explored VQA model. We evaluate the perfomance of NAAQA on an independent data set reconstructed from DAQA. We also test the addition of a MALiMo module in our model on both CLEAR2 and DAQA. We provide a detailed analysis of the results for the different question types. We release the code to produce CLEAR2 as well as NAAQA to foster research in this newly emerging machine learning task.
From What to Respond to When to Respond: Timely Response Generation for Open-domain Dialogue Agents
While research on dialogue response generation has primarily focused on generating coherent responses conditioning on textual context, the critical question of when to respond grounded on the temporal context remains underexplored. To bridge this gap, we propose a novel task called timely dialogue response generation and introduce the TimelyChat benchmark, which evaluates the capabilities of language models to predict appropriate time intervals and generate time-conditioned responses. Additionally, we construct a large-scale training dataset by leveraging unlabeled event knowledge from a temporal commonsense knowledge graph and employing a large language model (LLM) to synthesize 55K event-driven dialogues. We then train Timer, a dialogue agent designed to proactively predict time intervals and generate timely responses that align with those intervals. Experimental results show that Timer outperforms prompting-based LLMs and other fine-tuned baselines in both turn-level and dialogue-level evaluations. We publicly release our data, model, and code.
TimeMarker: A Versatile Video-LLM for Long and Short Video Understanding with Superior Temporal Localization Ability
Rapid development of large language models (LLMs) has significantly advanced multimodal large language models (LMMs), particularly in vision-language tasks. However, existing video-language models often overlook precise temporal localization and struggle with videos of varying lengths. We introduce TimeMarker, a versatile Video-LLM designed for high-quality dialogue based on video content, emphasizing temporal localization. TimeMarker integrates Temporal Separator Tokens to enhance temporal awareness, accurately marking specific moments within videos. It employs the AnyLength mechanism for dynamic frame sampling and adaptive token merging, enabling effective handling of both short and long videos. Additionally, TimeMarker utilizes diverse datasets, including further transformed temporal-related video QA datasets, to bolster its temporal understanding capabilities. Image and interleaved data are also employed to further enhance the model's semantic perception ability. Evaluations demonstrate that TimeMarker achieves state-of-the-art performance across multiple benchmarks, excelling in both short and long video categories. Our project page is at https://github.com/TimeMarker-LLM/TimeMarker/.
Temporal Consistency for LLM Reasoning Process Error Identification
Verification is crucial for effective mathematical reasoning. We present a new temporal consistency method where verifiers iteratively refine their judgments based on the previous assessment. Unlike one-round verification or multi-model debate approaches, our method leverages consistency in a sequence of self-reflection actions to improve verification accuracy. Empirical evaluations across diverse mathematical process error identification benchmarks (Mathcheck, ProcessBench, and PRM800K) show consistent performance improvements over baseline methods. When applied to the recent DeepSeek R1 distilled models, our method demonstrates strong performance, enabling 7B/8B distilled models to outperform all 70B/72B models and GPT-4o on ProcessBench. Notably, the distilled 14B model with our method achieves performance comparable to Deepseek-R1. Our codes are available at https://github.com/jcguo123/Temporal-Consistency
Chronocept: Instilling a Sense of Time in Machines
Human cognition is deeply intertwined with a sense of time, known as Chronoception. This sense allows us to judge how long facts remain valid and when knowledge becomes outdated. Despite progress in vision, language, and motor control, AI still struggles to reason about temporal validity. We introduce Chronocept, the first benchmark to model temporal validity as a continuous probability distribution over time. Using skew-normal curves fitted along semantically decomposed temporal axes, Chronocept captures nuanced patterns of emergence, decay, and peak relevance. It includes two datasets: Benchmark I (atomic facts) and Benchmark II (multi-sentence passages). Annotations show strong inter-annotator agreement (84% and 89%). Our baselines predict curve parameters - location, scale, and skewness - enabling interpretable, generalizable learning and outperforming classification-based approaches. Chronocept fills a foundational gap in AI's temporal reasoning, supporting applications in knowledge grounding, fact-checking, retrieval-augmented generation (RAG), and proactive agents. Code and data are publicly available.
Learning to Reason Over Time: Timeline Self-Reflection for Improved Temporal Reasoning in Language Models
Large Language Models (LLMs) have emerged as powerful tools for generating coherent text, understanding context, and performing reasoning tasks. However, they struggle with temporal reasoning, which requires processing time-related information such as event sequencing, durations, and inter-temporal relationships. These capabilities are critical for applications including question answering, scheduling, and historical analysis. In this paper, we introduce TISER, a novel framework that enhances the temporal reasoning abilities of LLMs through a multi-stage process that combines timeline construction with iterative self-reflection. Our approach leverages test-time scaling to extend the length of reasoning traces, enabling models to capture complex temporal dependencies more effectively. This strategy not only boosts reasoning accuracy but also improves the traceability of the inference process. Experimental results demonstrate state-of-the-art performance across multiple benchmarks, including out-of-distribution test sets, and reveal that TISER enables smaller open-source models to surpass larger closed-weight models on challenging temporal reasoning tasks.
DisTime: Distribution-based Time Representation for Video Large Language Models
Despite advances in general video understanding, Video Large Language Models (Video-LLMs) face challenges in precise temporal localization due to discrete time representations and limited temporally aware datasets. Existing methods for temporal expression either conflate time with text-based numerical values, add a series of dedicated temporal tokens, or regress time using specialized temporal grounding heads. To address these issues, we introduce DisTime, a lightweight framework designed to enhance temporal comprehension in Video-LLMs. DisTime employs a learnable token to create a continuous temporal embedding space and incorporates a Distribution-based Time Decoder that generates temporal probability distributions, effectively mitigating boundary ambiguities and maintaining temporal continuity. Additionally, the Distribution-based Time Encoder re-encodes timestamps to provide time markers for Video-LLMs. To overcome temporal granularity limitations in existing datasets, we propose an automated annotation paradigm that combines the captioning capabilities of Video-LLMs with the localization expertise of dedicated temporal models. This leads to the creation of InternVid-TG, a substantial dataset with 1.25M temporally grounded events across 179k videos, surpassing ActivityNet-Caption by 55 times. Extensive experiments demonstrate that DisTime achieves state-of-the-art performance across benchmarks in three time-sensitive tasks while maintaining competitive performance in Video QA tasks. Code and data are released at https://github.com/josephzpng/DisTime.
TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph
Multi-hop logical reasoning over knowledge graph (KG) plays a fundamental role in many artificial intelligence tasks. Recent complex query embedding (CQE) methods for reasoning focus on static KGs, while temporal knowledge graphs (TKGs) have not been fully explored. Reasoning over TKGs has two challenges: 1. The query should answer entities or timestamps; 2. The operators should consider both set logic on entity set and temporal logic on timestamp set. To bridge this gap, we define the multi-hop logical reasoning problem on TKGs. With generated three datasets, we propose the first temporal CQE named Temporal Feature-Logic Embedding framework (TFLEX) to answer the temporal complex queries. We utilize vector logic to compute the logic part of Temporal Feature-Logic embeddings, thus naturally modeling all First-Order Logic (FOL) operations on entity set. In addition, our framework extends vector logic on timestamp set to cope with three extra temporal operators (After, Before and Between). Experiments on numerous query patterns demonstrate the effectiveness of our method.
Towards Fine-Grained Video Question Answering
In the rapidly evolving domain of video understanding, Video Question Answering (VideoQA) remains a focal point. However, existing datasets exhibit gaps in temporal and spatial granularity, which consequently limits the capabilities of existing VideoQA methods. This paper introduces the Multi-Object Multi-Actor Question Answering (MOMA-QA) dataset, which is designed to address these shortcomings by emphasizing temporal localization, spatial relationship reasoning, and entity-centric queries. With ground truth scene graphs and temporal interval annotations, MOMA-QA is ideal for developing models for fine-grained video understanding. Furthermore, we present a novel video-language model, SGVLM, which incorporates a scene graph predictor, an efficient frame retriever, and a pre-trained large language model for temporal localization and fine-grained relationship understanding. Evaluations on MOMA-QA and other public datasets demonstrate the superior performance of our model, setting new benchmarks for VideoQA.
Language Models Struggle to Achieve a Consistent Temporal Representation of Facts
Language Models (LMs) have shown substantial improvements in handling factual knowledge, yet their capability to consistently represent temporal facts, which are valid only within specific timeframes, remains underexplored. To investigate this, we introduce TimeStress, a novel dataset comprising 521K statements on 2003 of the most popular temporal facts in Wikidata. Each statement contextualizes a fact with correct and incorrect dates across three precisions (Day, Month, Year). This setup allows us to evaluate LMs' ability to discern between correct and incorrect temporal statements based on their probability of being generated. We assess 18 LMs across various architectures using two metrics: the win rate, indicating how often correct dates outperform incorrect ones, and robustness, reflecting consistent performance across all dates. Our findings reveal that while some LMs achieve a win rate exceeding 80\%, robustness remains low, with the best model achieving only 6\%. Furthermore, robust knowledge at one date precision does not reliably transfer to others, highlighting a significant generalization gap. These results underscore the struggle of LMs to maintain a consistent temporal representation, supporting their limitations as reliable sources of temporal knowledge. We provide all data and code for further research.
