Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCounterfactual Identifiability of Bijective Causal Models
We study counterfactual identifiability in causal models with bijective generation mechanisms (BGM), a class that generalizes several widely-used causal models in the literature. We establish their counterfactual identifiability for three common causal structures with unobserved confounding, and propose a practical learning method that casts learning a BGM as structured generative modeling. Learned BGMs enable efficient counterfactual estimation and can be obtained using a variety of deep conditional generative models. We evaluate our techniques in a visual task and demonstrate its application in a real-world video streaming simulation task.
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning
Although disentangled representations are often said to be beneficial for downstream tasks, current empirical and theoretical understanding is limited. In this work, we provide evidence that disentangled representations coupled with sparse base-predictors improve generalization. In the context of multi-task learning, we prove a new identifiability result that provides conditions under which maximally sparse base-predictors yield disentangled representations. Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem. Finally, we explore a meta-learning version of this algorithm based on group Lasso multiclass SVM base-predictors, for which we derive a tractable dual formulation. It obtains competitive results on standard few-shot classification benchmarks, while each task is using only a fraction of the learned representations.
Identifiable Latent Polynomial Causal Models Through the Lens of Change
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data. One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability. A recent breakthrough explores identifiability by leveraging the change of causal influences among latent causal variables across multiple environments liu2022identifying. However, this progress rests on the assumption that the causal relationships among latent causal variables adhere strictly to linear Gaussian models. In this paper, we extend the scope of latent causal models to involve nonlinear causal relationships, represented by polynomial models, and general noise distributions conforming to the exponential family. Additionally, we investigate the necessity of imposing changes on all causal parameters and present partial identifiability results when part of them remains unchanged. Further, we propose a novel empirical estimation method, grounded in our theoretical finding, that enables learning consistent latent causal representations. Our experimental results, obtained from both synthetic and real-world data, validate our theoretical contributions concerning identifiability and consistency.
Invariance in Policy Optimisation and Partial Identifiability in Reward Learning
It is often very challenging to manually design reward functions for complex, real-world tasks. To solve this, one can instead use reward learning to infer a reward function from data. However, there are often multiple reward functions that fit the data equally well, even in the infinite-data limit. This means that the reward function is only partially identifiable. In this work, we formally characterise the partial identifiability of the reward function given several popular reward learning data sources, including expert demonstrations and trajectory comparisons. We also analyse the impact of this partial identifiability for several downstream tasks, such as policy optimisation. We unify our results in a framework for comparing data sources and downstream tasks by their invariances, with implications for the design and selection of data sources for reward learning.
Linear Causal Disentanglement via Interventions
Causal disentanglement seeks a representation of data involving latent variables that relate to one another via a causal model. A representation is identifiable if both the latent model and the transformation from latent to observed variables are unique. In this paper, we study observed variables that are a linear transformation of a linear latent causal model. Data from interventions are necessary for identifiability: if one latent variable is missing an intervention, we show that there exist distinct models that cannot be distinguished. Conversely, we show that a single intervention on each latent variable is sufficient for identifiability. Our proof uses a generalization of the RQ decomposition of a matrix that replaces the usual orthogonal and upper triangular conditions with analogues depending on a partial order on the rows of the matrix, with partial order determined by a latent causal model. We corroborate our theoretical results with a method for causal disentanglement that accurately recovers a latent causal model.
Preserving Statistical Validity in Adaptive Data Analysis
A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question.
The Test of Tests: A Framework For Differentially Private Hypothesis Testing
We present a generic framework for creating differentially private versions of any hypothesis test in a black-box way. We analyze the resulting tests analytically and experimentally. Most crucially, we show good practical performance for small data sets, showing that at epsilon = 1 we only need 5-6 times as much data as in the fully public setting. We compare our work to the one existing framework of this type, as well as to several individually-designed private hypothesis tests. Our framework is higher power than other generic solutions and at least competitive with (and often better than) individually-designed tests.
Defending Against Authorship Identification Attacks
Authorship identification has proven unsettlingly effective in inferring the identity of the author of an unsigned document, even when sensitive personal information has been carefully omitted. In the digital era, individuals leave a lasting digital footprint through their written content, whether it is posted on social media, stored on their employer's computers, or located elsewhere. When individuals need to communicate publicly yet wish to remain anonymous, there is little available to protect them from unwanted authorship identification. This unprecedented threat to privacy is evident in scenarios such as whistle-blowing. Proposed defenses against authorship identification attacks primarily aim to obfuscate one's writing style, thereby making it unlinkable to their pre-existing writing, while concurrently preserving the original meaning and grammatical integrity. The presented work offers a comprehensive review of the advancements in this research area spanning over the past two decades and beyond. It emphasizes the methodological frameworks of modification and generation-based strategies devised to evade authorship identification attacks, highlighting joint efforts from the differential privacy community. Limitations of current research are discussed, with a spotlight on open challenges and potential research avenues.