OVO-Bench: How Far is Your Video-LLMs from Real-World Online Video Understanding?
Temporal Awareness, the ability to reason dynamically based on the timestamp when a question is raised, is the key distinction between offline and online video LLMs. Unlike offline models, which rely on complete videos for static, post hoc analysis, online models process video streams incrementally and dynamically adapt their responses based on the timestamp at which the question is posed. Despite its significance, temporal awareness has not been adequately evaluated in existing benchmarks. To fill this gap, we present OVO-Bench (Online-VideO-Benchmark), a novel video benchmark that emphasizes the importance of timestamps for advanced online video understanding capability benchmarking. OVO-Bench evaluates the ability of video LLMs to reason and respond to events occurring at specific timestamps under three distinct scenarios: (1) Backward tracing: trace back to past events to answer the question. (2) Real-time understanding: understand and respond to events as they unfold at the current timestamp. (3) Forward active responding: delay the response until sufficient future information becomes available to answer the question accurately. OVO-Bench comprises 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps. We combine automated generation pipelines with human curation. With these high-quality samples, we further developed an evaluation pipeline to systematically query video LLMs along the video timeline. Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding, showing a significant gap compared to human agents. We hope OVO-Bench will drive progress in video LLMs and inspire future research in online video reasoning. Our benchmark and code can be accessed at https://github.com/JoeLeelyf/OVO-Bench.
VideoMultiAgents: A Multi-Agent Framework for Video Question Answering
Video Question Answering (VQA) inherently relies on multimodal reasoning, integrating visual, temporal, and linguistic cues to achieve a deeper understanding of video content. However, many existing methods rely on feeding frame-level captions into a single model, making it difficult to adequately capture temporal and interactive contexts. To address this limitation, we introduce VideoMultiAgents, a framework that integrates specialized agents for vision, scene graph analysis, and text processing. It enhances video understanding leveraging complementary multimodal reasoning from independently operating agents. Our approach is also supplemented with a question-guided caption generation, which produces captions that highlight objects, actions, and temporal transitions directly relevant to a given query, thus improving the answer accuracy. Experimental results demonstrate that our method achieves state-of-the-art performance on Intent-QA (79.0%, +6.2% over previous SOTA), EgoSchema subset (75.4%, +3.4%), and NExT-QA (79.6%, +0.4%). The source code is available at https://github.com/PanasonicConnect/VideoMultiAgents.
Temporal Information Retrieval via Time-Specifier Model Merging
The rapid expansion of digital information and knowledge across structured and unstructured sources has heightened the importance of Information Retrieval (IR). While dense retrieval methods have substantially improved semantic matching for general queries, they consistently underperform on queries with explicit temporal constraints--often those containing numerical expressions and time specifiers such as ``in 2015.'' Existing approaches to Temporal Information Retrieval (TIR) improve temporal reasoning but often suffer from catastrophic forgetting, leading to reduced performance on non-temporal queries. To address this, we propose Time-Specifier Model Merging (TSM), a novel method that enhances temporal retrieval while preserving accuracy on non-temporal queries. TSM trains specialized retrievers for individual time specifiers and merges them in to a unified model, enabling precise handling of temporal constraints without compromising non-temporal retrieval. Extensive experiments on both temporal and non-temporal datasets demonstrate that TSM significantly improves performance on temporally constrained queries while maintaining strong results on non-temporal queries, consistently outperforming other baseline methods. Our code is available at https://github.com/seungyoonee/TSM .
Towards Effective Time-Aware Language Representation: Exploring Enhanced Temporal Understanding in Language Models
In the evolving field of Natural Language Processing, understanding the temporal context of text is increasingly crucial. This study investigates methods to incorporate temporal information during pre-training, aiming to achieve effective time-aware language representation for improved performance on time-related tasks. In contrast to common pre-trained models like BERT, which rely on synchronic document collections such as BookCorpus and Wikipedia, our research introduces BiTimeBERT 2.0, a novel language model pre-trained on a temporal news article collection. BiTimeBERT 2.0 utilizes this temporal news collection, focusing on three innovative pre-training objectives: Time-Aware Masked Language Modeling (TAMLM), Document Dating (DD), and Time-Sensitive Entity Replacement (TSER). Each objective targets a unique aspect of temporal information. TAMLM is designed to enhance the understanding of temporal contexts and relations, DD integrates document timestamps as chronological markers, and TSER focuses on the temporal dynamics of "Person" entities, recognizing their inherent temporal significance. The experimental results consistently demonstrate that BiTimeBERT 2.0 outperforms models like BERT and other existing pre-trained models, achieving substantial gains across a variety of downstream NLP tasks and applications where time plays a pivotal role.
ExpliCIT-QA: Explainable Code-Based Image Table Question Answering
We present ExpliCIT-QA, a system that extends our previous MRT approach for tabular question answering into a multimodal pipeline capable of handling complex table images and providing explainable answers. ExpliCIT-QA follows a modular design, consisting of: (1) Multimodal Table Understanding, which uses a Chain-of-Thought approach to extract and transform content from table images; (2) Language-based Reasoning, where a step-by-step explanation in natural language is generated to solve the problem; (3) Automatic Code Generation, where Python/Pandas scripts are created based on the reasoning steps, with feedback for handling errors; (4) Code Execution to compute the final answer; and (5) Natural Language Explanation that describes how the answer was computed. The system is built for transparency and auditability: all intermediate outputs, parsed tables, reasoning steps, generated code, and final answers are available for inspection. This strategy works towards closing the explainability gap in end-to-end TableVQA systems. We evaluated ExpliCIT-QA on the TableVQA-Bench benchmark, comparing it with existing baselines. We demonstrated improvements in interpretability and transparency, which open the door for applications in sensitive domains like finance and healthcare where auditing results are critical.
TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success in Natural Language Processing and Computer Vision domains. However, the development of PTMs on healthcare time-series data is lagging behind.This underscores the limitations of the existing transformer-based architectures, particularly their scalability to handle large-scale time series and ability to capture long-term temporal dependencies. In this study, we present Timely Generative Pre-trained Transformer (TimelyGPT). TimelyGPT employs an extrapolatable position (xPos) embedding to encode trend and periodic patterns into time-series representations. It also integrates recurrent attention and temporal convolution modules to effectively capture global-local temporal dependencies. We evaluated TimelyGPT on two large-scale healthcare time series datasets corresponding to continuous biosignals and irregularly-sampled time series, respectively. Our experiments show that during pre-training, TimelyGPT excels in learning time-series representations from continuously monitored biosignals and irregularly-sampled time series data commonly observed in longitudinal electronic health records (EHRs). In forecasting continuous biosignals, TimelyGPT achieves accurate extrapolation up to 6,000 timesteps of body temperature during the sleep stage transition, given a short look-up window (i.e., prompt) containing only 2,000 timesteps. For irregularly-sampled time series, TimelyGPT with a proposed time-specific inference demonstrates high top recall scores in predicting future diagnoses using early diagnostic records, effectively handling irregular intervals between clinical records. Together, we envision TimelyGPT to be useful in a broad spectrum of health domains, including long-term patient health state forecasting and patient risk trajectory prediction.
LITA: Language Instructed Temporal-Localization Assistant
There has been tremendous progress in multimodal Large Language Models (LLMs). Recent works have extended these models to video input with promising instruction following capabilities. However, an important missing piece is temporal localization. These models cannot accurately answer the "When?" questions. We identify three key aspects that limit their temporal localization capabilities: (i) time representation, (ii) architecture, and (iii) data. We address these shortcomings by proposing Language Instructed Temporal-Localization Assistant (LITA) with the following features: (1) We introduce time tokens that encode timestamps relative to the video length to better represent time in videos. (2) We introduce SlowFast tokens in the architecture to capture temporal information at fine temporal resolution. (3) We emphasize temporal localization data for LITA. In addition to leveraging existing video datasets with timestamps, we propose a new task, Reasoning Temporal Localization (RTL), along with the dataset, ActivityNet-RTL, for learning and evaluating this task. Reasoning temporal localization requires both the reasoning and temporal localization of Video LLMs. LITA demonstrates strong performance on this challenging task, nearly doubling the temporal mean intersection-over-union (mIoU) of baselines. In addition, we show that our emphasis on temporal localization also substantially improves video-based text generation compared to existing Video LLMs, including a 36% relative improvement of Temporal Understanding. Code is available at: https://github.com/NVlabs/LITA
TCP: a Benchmark for Temporal Constraint-Based Planning
Temporal reasoning and planning are essential capabilities for large language models (LLMs), yet most existing benchmarks evaluate them in isolation and under limited forms of complexity. To address this gap, we introduce the Temporal Constraint-based Planning (TCP) benchmark, that jointly assesses both capabilities. Each instance in TCP features a naturalistic dialogue around a collaborative project, where diverse and interdependent temporal constraints are explicitly or implicitly expressed, and models must infer an optimal schedule that satisfies all constraints. To construct TCP, we first generate abstract problem prototypes that are paired with realistic scenarios from various domains and enriched into dialogues using an LLM. A human quality check is performed on a sampled subset to confirm the reliability of our benchmark. We evaluate state-of-the-art LLMs and find that even the strongest models struggle with TCP, highlighting its difficulty and revealing limitations in LLMs' temporal constraint-based planning abilities. We analyze underlying failure cases, open source our benchmark, and hope our findings can inspire future research.