Identifiability of Label Noise Transition Matrix
The noise transition matrix plays a central role in the problem of learning with noisy labels. Among many other reasons, a large number of existing solutions rely on access to it. Identifying and estimating the transition matrix without ground truth labels is a critical and challenging task. When label noise transition depends on each instance, the problem of identifying the instance-dependent noise transition matrix becomes substantially more challenging. Despite recent works proposing solutions for learning from instance-dependent noisy labels, the field lacks a unified understanding of when such a problem remains identifiable. The goal of this paper is to characterize the identifiability of the label noise transition matrix. Building on Kruskal's identifiability results, we are able to show the necessity of multiple noisy labels in identifying the noise transition matrix for the generic case at the instance level. We further instantiate the results to explain the successes of the state-of-the-art solutions and how additional assumptions alleviated the requirement of multiple noisy labels. Our result also reveals that disentangled features are helpful in the above identification task and we provide empirical evidence.
Queries, Representation & Detection: The Next 100 Model Fingerprinting Schemes
The deployment of machine learning models in operational contexts represents a significant investment for any organisation. Consequently, the risk of these models being misappropriated by competitors needs to be addressed. In recent years, numerous proposals have been put forth to detect instances of model stealing. However, these proposals operate under implicit and disparate data and model access assumptions; as a consequence, it remains unclear how they can be effectively compared to one another. Our evaluation shows that a simple baseline that we introduce performs on par with existing state-of-the-art fingerprints, which, on the other hand, are much more complex. To uncover the reasons behind this intriguing result, this paper introduces a systematic approach to both the creation of model fingerprinting schemes and their evaluation benchmarks. By dividing model fingerprinting into three core components -- Query, Representation and Detection (QuRD) -- we are able to identify sim100 previously unexplored QuRD combinations and gain insights into their performance. Finally, we introduce a set of metrics to compare and guide the creation of more representative model stealing detection benchmarks. Our approach reveals the need for more challenging benchmarks and a sound comparison with baselines. To foster the creation of new fingerprinting schemes and benchmarks, we open-source our fingerprinting toolbox.
Scalable Fingerprinting of Large Language Models
Model fingerprinting has emerged as a powerful tool for model owners to identify their shared model given API access. However, to lower false discovery rate, fight fingerprint leakage, and defend against coalitions of model users attempting to bypass detection, we argue that {\em scalability} is critical, i.e., scaling up the number of fingerprints one can embed into a model. Hence, we pose scalability as a crucial requirement for fingerprinting schemes. We experiment with fingerprint design at a scale significantly larger than previously considered, and introduce a new method, dubbed Perinucleus sampling, to generate scalable, persistent, and harmless fingerprints. We demonstrate that this scheme can add 24,576 fingerprints to a Llama-3.1-8B model -- two orders of magnitude more than existing schemes -- without degrading the model's utility. Our inserted fingerprints persist even after supervised fine-tuning on standard post-training data. We further address security risks for fingerprinting, and theoretically and empirically show how a scalable fingerprinting scheme like ours can mitigate these risks.
WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models
The rapid advancement of generative models, facilitating the creation of hyper-realistic images from textual descriptions, has concurrently escalated critical societal concerns such as misinformation. Traditional fake detection mechanisms, although providing some mitigation, fall short in attributing responsibility for the malicious use of synthetic images. This paper introduces a novel approach to model fingerprinting that assigns responsibility for the generated images, thereby serving as a potential countermeasure to model misuse. Our method modifies generative models based on each user's unique digital fingerprint, imprinting a unique identifier onto the resultant content that can be traced back to the user. This approach, incorporating fine-tuning into Text-to-Image (T2I) tasks using the Stable Diffusion Model, demonstrates near-perfect attribution accuracy with a minimal impact on output quality. We rigorously scrutinize our method's secrecy under two distinct scenarios: one where a malicious user attempts to detect the fingerprint, and another where a user possesses a comprehensive understanding of our method. We also evaluate the robustness of our approach against various image post-processing manipulations typically executed by end-users. Through extensive evaluation of the Stable Diffusion models, our method presents a promising and novel avenue for accountable model distribution and responsible use.