On the Consistency of Video Large Language Models in Temporal Comprehension
Video large language models (Video-LLMs) can temporally ground language queries and retrieve video moments. Yet, such temporal comprehension capabilities are neither well-studied nor understood. So we conduct a study on prediction consistency -- a key indicator for robustness and trustworthiness of temporal grounding. After the model identifies an initial moment within the video content, we apply a series of probes to check if the model's responses align with this initial grounding as an indicator of reliable comprehension. Our results reveal that current Video-LLMs are sensitive to variations in video contents, language queries, and task settings, unveiling severe deficiencies in maintaining consistency. We further explore common prompting and instruction-tuning methods as potential solutions, but find that their improvements are often unstable. To that end, we propose event temporal verification tuning that explicitly accounts for consistency, and demonstrate significant improvements for both grounding and consistency. Our data and code will be available at https://github.com/minjoong507/Consistency-of-Video-LLM.
ChroKnowledge: Unveiling Chronological Knowledge of Language Models in Multiple Domains
Large language models (LLMs) have significantly impacted many aspects of our lives. However, assessing and ensuring their chronological knowledge remains challenging. Existing approaches fall short in addressing the accumulative nature of knowledge, often relying on a single time stamp. To overcome this, we introduce ChroKnowBench, a benchmark dataset designed to evaluate chronologically accumulated knowledge across three key aspects: multiple domains, time dependency, temporal state. Our benchmark distinguishes between knowledge that evolves (e.g., scientific discoveries, amended laws) and knowledge that remain constant (e.g., mathematical truths, commonsense facts). Building on this benchmark, we present ChroKnowledge (Chronological Categorization of Knowledge), a novel sampling-based framework for evaluating and updating LLMs' non-parametric chronological knowledge. Our evaluation shows: (1) The ability of eliciting temporal knowledge varies depending on the data format that model was trained on. (2) LLMs partially recall knowledge or show a cut-off at temporal boundaries rather than recalling all aspects of knowledge correctly. Thus, we apply our ChroKnowPrompt, an in-depth prompting to elicit chronological knowledge by traversing step-by-step through the surrounding time spans. We observe that our framework successfully updates the overall knowledge across the entire timeline in both the biomedical domain (+11.9%) and the general domain (+2.8%), demonstrating its effectiveness in refining temporal knowledge. This non-parametric approach also enables knowledge updates not only in open-source models but also in proprietary LLMs, ensuring comprehensive applicability across model types. We perform a comprehensive analysis based on temporal characteristics of ChroKnowPrompt and validate the potential of various models to elicit intrinsic temporal knowledge through our method.
FreshLLMs: Refreshing Large Language Models with Search Engine Augmentation
Most large language models (LLMs) are trained once and never updated; thus, they lack the ability to dynamically adapt to our ever-changing world. In this work, we perform a detailed study of the factuality of LLM-generated text in the context of answering questions that test current world knowledge. Specifically, we introduce FreshQA, a novel dynamic QA benchmark encompassing a diverse range of question and answer types, including questions that require fast-changing world knowledge as well as questions with false premises that need to be debunked. We benchmark a diverse array of both closed and open-source LLMs under a two-mode evaluation procedure that allows us to measure both correctness and hallucination. Through human evaluations involving more than 50K judgments, we shed light on limitations of these models and demonstrate significant room for improvement: for instance, all models (regardless of model size) struggle on questions that involve fast-changing knowledge and false premises. Motivated by these results, we present FreshPrompt, a simple few-shot prompting method that substantially boosts the performance of an LLM on FreshQA by incorporating relevant and up-to-date information retrieved from a search engine into the prompt. Our experiments show that FreshPrompt outperforms both competing search engine-augmented prompting methods such as Self-Ask (Press et al., 2022) as well as commercial systems such as Perplexity.AI. Further analysis of FreshPrompt reveals that both the number of retrieved evidences and their order play a key role in influencing the correctness of LLM-generated answers. Additionally, instructing the LLM to generate concise and direct answers helps reduce hallucination compared to encouraging more verbose answers. To facilitate future work, we release FreshQA at github.com/freshllms/freshqa and commit to updating it at regular intervals.
TempoSum: Evaluating the Temporal Generalization of Abstractive Summarization
Recent pre-trained language models (PLMs) achieve promising results in existing abstractive summarization datasets. However, existing summarization benchmarks overlap in time with the standard pre-training corpora and finetuning datasets. Hence, the strong performance of PLMs may rely on the parametric knowledge that is memorized during pre-training and fine-tuning. Moreover, the knowledge memorized by PLMs may quickly become outdated, which affects the generalization performance of PLMs on future data. In this work, we propose TempoSum, a novel benchmark that contains data samples from 2010 to 2022, to understand the temporal generalization ability of abstractive summarization models. Through extensive human evaluation, we show that parametric knowledge stored in summarization models significantly affects the faithfulness of the generated summaries on future data. Moreover, existing faithfulness enhancement methods cannot reliably improve the faithfulness of summarization models on future data. Finally, we discuss several recommendations to the research community on how to evaluate and improve the temporal generalization capability of text summarization models.
From Segments to Scenes: Temporal Understanding in Autonomous Driving via Vision-Language Model
Temporal understanding in autonomous driving (AD) remains a significant challenge, even for recent state-of-the-art (SoTA) Vision-Language Models (VLMs). Prior work has introduced datasets and benchmarks aimed at improving temporal reasoning, but these have emphasized other video content, including sports, cooking, and movies. No existing benchmark focuses exclusively on the unique challenges of temporal understanding in ego-centric AD footage. To fill this gap, the Temporal Understanding in Autonomous Driving (TAD) benchmark is presented, which evaluates VLMs' ability to capture the dynamic relationships between actions in AD. TAD comprises nearly 6,000 question-answer (QA) pairs, spanning 7 human-designed tasks. In addition, an evaluation is performed that consists of 9 closed- and open-source generalist models as well as SoTA AD specialist models. When applied to TAD, current SoTA models demonstrated substandard accuracies, largely due to imperfect fine-grained motion understanding. To improve motion understanding and overall accuracy on TAD, two novel training-free solutions are proposed: Scene-CoT, that leverages Chain-of-Thought (CoT) and TCogMap, which incorporates an ego-centric temporal cognitive map. The proposed approaches are integrated with existing VLMs and improve average accuracy on TAD by up to 17.72%. By introducing TAD, benchmarking multiple SoTA models, and proposing effective enhancements, this work aims to catalyze future research on temporal understanding in AD. The benchmark and evaluation code are available at https://huggingface.co/datasets/vbdai/TAD{Hugging Face} and https://github.com/vbdi/tad_bench{Github}, respectively.
TimeZero: Temporal Video Grounding with Reasoning-Guided LVLM
We introduce TimeZero, a reasoning-guided LVLM designed for the temporal video grounding (TVG) task. This task requires precisely localizing relevant video segments within long videos based on a given language query. TimeZero tackles this challenge by extending the inference process, enabling the model to reason about video-language relationships solely through reinforcement learning. To evaluate the effectiveness of TimeZero, we conduct experiments on two benchmarks, where TimeZero achieves state-of-the-art performance on Charades-STA. Code is available at https://github.com/www-Ye/TimeZero.