Checking the Sufficiently Scattered Condition using a Global Non-Convex Optimization Software
The sufficiently scattered condition (SSC) is a key condition in the study of identifiability of various matrix factorization problems, including nonnegative, minimum-volume, symmetric, simplex-structured, and polytopic matrix factorizations. The SSC allows one to guarantee that the computed matrix factorization is unique/identifiable, up to trivial ambiguities. However, this condition is NP-hard to check in general. In this paper, we show that it can however be checked in a reasonable amount of time in realistic scenarios, when the factorization rank is not too large. This is achieved by formulating the problem as a non-convex quadratic optimization problem over a bounded set. We use the global non-convex optimization software Gurobi, and showcase the usefulness of this code on synthetic data sets and on real-world hyperspectral images.
Experts Don't Cheat: Learning What You Don't Know By Predicting Pairs
Identifying how much a model {p}_{theta}(Y|X) knows about the stochastic real-world process p(Y|X) it was trained on is important to ensure it avoids producing incorrect or "hallucinated" answers or taking unsafe actions. But this is difficult for generative models because probabilistic predictions do not distinguish between per-response noise (aleatoric uncertainty) and lack of knowledge about the process (epistemic uncertainty), and existing epistemic uncertainty quantification techniques tend to be overconfident when the model underfits. We propose a general strategy for teaching a model to both approximate p(Y|X) and also estimate the remaining gaps between {p}_{theta}(Y|X) and p(Y|X): train it to predict pairs of independent responses drawn from the true conditional distribution, allow it to "cheat" by observing one response while predicting the other, then measure how much it cheats. Remarkably, we prove that being good at cheating (i.e. cheating whenever it improves your prediction) is equivalent to being second-order calibrated, a principled extension of ordinary calibration that allows us to construct provably-correct frequentist confidence intervals for p(Y|X) and detect incorrect responses with high probability. We demonstrate empirically that our approach accurately estimates how much models don't know across ambiguous image classification, (synthetic) language modeling, and partially-observable navigation tasks, outperforming existing techniques.
Sharp Noisy Binary Search with Monotonic Probabilities
We revisit the noisy binary search model of Karp and Kleinberg, in which we have n coins with unknown probabilities p_i that we can flip. The coins are sorted by increasing p_i, and we would like to find where the probability crosses (to within varepsilon) of a target value tau. This generalized the fixed-noise model of Burnashev and Zigangirov , in which p_i = 1{2} pm varepsilon, to a setting where coins near the target may be indistinguishable from it. Karp and Kleinberg showed that Theta(1{varepsilon^2} log n) samples are necessary and sufficient for this task. We produce a practical algorithm by solving two theoretical challenges: high-probability behavior and sharp constants. We give an algorithm that succeeds with probability 1-delta from \[ 1{C_{\tau, \varepsilon}} \cdot \left(\lg n + O(\log^{2/3} n \log^{1/3} 1{\delta} + \log 1{\delta})\right) \] samples, where C_{tau, varepsilon} is the optimal such constant achievable. For delta > n^{-o(1)} this is within 1 + o(1) of optimal, and for delta ll 1 it is the first bound within constant factors of optimal.
Mitigating the Effects of Non-Identifiability on Inference for Bayesian Neural Networks with Latent Variables
Bayesian Neural Networks with Latent Variables (BNN+LVs) capture predictive uncertainty by explicitly modeling model uncertainty (via priors on network weights) and environmental stochasticity (via a latent input noise variable). In this work, we first show that BNN+LV suffers from a serious form of non-identifiability: explanatory power can be transferred between the model parameters and latent variables while fitting the data equally well. We demonstrate that as a result, in the limit of infinite data, the posterior mode over the network weights and latent variables is asymptotically biased away from the ground-truth. Due to this asymptotic bias, traditional inference methods may in practice yield parameters that generalize poorly and misestimate uncertainty. Next, we develop a novel inference procedure that explicitly mitigates the effects of likelihood non-identifiability during training and yields high-quality predictions as well as uncertainty estimates. We demonstrate that our inference method improves upon benchmark methods across a range of synthetic and real data-sets.
Discovering Transferable Forensic Features for CNN-generated Images Detection
Visual counterfeits are increasingly causing an existential conundrum in mainstream media with rapid evolution in neural image synthesis methods. Though detection of such counterfeits has been a taxing problem in the image forensics community, a recent class of forensic detectors -- universal detectors -- are able to surprisingly spot counterfeit images regardless of generator architectures, loss functions, training datasets, and resolutions. This intriguing property suggests the possible existence of transferable forensic features (T-FF) in universal detectors. In this work, we conduct the first analytical study to discover and understand T-FF in universal detectors. Our contributions are 2-fold: 1) We propose a novel forensic feature relevance statistic (FF-RS) to quantify and discover T-FF in universal detectors and, 2) Our qualitative and quantitative investigations uncover an unexpected finding: color is a critical T-FF in universal detectors. Code and models are available at https://keshik6.github.io/transferable-forensic-features/
Extracting Fix Ingredients using Language Models
Deep learning and language models are increasingly dominating automated program repair research. While previous generate-and-validate approaches were able to find and use fix ingredients on a file or even project level, neural language models are limited to the code that fits their input window. In this work we investigate how important identifier ingredients are in neural program repair and present ScanFix, an approach that leverages an additional scanner model to extract identifiers from a bug's file and potentially project-level context. We find that lack of knowledge of far-away identifiers is an important cause of failed repairs. Augmenting repair model input with scanner-extracted identifiers yields relative improvements of up to 31%. However, ScanFix is outperformed by a model with a large input window (> 5k tokens). When passing ingredients from the ground-truth fix, improvements are even higher. This shows that, with refined extraction techniques, ingredient scanning, similar to fix candidate ranking, could have the potential to become an important subtask of future automated repair systems. At the same time, it also demonstrates that this idea is subject to Sutton's bitter lesson and may be rendered unnecessary by new code models with ever-increasing context windows.