Robust Test-Time Adaptation in Dynamic Scenarios
Test-time adaptation (TTA) intends to adapt the pretrained model to test distributions with only unlabeled test data streams. Most of the previous TTA methods have achieved great success on simple test data streams such as independently sampled data from single or multiple distributions. However, these attempts may fail in dynamic scenarios of real-world applications like autonomous driving, where the environments gradually change and the test data is sampled correlatively over time. In this work, we explore such practical test data streams to deploy the model on the fly, namely practical test-time adaptation (PTTA). To do so, we elaborate a Robust Test-Time Adaptation (RoTTA) method against the complex data stream in PTTA. More specifically, we present a robust batch normalization scheme to estimate the normalization statistics. Meanwhile, a memory bank is utilized to sample category-balanced data with consideration of timeliness and uncertainty. Further, to stabilize the training procedure, we develop a time-aware reweighting strategy with a teacher-student model. Extensive experiments prove that RoTTA enables continual testtime adaptation on the correlatively sampled data streams. Our method is easy to implement, making it a good choice for rapid deployment. The code is publicly available at https://github.com/BIT-DA/RoTTA
TVQA+: Spatio-Temporal Grounding for Video Question Answering
We present the task of Spatio-Temporal Video Question Answering, which requires intelligent systems to simultaneously retrieve relevant moments and detect referenced visual concepts (people and objects) to answer natural language questions about videos. We first augment the TVQA dataset with 310.8K bounding boxes, linking depicted objects to visual concepts in questions and answers. We name this augmented version as TVQA+. We then propose Spatio-Temporal Answerer with Grounded Evidence (STAGE), a unified framework that grounds evidence in both spatial and temporal domains to answer questions about videos. Comprehensive experiments and analyses demonstrate the effectiveness of our framework and how the rich annotations in our TVQA+ dataset can contribute to the question answering task. Moreover, by performing this joint task, our model is able to produce insightful and interpretable spatio-temporal attention visualizations. Dataset and code are publicly available at: http: //tvqa.cs.unc.edu, https://github.com/jayleicn/TVQAplus
Number it: Temporal Grounding Videos like Flipping Manga
Video Large Language Models (Vid-LLMs) have made remarkable advancements in comprehending video content for QA dialogue. However, they struggle to extend this visual understanding to tasks requiring precise temporal localization, known as Video Temporal Grounding (VTG). To address this gap, we introduce Number-Prompt (NumPro), a novel method that empowers Vid-LLMs to bridge visual comprehension with temporal grounding by adding unique numerical identifiers to each video frame. Treating a video as a sequence of numbered frame images, NumPro transforms VTG into an intuitive process: flipping through manga panels in sequence. This allows Vid-LLMs to "read" event timelines, accurately linking visual content with corresponding temporal information. Our experiments demonstrate that NumPro significantly boosts VTG performance of top-tier Vid-LLMs without additional computational cost. Furthermore, fine-tuning on a NumPro-enhanced dataset defines a new state-of-the-art for VTG, surpassing previous top-performing methods by up to 6.9\% in mIoU for moment retrieval and 8.5\% in mAP for highlight detection. The code will be available at https://github.com/yongliang-wu/NumPro.
A Layer Selection Approach to Test Time Adaptation
Test Time Adaptation (TTA) addresses the problem of distribution shift by adapting a pretrained model to a new domain during inference. When faced with challenging shifts, most methods collapse and perform worse than the original pretrained model. In this paper, we find that not all layers are equally receptive to the adaptation, and the layers with the most misaligned gradients often cause performance degradation. To address this, we propose GALA, a novel layer selection criterion to identify the most beneficial updates to perform during test time adaptation. This criterion can also filter out unreliable samples with noisy gradients. Its simplicity allows seamless integration with existing TTA loss functions, thereby preventing degradation and focusing adaptation on the most trainable layers. This approach also helps to regularize adaptation to preserve the pretrained features, which are crucial for handling unseen domains. Through extensive experiments, we demonstrate that the proposed layer selection framework improves the performance of existing TTA approaches across multiple datasets, domain shifts, model architectures, and TTA losses.
Enhancing Transformer RNNs with Multiple Temporal Perspectives
We introduce the concept of multiple temporal perspectives, a novel approach applicable to Recurrent Neural Network (RNN) architectures for enhancing their understanding of sequential data. This method involves maintaining diverse temporal views of previously encountered text, significantly enriching the language models' capacity to interpret context. To show the efficacy of this approach, we incorporate it into the Receptance Weighted Key Value (RWKV) architecture, addressing its inherent challenge of retaining all historical information within a single hidden state. Notably, this improvement is achieved with a minimal increase in the number of parameters --even as little as 0.04% of the original number of parameters. Further, the additional parameters necessary for the multiple temporal perspectives are fine-tuned with minimal computational overhead, avoiding the need for a full pre-training. The resulting model maintains linear computational complexity during prompt inference, ensuring consistent efficiency across various sequence lengths. The empirical results and ablation studies included in our research validate the effectiveness of our approach, showcasing improved performance across multiple benchmarks. The code, model weights and datasets are open-sourced at: https://github.com/RazvanDu/TemporalRNNs.
SVBench: A Benchmark with Temporal Multi-Turn Dialogues for Streaming Video Understanding
Despite the significant advancements of Large Vision-Language Models (LVLMs) on established benchmarks, there remains a notable gap in suitable evaluation regarding their applicability in the emerging domain of long-context streaming video understanding. Current benchmarks for video understanding typically emphasize isolated single-instance text inputs and fail to evaluate the capacity to sustain temporal reasoning throughout the entire duration of video streams. To address these limitations, we introduce SVBench, a pioneering benchmark with temporal multi-turn question-answering chains specifically designed to thoroughly assess the capabilities of streaming video understanding of current LVLMs. We design a semi-automated annotation pipeline to obtain 49,979 Question-Answer (QA) pairs of 1,353 streaming videos, which includes generating QA chains that represent a series of consecutive multi-turn dialogues over video segments and constructing temporal linkages between successive QA chains. Our experimental results, obtained from 14 models in dialogue and streaming evaluations, reveal that while the closed-source GPT-4o outperforms others, most open-source LVLMs struggle with long-context streaming video understanding. We also construct a StreamingChat model, which significantly outperforms open-source LVLMs on our SVBench and achieves comparable performance on diverse vision-language benchmarks. We expect SVBench to advance the research of streaming video understanding by providing a comprehensive and in-depth analysis of current LVLMs. Our benchmark and model can be accessed at https://yzy-bupt.github.io/SVBench.
Is Your LLM Outdated? A Deep Look at Temporal Generalization
The rapid advancement of Large Language Models (LLMs) has led to the development of benchmarks that consider temporal dynamics, however, there remains a gap in understanding how well these models can generalize across temporal contexts due to the inherent dynamic nature of language and information. This paper introduces the concept of temporal generalization in LLMs, including bias in past and future generalizations. Then we introduce FreshBench, a new evaluation framework that employs fresh text and event prediction for assessing LLMs' temporal adaptability, ensuring the evaluation process free from data leakage and subjective bias. The experiment shows significant temporal biases and a decline in performance over time. Our findings reveal that powerful models, while initially superior, tend to decline more rapidly in future generalization. Additionally, powerful open-source models demonstrate better long-term adaptability compared to their closed-source counterparts. Our code is available at https://github.com/FreedomIntelligence/FreshBench.
"Going on a vacation" takes longer than "Going for a walk": A Study of Temporal Commonsense Understanding
Understanding time is crucial for understanding events expressed in natural language. Because people rarely say the obvious, it is often necessary to have commonsense knowledge about various temporal aspects of events, such as duration, frequency, and temporal order. However, this important problem has so far received limited attention. This paper systematically studies this temporal commonsense problem. Specifically, we define five classes of temporal commonsense, and use crowdsourcing to develop a new dataset, MCTACO, that serves as a test set for this task. We find that the best current methods used on MCTACO are still far behind human performance, by about 20%, and discuss several directions for improvement. We hope that the new dataset and our study here can foster more future research on this topic.
On Pitfalls of Test-Time Adaptation
Test-Time Adaptation (TTA) has recently emerged as a promising approach for tackling the robustness challenge under distribution shifts. However, the lack of consistent settings and systematic studies in prior literature hinders thorough assessments of existing methods. To address this issue, we present TTAB, a test-time adaptation benchmark that encompasses ten state-of-the-art algorithms, a diverse array of distribution shifts, and two evaluation protocols. Through extensive experiments, our benchmark reveals three common pitfalls in prior efforts. First, selecting appropriate hyper-parameters, especially for model selection, is exceedingly difficult due to online batch dependency. Second, the effectiveness of TTA varies greatly depending on the quality and properties of the model being adapted. Third, even under optimal algorithmic conditions, none of the existing methods are capable of addressing all common types of distribution shifts. Our findings underscore the need for future research in the field to conduct rigorous evaluations on a broader set of models and shifts, and to re-examine the assumptions behind the empirical success of TTA. Our code is available at https://github.com/lins-lab/ttab.
TGB-Seq Benchmark: Challenging Temporal GNNs with Complex Sequential Dynamics
Future link prediction is a fundamental challenge in various real-world dynamic systems. To address this, numerous temporal graph neural networks (temporal GNNs) and benchmark datasets have been developed. However, these datasets often feature excessive repeated edges and lack complex sequential dynamics, a key characteristic inherent in many real-world applications such as recommender systems and ``Who-To-Follow'' on social networks. This oversight has led existing methods to inadvertently downplay the importance of learning sequential dynamics, focusing primarily on predicting repeated edges. In this study, we demonstrate that existing methods, such as GraphMixer and DyGFormer, are inherently incapable of learning simple sequential dynamics, such as ``a user who has followed OpenAI and Anthropic is more likely to follow AI at Meta next.'' Motivated by this issue, we introduce the Temporal Graph Benchmark with Sequential Dynamics (TGB-Seq), a new benchmark carefully curated to minimize repeated edges, challenging models to learn sequential dynamics and generalize to unseen edges. TGB-Seq comprises large real-world datasets spanning diverse domains, including e-commerce interactions, movie ratings, business reviews, social networks, citation networks and web link networks. Benchmarking experiments reveal that current methods usually suffer significant performance degradation and incur substantial training costs on TGB-Seq, posing new challenges and opportunities for future research. TGB-Seq datasets, leaderboards, and example codes are available at https://tgb-seq.github.io/.
TVQA: Localized, Compositional Video Question Answering
Recent years have witnessed an increasing interest in image-based question-answering (QA) tasks. However, due to data limitations, there has been much less work on video-based QA. In this paper, we present TVQA, a large-scale video QA dataset based on 6 popular TV shows. TVQA consists of 152,545 QA pairs from 21,793 clips, spanning over 460 hours of video. Questions are designed to be compositional in nature, requiring systems to jointly localize relevant moments within a clip, comprehend subtitle-based dialogue, and recognize relevant visual concepts. We provide analyses of this new dataset as well as several baselines and a multi-stream end-to-end trainable neural network framework for the TVQA task. The dataset is publicly available at http://tvqa.cs.unc.edu.
STRIDE-QA: Visual Question Answering Dataset for Spatiotemporal Reasoning in Urban Driving Scenes
Vision-Language Models (VLMs) have been applied to autonomous driving to support decision-making in complex real-world scenarios. However, their training on static, web-sourced image-text pairs fundamentally limits the precise spatiotemporal reasoning required to understand and predict dynamic traffic scenes. We address this critical gap with STRIDE-QA, a large-scale visual question answering (VQA) dataset for physically grounded reasoning from an ego-centric perspective. Constructed from 100 hours of multi-sensor driving data in Tokyo, capturing diverse and challenging conditions, STRIDE-QA is the largest VQA dataset for spatiotemporal reasoning in urban driving, offering 16 million QA pairs over 285K frames. Grounded by dense, automatically generated annotations including 3D bounding boxes, segmentation masks, and multi-object tracks, the dataset uniquely supports both object-centric and ego-centric reasoning through three novel QA tasks that require spatial localization and temporal prediction. Our benchmarks demonstrate that existing VLMs struggle significantly, achieving near-zero scores on prediction consistency. In contrast, VLMs fine-tuned on STRIDE-QA exhibit dramatic performance gains, achieving 55% success in spatial localization and 28% consistency in future motion prediction, compared to near-zero scores from general-purpose VLMs. Therefore, STRIDE-QA establishes a comprehensive foundation for developing more reliable VLMs for safety-critical autonomous systems.
When LLM Meets Time Series: Can LLMs Perform Multi-Step Time Series Reasoning and Inference
The rapid advancement of Large Language Models (LLMs) has sparked growing interest in their application to time series analysis tasks. However, their ability to perform complex reasoning over temporal data in real-world application domains remains underexplored. To move toward this goal, a first step is to establish a rigorous benchmark dataset for evaluation. In this work, we introduce the TSAIA Benchmark, a first attempt to evaluate LLMs as time-series AI assistants. To ensure both scientific rigor and practical relevance, we surveyed over 20 academic publications and identified 33 real-world task formulations. The benchmark encompasses a broad spectrum of challenges, ranging from constraint-aware forecasting to anomaly detection with threshold calibration: tasks that require compositional reasoning and multi-step time series analysis. The question generator is designed to be dynamic and extensible, supporting continuous expansion as new datasets or task types are introduced. Given the heterogeneous nature of the tasks, we adopt task-specific success criteria and tailored inference-quality metrics to ensure meaningful evaluation for each task. We apply this benchmark to assess eight state-of-the-art LLMs under a unified evaluation protocol. Our analysis reveals limitations in current models' ability to assemble complex time series analysis workflows, underscoring the need for specialized methodologies for domain-specific adaptation. Our benchmark is available at https://huggingface.co/datasets/Melady/TSAIA, and the code is available at https://github.com/USC-Melady/TSAIA.
QASem Parsing: Text-to-text Modeling of QA-based Semantics
Several recent works have suggested to represent semantic relations with questions and answers, decomposing textual information into separate interrogative natural language statements. In this paper, we consider three QA-based semantic tasks - namely, QA-SRL, QANom and QADiscourse, each targeting a certain type of predication - and propose to regard them as jointly providing a comprehensive representation of textual information. To promote this goal, we investigate how to best utilize the power of sequence-to-sequence (seq2seq) pre-trained language models, within the unique setup of semi-structured outputs, consisting of an unordered set of question-answer pairs. We examine different input and output linearization strategies, and assess the effect of multitask learning and of simple data augmentation techniques in the setting of imbalanced training data. Consequently, we release the first unified QASem parsing tool, practical for downstream applications who can benefit from an explicit, QA-based account of information units in a text.
Scanning Only Once: An End-to-end Framework for Fast Temporal Grounding in Long Videos
Video temporal grounding aims to pinpoint a video segment that matches the query description. Despite the recent advance in short-form videos (e.g., in minutes), temporal grounding in long videos (e.g., in hours) is still at its early stage. To address this challenge, a common practice is to employ a sliding window, yet can be inefficient and inflexible due to the limited number of frames within the window. In this work, we propose an end-to-end framework for fast temporal grounding, which is able to model an hours-long video with one-time network execution. Our pipeline is formulated in a coarse-to-fine manner, where we first extract context knowledge from non-overlapped video clips (i.e., anchors), and then supplement the anchors that highly response to the query with detailed content knowledge. Besides the remarkably high pipeline efficiency, another advantage of our approach is the capability of capturing long-range temporal correlation, thanks to modeling the entire video as a whole, and hence facilitates more accurate grounding. Experimental results suggest that, on the long-form video datasets MAD and Ego4d, our method significantly outperforms state-of-the-arts, and achieves 14.6times / 102.8times higher efficiency respectively. Project can be found at https://github.com/afcedf/SOONet.git.
ProMQA: Question Answering Dataset for Multimodal Procedural Activity Understanding
Multimodal systems have great potential to assist humans in procedural activities, where people follow instructions to achieve their goals. Despite diverse application scenarios, systems are typically evaluated on traditional classification tasks, e.g., action recognition or temporal action segmentation. In this paper, we present a novel evaluation dataset, ProMQA, to measure system advancements in application-oriented scenarios. ProMQA consists of 401 multimodal procedural QA pairs on user recording of procedural activities coupled with their corresponding instruction. For QA annotation, we take a cost-effective human-LLM collaborative approach, where the existing annotation is augmented with LLM-generated QA pairs that are later verified by humans. We then provide the benchmark results to set the baseline performance on ProMQA. Our experiment reveals a significant gap between human performance and that of current systems, including competitive proprietary multimodal models. We hope our dataset sheds light on new aspects of models' multimodal understanding capabilities.
Temporal Reasoning Transfer from Text to Video
Video Large Language Models (Video LLMs) have shown promising capabilities in video comprehension, yet they struggle with tracking temporal changes and reasoning about temporal relationships. While previous research attributed this limitation to the ineffective temporal encoding of visual inputs, our diagnostic study reveals that video representations contain sufficient information for even small probing classifiers to achieve perfect accuracy. Surprisingly, we find that the key bottleneck in Video LLMs' temporal reasoning capability stems from the underlying LLM's inherent difficulty with temporal concepts, as evidenced by poor performance on textual temporal question-answering tasks. Building on this discovery, we introduce the Textual Temporal reasoning Transfer (T3). T3 synthesizes diverse temporal reasoning tasks in pure text format from existing image-text datasets, addressing the scarcity of video samples with complex temporal scenarios. Remarkably, without using any video data, T3 enhances LongVA-7B's temporal understanding, yielding a 5.3 absolute accuracy improvement on the challenging TempCompass benchmark, which enables our model to outperform ShareGPT4Video-8B trained on 28,000 video samples. Additionally, the enhanced LongVA-7B model achieves competitive performance on comprehensive video benchmarks. For example, it achieves a 49.7 accuracy on the Temporal Reasoning task of Video-MME, surpassing powerful large-scale models such as InternVL-Chat-V1.5-20B and VILA1.5-40B. Further analysis reveals a strong correlation between textual and video temporal task performance, validating the efficacy of transferring temporal reasoning abilities from text to video domains.