One-connection rule for structural equation models
Linear structural equation models are multivariate statistical models encoded by mixed graphs. In particular, the set of covariance matrices for distributions belonging to a linear structural equation model for a fixed mixed graph G=(V, D,B) is parameterized by a rational function with parameters for each vertex and edge in G. This rational parametrization naturally allows for the study of these models from an algebraic and combinatorial point of view. Indeed, this point of view has led to a collection of results in the literature, mainly focusing on questions related to identifiability and determining relationships between covariances (i.e., finding polynomials in the Gaussian vanishing ideal). So far, a large proportion of these results has focused on the case when D, the directed part of the mixed graph G, is acyclic. This is due to the fact that in the acyclic case, the parametrization becomes polynomial and there is a description of the entries of the covariance matrices in terms of a finite sum. We move beyond the acyclic case and give a closed form expression for the entries of the covariance matrices in terms of the one-connections in a graph obtained from D through some small operations. This closed form expression then allows us to show that if G is simple, then the parametrization map is generically finite-to-one. Finally, having a closed form expression for the covariance matrices allows for the development of an algorithm for systematically exploring possible polynomials in the Gaussian vanishing ideal.
Testing Neural Network Verifiers: A Soundness Benchmark with Hidden Counterexamples
In recent years, many neural network (NN) verifiers have been developed to formally verify certain properties of neural networks such as robustness. Although many benchmarks have been constructed to evaluate the performance of NN verifiers, they typically lack a ground-truth for hard instances where no current verifier can verify and no counterexample can be found, which makes it difficult to check the soundness of a new verifier if it claims to verify hard instances which no other verifier can do. We propose to develop a soundness benchmark for NN verification. Our benchmark contains instances with deliberately inserted counterexamples while we also try to hide the counterexamples from regular adversarial attacks which can be used for finding counterexamples. We design a training method to produce neural networks with such hidden counterexamples. Our benchmark aims to be used for testing the soundness of NN verifiers and identifying falsely claimed verifiability when it is known that hidden counterexamples exist. We systematically construct our benchmark and generate instances across diverse model architectures, activation functions, input sizes, and perturbation radii. We demonstrate that our benchmark successfully identifies bugs in state-of-the-art NN verifiers, as well as synthetic bugs, providing a crucial step toward enhancing the reliability of testing NN verifiers. Our code is available at https://github.com/MVP-Harry/SoundnessBench and our benchmark is available at https://huggingface.co/datasets/SoundnessBench/SoundnessBench.
Detecting Errors in a Numerical Response via any Regression Model
Noise plagues many numerical datasets, where the recorded values in the data may fail to match the true underlying values due to reasons including: erroneous sensors, data entry/processing mistakes, or imperfect human estimates. We consider general regression settings with covariates and a potentially corrupted response whose observed values may contain errors. By accounting for various uncertainties, we introduced veracity scores that distinguish between genuine errors and natural data fluctuations, conditioned on the available covariate information in the dataset. We propose a simple yet efficient filtering procedure for eliminating potential errors, and establish theoretical guarantees for our method. We also contribute a new error detection benchmark involving 5 regression datasets with real-world numerical errors (for which the true values are also known). In this benchmark and additional simulation studies, our method identifies incorrect values with better precision/recall than other approaches.
TelecomTS: A Multi-Modal Observability Dataset for Time Series and Language Analysis
Modern enterprises generate vast streams of time series metrics when monitoring complex systems, known as observability data. Unlike conventional time series from domains such as weather, observability data are zero-inflated, highly stochastic, and exhibit minimal temporal structure. Despite their importance, observability datasets are underrepresented in public benchmarks due to proprietary restrictions. Existing datasets are often anonymized and normalized, removing scale information and limiting their use for tasks beyond forecasting, such as anomaly detection, root-cause analysis, and multi-modal reasoning. To address this gap, we introduce TelecomTS, a large-scale observability dataset derived from a 5G telecommunications network. TelecomTS features heterogeneous, de-anonymized covariates with explicit scale information and supports a suite of downstream tasks, including anomaly detection, root-cause analysis, and a question-answering benchmark requiring multi-modal reasoning. Benchmarking state-of-the-art time series, language, and reasoning models reveals that existing approaches struggle with the abrupt, noisy, and high-variance dynamics of observability data. Our experiments also underscore the importance of preserving covariates' absolute scale, emphasizing the need for foundation time series models that natively leverage scale information for practical observability applications.
Efficient List-Decodable Regression using Batches
We begin the study of list-decodable linear regression using batches. In this setting only an alpha in (0,1] fraction of the batches are genuine. Each genuine batch contains ge n i.i.d. samples from a common unknown distribution and the remaining batches may contain arbitrary or even adversarial samples. We derive a polynomial time algorithm that for any nge tilde Omega(1/alpha) returns a list of size mathcal O(1/alpha^2) such that one of the items in the list is close to the true regression parameter. The algorithm requires only mathcal{O}(d/alpha^2) genuine batches and works under fairly general assumptions on the distribution. The results demonstrate the utility of batch structure, which allows for the first polynomial time algorithm for list-decodable regression, which may be impossible for the non-batch setting, as suggested by a recent SQ lower bound diakonikolas2021statistical for the non-batch setting.
ProPILE: Probing Privacy Leakage in Large Language Models
The rapid advancement and widespread use of large language models (LLMs) have raised significant concerns regarding the potential leakage of personally identifiable information (PII). These models are often trained on vast quantities of web-collected data, which may inadvertently include sensitive personal data. This paper presents ProPILE, a novel probing tool designed to empower data subjects, or the owners of the PII, with awareness of potential PII leakage in LLM-based services. ProPILE lets data subjects formulate prompts based on their own PII to evaluate the level of privacy intrusion in LLMs. We demonstrate its application on the OPT-1.3B model trained on the publicly available Pile dataset. We show how hypothetical data subjects may assess the likelihood of their PII being included in the Pile dataset being revealed. ProPILE can also be leveraged by LLM service providers to effectively evaluate their own levels of PII leakage with more powerful prompts specifically tuned for their in-house models. This tool represents a pioneering step towards empowering the data subjects for their awareness and control over their own data on the web.
Unsupervised Discovery of Formulas for Mathematical Constants
Ongoing efforts that span over decades show a rise of AI methods for accelerating scientific discovery, yet accelerating discovery in mathematics remains a persistent challenge for AI. Specifically, AI methods were not effective in creation of formulas for mathematical constants because each such formula must be correct for infinite digits of precision, with "near-true" formulas providing no insight toward the correct ones. Consequently, formula discovery lacks a clear distance metric needed to guide automated discovery in this realm. In this work, we propose a systematic methodology for categorization, characterization, and pattern identification of such formulas. The key to our methodology is introducing metrics based on the convergence dynamics of the formulas, rather than on the numerical value of the formula. These metrics enable the first automated clustering of mathematical formulas. We demonstrate this methodology on Polynomial Continued Fraction formulas, which are ubiquitous in their intrinsic connections to mathematical constants, and generalize many mathematical functions and structures. We test our methodology on a set of 1,768,900 such formulas, identifying many known formulas for mathematical constants, and discover previously unknown formulas for pi, ln(2), Gauss', and Lemniscate's constants. The uncovered patterns enable a direct generalization of individual formulas to infinite families, unveiling rich mathematical structures. This success paves the way towards a generative model that creates formulas fulfilling specified mathematical properties, accelerating the rate of discovery of useful formulas.
Analytical confidence intervals for the number of different objects in data streams
This paper develops a new mathematical-statistical approach to analyze a class of Flajolet-Martin algorithms (FMa), and provides analytical confidence intervals for the number F0 of distinct elements in a stream, based on Chernoff bounds. The class of FMa has reached a significant popularity in bigdata stream learning, and the attention of the literature has mainly been based on algorithmic aspects, basically complexity optimality, while the statistical analysis of these class of algorithms has been often faced heuristically. The analysis provided here shows deep connections with mathematical special functions and with extreme value theory. The latter connection may help in explaining heuristic considerations, while the first opens many numerical issues, faced at the end of the present paper. Finally, the algorithms are tested on an anonymized real data stream and MonteCarlo simulations are provided to support our analytical choice in this context.