TIMEDIAL: Temporal Commonsense Reasoning in Dialog
Everyday conversations require understanding everyday events, which in turn, requires understanding temporal commonsense concepts interwoven with those events. Despite recent progress with massive pre-trained language models (LMs) such as T5 and GPT-3, their capability of temporal reasoning in dialogs remains largely under-explored. In this paper, we present the first study to investigate pre-trained LMs for their temporal reasoning capabilities in dialogs by introducing a new task and a crowd-sourced English challenge set, TIMEDIAL. We formulate TIME-DIAL as a multiple-choice cloze task with over 1.1K carefully curated dialogs. Empirical results demonstrate that even the best performing models struggle on this task compared to humans, with 23 absolute points of gap in accuracy. Furthermore, our analysis reveals that the models fail to reason about dialog context correctly; instead, they rely on shallow cues based on existing temporal patterns in context, motivating future research for modeling temporal concepts in text and robust contextual reasoning about them. The dataset is publicly available at: https://github.com/google-research-datasets/timedial.
Test of Time: A Benchmark for Evaluating LLMs on Temporal Reasoning
Large language models (LLMs) have showcased remarkable reasoning capabilities, yet they remain susceptible to errors, particularly in temporal reasoning tasks involving complex temporal logic. Existing research has explored LLM performance on temporal reasoning using diverse datasets and benchmarks. However, these studies often rely on real-world data that LLMs may have encountered during pre-training or employ anonymization techniques that can inadvertently introduce factual inconsistencies. In this work, we address these limitations by introducing novel synthetic datasets specifically designed to assess LLM temporal reasoning abilities in various scenarios. The diversity of question types across these datasets enables systematic investigation into the impact of the problem structure, size, question type, fact order, and other factors on LLM performance. Our findings provide valuable insights into the strengths and weaknesses of current LLMs in temporal reasoning tasks. To foster further research in this area, we are open-sourcing the datasets and evaluation framework used in our experiments: https://huggingface.co/datasets/baharef/ToT.
Zero-Shot Dialogue State Tracking via Cross-Task Transfer
Zero-shot transfer learning for dialogue state tracking (DST) enables us to handle a variety of task-oriented dialogue domains without the expense of collecting in-domain data. In this work, we propose to transfer the cross-task knowledge from general question answering (QA) corpora for the zero-shot DST task. Specifically, we propose TransferQA, a transferable generative QA model that seamlessly combines extractive QA and multi-choice QA via a text-to-text transformer framework, and tracks both categorical slots and non-categorical slots in DST. In addition, we introduce two effective ways to construct unanswerable questions, namely, negative question sampling and context truncation, which enable our model to handle "none" value slots in the zero-shot DST setting. The extensive experiments show that our approaches substantially improve the existing zero-shot and few-shot results on MultiWoz. Moreover, compared to the fully trained baseline on the Schema-Guided Dialogue dataset, our approach shows better generalization ability in unseen domains.
Revisiting the Open-Domain Question Answering Pipeline
Open-domain question answering (QA) is the tasl of identifying answers to natural questions from a large corpus of documents. The typical open-domain QA system starts with information retrieval to select a subset of documents from the corpus, which are then processed by a machine reader to select the answer spans. This paper describes Mindstone, an open-domain QA system that consists of a new multi-stage pipeline that employs a traditional BM25-based information retriever, RM3-based neural relevance feedback, neural ranker, and a machine reading comprehension stage. This paper establishes a new baseline for end-to-end performance on question answering for Wikipedia/SQuAD dataset (EM=58.1, F1=65.8), with substantial gains over the previous state of the art (Yang et al., 2019b). We also show how the new pipeline enables the use of low-resolution labels, and can be easily tuned to meet various timing requirements.
Vista-LLaMA: Reducing Hallucination in Video Language Models via Equal Distance to Visual Tokens
Recent advances in large video-language models have displayed promising outcomes in video comprehension. Current approaches straightforwardly convert video into language tokens and employ large language models for multi-modal tasks. However, this method often leads to the generation of irrelevant content, commonly known as "hallucination", as the length of the text increases and the impact of the video diminishes. To address this problem, we propose Vista-LLaMA, a novel framework that maintains the consistent distance between all visual tokens and any language tokens, irrespective of the generated text length. Vista-LLaMA omits relative position encoding when determining attention weights between visual and text tokens, retaining the position encoding for text and text tokens. This amplifies the effect of visual tokens on text generation, especially when the relative distance is longer between visual and text tokens. The proposed attention mechanism significantly reduces the chance of producing irrelevant text related to the video content. Furthermore, we present a sequential visual projector that projects the current video frame into tokens of language space with the assistance of the previous frame. This approach not only captures the temporal relationship within the video, but also allows less visual tokens to encompass the entire video. Our approach significantly outperforms various previous methods (e.g., Video-ChatGPT, MovieChat) on four challenging open-ended video question answering benchmarks. We reach an accuracy of 60.7 on the zero-shot NExT-QA and 60.5 on the zero-shot MSRVTT-QA, setting a new state-of-the-art performance. This project is available at https://jinxxian.github.io/Vista-LLaMA.
Tem-adapter: Adapting Image-Text Pretraining for Video Question Answer
Video-language pre-trained models have shown remarkable success in guiding video question-answering (VideoQA) tasks. However, due to the length of video sequences, training large-scale video-based models incurs considerably higher costs than training image-based ones. This motivates us to leverage the knowledge from image-based pretraining, despite the obvious gaps between image and video domains. To bridge these gaps, in this paper, we propose Tem-Adapter, which enables the learning of temporal dynamics and complex semantics by a visual Temporal Aligner and a textual Semantic Aligner. Unlike conventional pretrained knowledge adaptation methods that only concentrate on the downstream task objective, the Temporal Aligner introduces an extra language-guided autoregressive task aimed at facilitating the learning of temporal dependencies, with the objective of predicting future states based on historical clues and language guidance that describes event progression. Besides, to reduce the semantic gap and adapt the textual representation for better event description, we introduce a Semantic Aligner that first designs a template to fuse question and answer pairs as event descriptions and then learns a Transformer decoder with the whole video sequence as guidance for refinement. We evaluate Tem-Adapter and different pre-train transferring methods on two VideoQA benchmarks, and the significant performance improvement demonstrates the effectiveness of our method.
AudioTime: A Temporally-aligned Audio-text Benchmark Dataset
Recent advancements in audio generation have enabled the creation of high-fidelity audio clips from free-form textual descriptions. However, temporal relationships, a critical feature for audio content, are currently underrepresented in mainstream models, resulting in an imprecise temporal controllability. Specifically, users cannot accurately control the timestamps of sound events using free-form text. We acknowledge that a significant factor is the absence of high-quality, temporally-aligned audio-text datasets, which are essential for training models with temporal control. The more temporally-aligned the annotations, the better the models can understand the precise relationship between audio outputs and temporal textual prompts. Therefore, we present a strongly aligned audio-text dataset, AudioTime. It provides text annotations rich in temporal information such as timestamps, duration, frequency, and ordering, covering almost all aspects of temporal control. Additionally, we offer a comprehensive test set and evaluation metric to assess the temporal control performance of various models. Examples are available on the https://zeyuxie29.github.io/AudioTime/
Temporal Reasoning on Implicit Events from Distant Supervision
We propose TRACIE, a novel temporal reasoning dataset that evaluates the degree to which systems understand implicit events -- events that are not mentioned explicitly in natural language text but can be inferred from it. This introduces a new challenge in temporal reasoning research, where prior work has focused on explicitly mentioned events. Human readers can infer implicit events via commonsense reasoning, resulting in a more comprehensive understanding of the situation and, consequently, better reasoning about time. We find, however, that state-of-the-art models struggle when predicting temporal relationships between implicit and explicit events. To address this, we propose a neuro-symbolic temporal reasoning model, SYMTIME, which exploits distant supervision signals from large-scale text and uses temporal rules to combine start times and durations to infer end times. SYMTIME outperforms strong baseline systems on TRACIE by 5%, and by 11% in a zero prior knowledge training setting. Our approach also generalizes to other temporal reasoning tasks, as evidenced by a gain of 1%-9% on MATRES, an explicit event benchmark.