Counterfactual Plans under Distributional Ambiguity
Counterfactual explanations are attracting significant attention due to the flourishing applications of machine learning models in consequential domains. A counterfactual plan consists of multiple possibilities to modify a given instance so that the model's prediction will be altered. As the predictive model can be updated subject to the future arrival of new data, a counterfactual plan may become ineffective or infeasible with respect to the future values of the model parameters. In this work, we study the counterfactual plans under model uncertainty, in which the distribution of the model parameters is partially prescribed using only the first- and second-moment information. First, we propose an uncertainty quantification tool to compute the lower and upper bounds of the probability of validity for any given counterfactual plan. We then provide corrective methods to adjust the counterfactual plan to improve the validity measure. The numerical experiments validate our bounds and demonstrate that our correction increases the robustness of the counterfactual plans in different real-world datasets.
Know Your Limits: Uncertainty Estimation with ReLU Classifiers Fails at Reliable OOD Detection
A crucial requirement for reliable deployment of deep learning models for safety-critical applications is the ability to identify out-of-distribution (OOD) data points, samples which differ from the training data and on which a model might underperform. Previous work has attempted to tackle this problem using uncertainty estimation techniques. However, there is empirical evidence that a large family of these techniques do not detect OOD reliably in classification tasks. This paper gives a theoretical explanation for said experimental findings and illustrates it on synthetic data. We prove that such techniques are not able to reliably identify OOD samples in a classification setting, since their level of confidence is generalized to unseen areas of the feature space. This result stems from the interplay between the representation of ReLU networks as piece-wise affine transformations, the saturating nature of activation functions like softmax, and the most widely-used uncertainty metrics.
Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models
Answering counterfactual queries has many important applications such as knowledge discovery and explainability, but is challenging when causal variables are unobserved and we only see a projection onto an observation space, for instance, image pixels. One approach is to recover the latent Structural Causal Model (SCM), but this typically needs unrealistic assumptions, such as linearity of the causal mechanisms. Another approach is to use na\"ive ML approximations, such as generative models, to generate counterfactual samples; however, these lack guarantees of accuracy. In this work, we strive to strike a balance between practicality and theoretical guarantees by focusing on a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain (or environment). Concretely, by only assuming invertibility, sparse domain interventions and access to observational data from different domains, we aim to improve domain counterfactual estimation both theoretically and practically with less restrictive assumptions. We define domain counterfactually equivalent models and prove necessary and sufficient properties for equivalent models that provide a tight characterization of the domain counterfactual equivalence classes. Building upon this result, we prove that every equivalence class contains a model where all intervened variables are at the end when topologically sorted by the causal DAG. This surprising result suggests that a model design that only allows intervention in the last k latent variables may improve model estimation for counterfactuals. We then test this model design on extensive simulated and image-based experiments which show the sparse canonical model indeed improves counterfactual estimation over baseline non-sparse models.
Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis Testing: A Lesson From Fano
Differential privacy (DP) is by far the most widely accepted framework for mitigating privacy risks in machine learning. However, exactly how small the privacy parameter epsilon needs to be to protect against certain privacy risks in practice is still not well-understood. In this work, we study data reconstruction attacks for discrete data and analyze it under the framework of multiple hypothesis testing. We utilize different variants of the celebrated Fano's inequality to derive upper bounds on the inferential power of a data reconstruction adversary when the model is trained differentially privately. Importantly, we show that if the underlying private data takes values from a set of size M, then the target privacy parameter epsilon can be O(log M) before the adversary gains significant inferential power. Our analysis offers theoretical evidence for the empirical effectiveness of DP against data reconstruction attacks even at relatively large values of epsilon.
Realizable Learning is All You Need
The equivalence of realizable and agnostic learnability is a fundamental phenomenon in learning theory. With variants ranging from classical settings like PAC learning and regression to recent trends such as adversarially robust learning, it's surprising that we still lack a unified theory; traditional proofs of the equivalence tend to be disparate, and rely on strong model-specific assumptions like uniform convergence and sample compression. In this work, we give the first model-independent framework explaining the equivalence of realizable and agnostic learnability: a three-line blackbox reduction that simplifies, unifies, and extends our understanding across a wide variety of settings. This includes models with no known characterization of learnability such as learning with arbitrary distributional assumptions and more general loss functions, as well as a host of other popular settings such as robust learning, partial learning, fair learning, and the statistical query model. More generally, we argue that the equivalence of realizable and agnostic learning is actually a special case of a broader phenomenon we call property generalization: any desirable property of a learning algorithm (e.g. noise tolerance, privacy, stability) that can be satisfied over finite hypothesis classes extends (possibly in some variation) to any learnable hypothesis class.
DP-SPRT: Differentially Private Sequential Probability Ratio Tests
We revisit Wald's celebrated Sequential Probability Ratio Test for sequential tests of two simple hypotheses, under privacy constraints. We propose DP-SPRT, a wrapper that can be calibrated to achieve desired error probabilities and privacy constraints, addressing a significant gap in previous work. DP-SPRT relies on a private mechanism that processes a sequence of queries and stops after privately determining when the query results fall outside a predefined interval. This OutsideInterval mechanism improves upon naive composition of existing techniques like AboveThreshold, potentially benefiting other sequential algorithms. We prove generic upper bounds on the error and sample complexity of DP-SPRT that can accommodate various noise distributions based on the practitioner's privacy needs. We exemplify them in two settings: Laplace noise (pure Differential Privacy) and Gaussian noise (R\'enyi differential privacy). In the former setting, by providing a lower bound on the sample complexity of any epsilon-DP test with prescribed type I and type II errors, we show that DP-SPRT is near optimal when both errors are small and the two hypotheses are close. Moreover, we conduct an experimental study revealing its good practical performance.
Counterfactuals for Design: A Model-Agnostic Method For Design Recommendations
We introduce Multi-Objective Counterfactuals for Design (MCD), a novel method for counterfactual optimization in design problems. Counterfactuals are hypothetical situations that can lead to a different decision or choice. In this paper, the authors frame the counterfactual search problem as a design recommendation tool that can help identify modifications to a design, leading to better functional performance. MCD improves upon existing counterfactual search methods by supporting multi-objective queries, which are crucial in design problems, and by decoupling the counterfactual search and sampling processes, thus enhancing efficiency and facilitating objective tradeoff visualization. The paper demonstrates MCD's core functionality using a two-dimensional test case, followed by three case studies of bicycle design that showcase MCD's effectiveness in real-world design problems. In the first case study, MCD excels at recommending modifications to query designs that can significantly enhance functional performance, such as weight savings and improvements to the structural safety factor. The second case study demonstrates that MCD can work with a pre-trained language model to suggest design changes based on a subjective text prompt effectively. Lastly, the authors task MCD with increasing a query design's similarity to a target image and text prompt while simultaneously reducing weight and improving structural performance, demonstrating MCD's performance on a complex multimodal query. Overall, MCD has the potential to provide valuable recommendations for practitioners and design automation researchers looking for answers to their ``What if'' questions by exploring hypothetical design modifications and their impact on multiple design objectives. The code, test problems, and datasets used in the paper are available to the public at decode.mit.edu/projects/counterfactuals/.
On the Identifiability and Estimation of Causal Location-Scale Noise Models
We study the class of location-scale or heteroscedastic noise models (LSNMs), in which the effect Y can be written as a function of the cause X and a noise source N independent of X, which may be scaled by a positive function g over the cause, i.e., Y = f(X) + g(X)N. Despite the generality of the model class, we show the causal direction is identifiable up to some pathological cases. To empirically validate these theoretical findings, we propose two estimators for LSNMs: an estimator based on (non-linear) feature maps, and one based on neural networks. Both model the conditional distribution of Y given X as a Gaussian parameterized by its natural parameters. When the feature maps are correctly specified, we prove that our estimator is jointly concave, and a consistent estimator for the cause-effect identification task. Although the the neural network does not inherit those guarantees, it can fit functions of arbitrary complexity, and reaches state-of-the-art performance across benchmarks.
Tools for Verifying Neural Models' Training Data
It is important that consumers and regulators can verify the provenance of large neural models to evaluate their capabilities and risks. We introduce the concept of a "Proof-of-Training-Data": any protocol that allows a model trainer to convince a Verifier of the training data that produced a set of model weights. Such protocols could verify the amount and kind of data and compute used to train the model, including whether it was trained on specific harmful or beneficial data sources. We explore efficient verification strategies for Proof-of-Training-Data that are compatible with most current large-model training procedures. These include a method for the model-trainer to verifiably pre-commit to a random seed used in training, and a method that exploits models' tendency to temporarily overfit to training data in order to detect whether a given data-point was included in training. We show experimentally that our verification procedures can catch a wide variety of attacks, including all known attacks from the Proof-of-Learning literature.
Does fine-tuning GPT-3 with the OpenAI API leak personally-identifiable information?