Chat-TS: Enhancing Multi-Modal Reasoning Over Time-Series and Natural Language Data
Time-series analysis is critical for a wide range of fields such as healthcare, finance, transportation, and energy, among many others. The practical applications often involve analyzing time-series data alongside contextual information in the form of natural language to support informed decisions. However, current time-series models are limited in their ability to perform reasoning that involves both time-series and their textual content. In this work, we address this gap by introducing Chat-TS, a large language model (LLM) based framework, designed to support reasoning over time series and textual data. Unlike traditional models, Chat-TS integrates time-series tokens into LLMs' vocabulary, enhancing its reasoning ability over both modalities without compromising the core natural language capabilities, enabling practical analysis and reasoning across modalities. To support learning and evaluation in this setup, we contribute new datasets: the TS Instruct Training Dataset which pairs diverse time-series data with relevant text instructions and responses for instruction tuning, the TS Instruct Question and Answer (QA) Gold Dataset which provides multiple-choice questions designed to evaluate multimodal reasoning, and a TS Instruct Quantitative Probing Set which contains a small subset of the TS Instruct QA tasks alongside math and decision-making questions for LLM evaluation. We designed a training strategy to preserve the inherent reasoning capabilities of LLMs while augmenting them for time-series reasoning. Experiments show that Chat-TS achieves state-of-the-art performance in multi-modal reasoning tasks by maintaining strong natural language proficiency while improving time-series reasoning. ~To ensure replicability and facilitate future research, all models, datasets, and code will be available at [\texttt{Github-URL].}
Time Is a Feature: Exploiting Temporal Dynamics in Diffusion Language Models
Diffusion large language models (dLLMs) generate text through iterative denoising, yet current decoding strategies discard rich intermediate predictions in favor of the final output. Our work here reveals a critical phenomenon, temporal oscillation, where correct answers often emerge in the middle process, but are overwritten in later denoising steps. To address this issue, we introduce two complementary methods that exploit temporal consistency: 1) Temporal Self-Consistency Voting, a training-free, test-time decoding strategy that aggregates predictions across denoising steps to select the most consistent output; and 2) a post-training method termed Temporal Consistency Reinforcement, which uses Temporal Semantic Entropy (TSE), a measure of semantic stability across intermediate predictions, as a reward signal to encourage stable generations. Empirical results across multiple benchmarks demonstrate the effectiveness of our approach. Using the negative TSE reward alone, we observe a remarkable average improvement of 24.7% on the Countdown dataset over an existing dLLM. Combined with the accuracy reward, we achieve absolute gains of 2.0% on GSM8K, 4.3% on MATH500, 6.6% on SVAMP, and 25.3% on Countdown, respectively. Our findings underscore the untapped potential of temporal dynamics in dLLMs and offer two simple yet effective tools to harness them.
LMM-VQA: Advancing Video Quality Assessment with Large Multimodal Models
The explosive growth of videos on streaming media platforms has underscored the urgent need for effective video quality assessment (VQA) algorithms to monitor and perceptually optimize the quality of streaming videos. However, VQA remains an extremely challenging task due to the diverse video content and the complex spatial and temporal distortions, thus necessitating more advanced methods to address these issues. Nowadays, large multimodal models (LMMs), such as GPT-4V, have exhibited strong capabilities for various visual understanding tasks, motivating us to leverage the powerful multimodal representation ability of LMMs to solve the VQA task. Therefore, we propose the first Large Multi-Modal Video Quality Assessment (LMM-VQA) model, which introduces a novel spatiotemporal visual modeling strategy for quality-aware feature extraction. Specifically, we first reformulate the quality regression problem into a question and answering (Q&A) task and construct Q&A prompts for VQA instruction tuning. Then, we design a spatiotemporal vision encoder to extract spatial and temporal features to represent the quality characteristics of videos, which are subsequently mapped into the language space by the spatiotemporal projector for modality alignment. Finally, the aligned visual tokens and the quality-inquired text tokens are aggregated as inputs for the large language model (LLM) to generate the quality score and level. Extensive experiments demonstrate that LMM-VQA achieves state-of-the-art performance across five VQA benchmarks, exhibiting an average improvement of 5% in generalization ability over existing methods. Furthermore, due to the advanced design of the spatiotemporal encoder and projector, LMM-VQA also performs exceptionally well on general video understanding tasks, further validating its effectiveness. Our code will be released at https://github.com/Sueqk/LMM-VQA.
Faster and Better LLMs via Latency-Aware Test-Time Scaling
Test-Time Scaling (TTS) has proven effective in improving the performance of Large Language Models (LLMs) during inference. However, existing research has overlooked the efficiency of TTS from a latency-sensitive perspective. Through a latency-aware evaluation of representative TTS methods, we demonstrate that a compute-optimal TTS does not always result in the lowest latency in scenarios where latency is critical. To address this gap and achieve latency-optimal TTS, we propose two key approaches by optimizing the concurrency configurations: (1) branch-wise parallelism, which leverages multiple concurrent inference branches, and (2) sequence-wise parallelism, enabled by speculative decoding. By integrating these two approaches and allocating computational resources properly to each, our latency-optimal TTS enables a 32B model to reach 82.3% accuracy on MATH-500 within 1 minute and a smaller 3B model to achieve 72.4% within 10 seconds. Our work emphasizes the importance of latency-aware TTS and demonstrates its ability to deliver both speed and accuracy in latency-sensitive scenarios.
TimeArena: Shaping Efficient Multitasking Language Agents in a Time-Aware Simulation
Despite remarkable advancements in emulating human-like behavior through Large Language Models (LLMs), current textual simulations do not adequately address the notion of time. To this end, we introduce TimeArena, a novel textual simulated environment that incorporates complex temporal dynamics and constraints that better reflect real-life planning scenarios. In TimeArena, agents are asked to complete multiple tasks as soon as possible, allowing for parallel processing to save time. We implement the dependency between actions, the time duration for each action, and the occupancy of the agent and the objects in the environment. TimeArena grounds to 30 real-world tasks in cooking, household activities, and laboratory work. We conduct extensive experiments with various state-of-the-art LLMs using TimeArena. Our findings reveal that even the most powerful models, e.g., GPT-4, still lag behind humans in effective multitasking, underscoring the need for enhanced temporal awareness in the development of language agents.
Grounded Question-Answering in Long Egocentric Videos
Existing approaches to video understanding, mainly designed for short videos from a third-person perspective, are limited in their applicability in certain fields, such as robotics. In this paper, we delve into open-ended question-answering (QA) in long, egocentric videos, which allows individuals or robots to inquire about their own past visual experiences. This task presents unique challenges, including the complexity of temporally grounding queries within extensive video content, the high resource demands for precise data annotation, and the inherent difficulty of evaluating open-ended answers due to their ambiguous nature. Our proposed approach tackles these challenges by (i) integrating query grounding and answering within a unified model to reduce error propagation; (ii) employing large language models for efficient and scalable data synthesis; and (iii) introducing a close-ended QA task for evaluation, to manage answer ambiguity. Extensive experiments demonstrate the effectiveness of our method, which also achieves state-of-the-art performance on the QAEgo4D and Ego4D-NLQ benchmarks. Code, data, and models are available at https://github.com/Becomebright/GroundVQA.
TimeChat: A Time-sensitive Multimodal Large Language Model for Long Video Understanding
This work proposes TimeChat, a time-sensitive multimodal large language model specifically designed for long video understanding. Our model incorporates two key architectural contributions: (1) a timestamp-aware frame encoder that binds visual content with the timestamp of each frame, and (2) a sliding video Q-Former that produces a video token sequence of varying lengths to accommodate videos of various durations. Additionally, we construct an instruction-tuning dataset, encompassing 6 tasks and a total of 125K instances, to further enhance TimeChat's instruction-following performance. Experiment results across various video understanding tasks, such as dense captioning, temporal grounding, and highlight detection, demonstrate TimeChat's strong zero-shot temporal localization and reasoning capabilities. For example, it achieves +9.2 F1 score and +2.8 CIDEr on YouCook2, +5.8 HIT@1 on QVHighlights, and +27.5 R@1 (IoU=0.5) on Charades-STA, compared to state-of-the-art video large language models, holding the potential to serve as a versatile video assistant for long-form video comprehension tasks and satisfy realistic user requirements.
Temporal Contrastive Learning for Video Temporal Reasoning in Large Vision-Language Models
Temporal reasoning is a critical challenge in video-language understanding, as it requires models to align semantic concepts consistently across time. While existing large vision-language models (LVLMs) and large language models (LLMs) excel at static tasks, they struggle to capture dynamic interactions and temporal dependencies in video sequences. In this work, we propose Temporal Semantic Alignment via Dynamic Prompting (TSADP), a novel framework that enhances temporal reasoning capabilities through dynamic task-specific prompts and temporal contrastive learning. TSADP leverages a Dynamic Prompt Generator (DPG) to encode fine-grained temporal relationships and a Temporal Contrastive Loss (TCL) to align visual and textual embeddings across time. We evaluate our method on the VidSitu dataset, augmented with enriched temporal annotations, and demonstrate significant improvements over state-of-the-art models in tasks such as Intra-Video Entity Association, Temporal Relationship Understanding, and Chronology Prediction. Human evaluations further confirm TSADP's ability to generate coherent and semantically accurate descriptions. Our analysis highlights the robustness, efficiency, and practical utility of TSADP, making it a step forward in the field of video-language understanding.
Multilingual LLMs Inherently Reward In-Language Time-Sensitive Semantic Alignment for Low-Resource Languages
The unwavering disparity in labeled resources between resource-rich languages and those considered low-resource remains a significant impediment for Large Language Models (LLMs). Recent strides in cross-lingual in-context learning (X-ICL), mainly through semantically aligned examples retrieved from multilingual pre-trained transformers, have shown promise in mitigating this issue. However, our investigation reveals that LLMs intrinsically reward in-language semantically aligned cross-lingual instances over direct cross-lingual semantic alignments, with a pronounced disparity in handling time-sensitive queries in the X-ICL setup. Such queries demand sound temporal reasoning ability from LLMs, yet the advancements have predominantly focused on English. This study aims to bridge this gap by improving temporal reasoning capabilities in low-resource languages. To this end, we introduce mTEMPREASON, a temporal reasoning dataset aimed at the varied degrees of low-resource languages and propose Cross-Lingual Time-Sensitive Semantic Alignment (CLiTSSA), a novel method to improve temporal reasoning in these contexts. To facilitate this, we construct an extension of mTEMPREASON comprising pairs of parallel cross-language temporal queries along with their anticipated in-language semantic similarity scores. Our empirical evidence underscores the superior performance of CLiTSSA compared to established baselines across three languages -- Romanian, German, and French, encompassing three temporal tasks and including a diverse set of four contemporaneous LLMs. This marks a significant step forward in addressing resource disparity in the context of temporal reasoning across languages.
AGQA: A Benchmark for Compositional Spatio-Temporal Reasoning
Visual events are a composition of temporal actions involving actors spatially interacting with objects. When developing computer vision models that can reason about compositional spatio-temporal events, we need benchmarks that can analyze progress and uncover shortcomings. Existing video question answering benchmarks are useful, but they often conflate multiple sources of error into one accuracy metric and have strong biases that models can exploit, making it difficult to pinpoint model weaknesses. We present Action Genome Question Answering (AGQA), a new benchmark for compositional spatio-temporal reasoning. AGQA contains 192M unbalanced question answer pairs for 9.6K videos. We also provide a balanced subset of 3.9M question answer pairs, 3 orders of magnitude larger than existing benchmarks, that minimizes bias by balancing the answer distributions and types of question structures. Although human evaluators marked 86.02% of our question-answer pairs as correct, the best model achieves only 47.74% accuracy. In addition, AGQA introduces multiple training/test splits to test for various reasoning abilities, including generalization to novel compositions, to indirect references, and to more compositional steps. Using AGQA, we evaluate modern visual reasoning systems, demonstrating that the best models barely perform better than non-visual baselines exploiting linguistic biases and that none of the existing models generalize to novel compositions unseen during training.
STBench: Assessing the Ability of Large Language Models in Spatio-Temporal Analysis
The rapid evolution of large language models (LLMs) holds promise for reforming the methodology of spatio-temporal data mining. However, current works for evaluating the spatio-temporal understanding capability of LLMs are somewhat limited and biased. These works either fail to incorporate the latest language models or only focus on assessing the memorized spatio-temporal knowledge. To address this gap, this paper dissects LLMs' capability of spatio-temporal data into four distinct dimensions: knowledge comprehension, spatio-temporal reasoning, accurate computation, and downstream applications. We curate several natural language question-answer tasks for each category and build the benchmark dataset, namely STBench, containing 13 distinct tasks and over 60,000 QA pairs. Moreover, we have assessed the capabilities of 13 LLMs, such as GPT-4o, Gemma and Mistral. Experimental results reveal that existing LLMs show remarkable performance on knowledge comprehension and spatio-temporal reasoning tasks, with potential for further enhancement on other tasks through in-context learning, chain-of-though prompting, and fine-tuning. The code and datasets of STBench are released on https://github.com/LwbXc/STBench.
Jamp: Controlled Japanese Temporal Inference Dataset for Evaluating Generalization Capacity of Language Models
Natural Language Inference (NLI) tasks involving temporal inference remain challenging for pre-trained language models (LMs). Although various datasets have been created for this task, they primarily focus on English and do not address the need for resources in other languages. It is unclear whether current LMs realize the generalization capacity for temporal inference across languages. In this paper, we present Jamp, a Japanese NLI benchmark focused on temporal inference. Our dataset includes a range of temporal inference patterns, which enables us to conduct fine-grained analysis. To begin the data annotation process, we create diverse inference templates based on the formal semantics test suites. We then automatically generate diverse NLI examples by using the Japanese case frame dictionary and well-designed templates while controlling the distribution of inference patterns and gold labels. We evaluate the generalization capacities of monolingual/multilingual LMs by splitting our dataset based on tense fragments (i.e., temporal inference patterns). Our findings demonstrate that LMs struggle with specific linguistic phenomena, such as habituality, indicating that there is potential for the development of more effective NLI models across languages.
HiTeA: Hierarchical Temporal-Aware Video-Language Pre-training
Video-language pre-training has advanced the performance of various downstream video-language tasks. However, most previous methods directly inherit or adapt typical image-language pre-training paradigms to video-language pre-training, thus not fully exploiting the unique characteristic of video, i.e., temporal. In this paper, we propose a Hierarchical Temporal-Aware video-language pre-training framework, HiTeA, with two novel pre-training tasks for modeling cross-modal alignment between moments and texts as well as the temporal relations of video-text pairs. Specifically, we propose a cross-modal moment exploration task to explore moments in videos, which results in detailed video moment representation. Besides, the inherent temporal relations are captured by aligning video-text pairs as a whole in different time resolutions with multi-modal temporal relation exploration task. Furthermore, we introduce the shuffling test to evaluate the temporal reliance of datasets and video-language pre-training models. We achieve state-of-the-art results on 15 well-established video-language understanding and generation tasks, especially on temporal-oriented datasets (e.g., SSv2-Template and SSv2-Label) with 8.6% and 11.1% improvement respectively. HiTeA also demonstrates strong generalization ability when directly transferred to downstream tasks in a zero-shot manner. Models and demo will be available on ModelScope.
ChatQA: Building GPT-4 Level Conversational QA Models
In this work, we introduce ChatQA, a family of conversational question answering (QA) models, that obtain GPT-4 level accuracies. Specifically, we propose a two-stage instruction tuning method that can significantly improve the zero-shot conversational QA results from large language models (LLMs). To handle retrieval in conversational QA, we fine-tune a dense retriever on a multi-turn QA dataset, which provides comparable results to using the state-of-the-art query rewriting model while largely reducing deployment cost. Notably, our ChatQA-70B can outperform GPT-4 in terms of average score on 10 conversational QA datasets (54.14 vs. 53.90), without relying on any synthetic data from OpenAI GPT models.
SpaceQA: Answering Questions about the Design of Space Missions and Space Craft Concepts
We present SpaceQA, to the best of our knowledge the first open-domain QA system in Space mission design. SpaceQA is part of an initiative by the European Space Agency (ESA) to facilitate the access, sharing and reuse of information about Space mission design within the agency and with the public. We adopt a state-of-the-art architecture consisting of a dense retriever and a neural reader and opt for an approach based on transfer learning rather than fine-tuning due to the lack of domain-specific annotated data. Our evaluation on a test set produced by ESA is largely consistent with the results originally reported by the evaluated retrievers and confirms the need of fine tuning for reading comprehension. As of writing this paper, ESA is piloting SpaceQA internally.
TimeSearch-R: Adaptive Temporal Search for Long-Form Video Understanding via Self-Verification Reinforcement Learning
Temporal search aims to identify a minimal set of relevant frames from tens of thousands based on a given query, serving as a foundation for accurate long-form video understanding. Existing works attempt to progressively narrow the search space. However, these approaches typically rely on a hand-crafted search process, lacking end-to-end optimization for learning optimal search strategies. In this paper, we propose TimeSearch-R, which reformulates temporal search as interleaved text-video thinking, seamlessly integrating searching video clips into the reasoning process through reinforcement learning (RL). However, applying RL training methods, such as Group Relative Policy Optimization (GRPO), to video reasoning can result in unsupervised intermediate search decisions. This leads to insufficient exploration of the video content and inconsistent logical reasoning. To address these issues, we introduce GRPO with Completeness Self-Verification (GRPO-CSV), which gathers searched video frames from the interleaved reasoning process and utilizes the same policy model to verify the adequacy of searched frames, thereby improving the completeness of video reasoning. Additionally, we construct datasets specifically designed for the SFT cold-start and RL training of GRPO-CSV, filtering out samples with weak temporal dependencies to enhance task difficulty and improve temporal search capabilities. Extensive experiments demonstrate that TimeSearch-R achieves significant improvements on temporal search benchmarks such as Haystack-LVBench and Haystack-Ego4D, as well as long-form video understanding benchmarks like VideoMME and MLVU. Notably, TimeSearch-R establishes a new state-of-the-art on LongVideoBench with 4.1% improvement over the base model Qwen2.5-VL and 2.0% over the advanced video reasoning model Video-R1. Our code is available at https://github.com/Time-Search/TimeSearch-R.