Machine learning practitioners often fine-tune generative pre-trained models like GPT-3 to improve model performance at specific tasks. Previous works, however, suggest that fine-tuned machine learning models memorize and emit sensitive information from the original fine-tuning dataset. Companies such as OpenAI offer fine-tuning services for their models, but no prior work has conducted a memorization attack on any closed-source models. In this work, we simulate a privacy attack on GPT-3 using OpenAI's fine-tuning API. Our objective is to determine if personally identifiable information (PII) can be extracted from this model. We (1) explore the use of naive prompting methods on a GPT-3 fine-tuned classification model, and (2) we design a practical word generation task called Autocomplete to investigate the extent of PII memorization in fine-tuned GPT-3 within a real-world context. Our findings reveal that fine-tuning GPT3 for both tasks led to the model memorizing and disclosing critical personally identifiable information (PII) obtained from the underlying fine-tuning dataset. To encourage further research, we have made our codes and datasets publicly available on GitHub at: https://github.com/albertsun1/gpt3-pii-attacks
Deep Probability Estimation
Reliable probability estimation is of crucial importance in many real-world applications where there is inherent (aleatoric) uncertainty. Probability-estimation models are trained on observed outcomes (e.g. whether it has rained or not, or whether a patient has died or not), because the ground-truth probabilities of the events of interest are typically unknown. The problem is therefore analogous to binary classification, with the difference that the objective is to estimate probabilities rather than predicting the specific outcome. This work investigates probability estimation from high-dimensional data using deep neural networks. There exist several methods to improve the probabilities generated by these models but they mostly focus on model (epistemic) uncertainty. For problems with inherent uncertainty, it is challenging to evaluate performance without access to ground-truth probabilities. To address this, we build a synthetic dataset to study and compare different computable metrics. We evaluate existing methods on the synthetic data as well as on three real-world probability estimation tasks, all of which involve inherent uncertainty: precipitation forecasting from radar images, predicting cancer patient survival from histopathology images, and predicting car crashes from dashcam videos. We also give a theoretical analysis of a model for high-dimensional probability estimation which reproduces several of the phenomena evinced in our experiments. Finally, we propose a new method for probability estimation using neural networks, which modifies the training process to promote output probabilities that are consistent with empirical probabilities computed from the data. The method outperforms existing approaches on most metrics on the simulated as well as real-world data.
Membership Inference Attacks From First Principles
A membership inference attack allows an adversary to query a trained machine learning model to predict whether or not a particular example was contained in the model's training dataset. These attacks are currently evaluated using average-case "accuracy" metrics that fail to characterize whether the attack can confidently identify any members of the training set. We argue that attacks should instead be evaluated by computing their true-positive rate at low (e.g., <0.1%) false-positive rates, and find most prior attacks perform poorly when evaluated in this way. To address this we develop a Likelihood Ratio Attack (LiRA) that carefully combines multiple ideas from the literature. Our attack is 10x more powerful at low false-positive rates, and also strictly dominates prior attacks on existing metrics.
Canary in a Coalmine: Better Membership Inference with Ensembled Adversarial Queries
As industrial applications are increasingly automated by machine learning models, enforcing personal data ownership and intellectual property rights requires tracing training data back to their rightful owners. Membership inference algorithms approach this problem by using statistical techniques to discern whether a target sample was included in a model's training set. However, existing methods only utilize the unaltered target sample or simple augmentations of the target to compute statistics. Such a sparse sampling of the model's behavior carries little information, leading to poor inference capabilities. In this work, we use adversarial tools to directly optimize for queries that are discriminative and diverse. Our improvements achieve significantly more accurate membership inference than existing methods, especially in offline scenarios and in the low false-positive regime which is critical in legal settings. Code is available at https://github.com/YuxinWenRick/canary-in-a-coalmine.
Data Minimization at Inference Time
In domains with high stakes such as law, recruitment, and healthcare, learning models frequently rely on sensitive user data for inference, necessitating the complete set of features. This not only poses significant privacy risks for individuals but also demands substantial human effort from organizations to verify information accuracy. This paper asks whether it is necessary to use all input features for accurate predictions at inference time. The paper demonstrates that, in a personalized setting, individuals may only need to disclose a small subset of their features without compromising decision-making accuracy. The paper also provides an efficient sequential algorithm to determine the appropriate attributes for each individual to provide. Evaluations across various learning tasks show that individuals can potentially report as little as 10\% of their information while maintaining the same accuracy level as a model that employs the full set of user information.
Attributing Image Generative Models using Latent Fingerprints
Generative models have enabled the creation of contents that are indistinguishable from those taken from nature. Open-source development of such models raised concerns about the risks of their misuse for malicious purposes. One potential risk mitigation strategy is to attribute generative models via fingerprinting. Current fingerprinting methods exhibit a significant tradeoff between robust attribution accuracy and generation quality while lacking design principles to improve this tradeoff. This paper investigates the use of latent semantic dimensions as fingerprints, from where we can analyze the effects of design variables, including the choice of fingerprinting dimensions, strength, and capacity, on the accuracy-quality tradeoff. Compared with previous SOTA, our method requires minimum computation and is more applicable to large-scale models. We use StyleGAN2 and the latent diffusion model to demonstrate the efficacy of our method.
Showing Your Work Doesn't Always Work
In natural language processing, a recently popular line of work explores how to best report the experimental results of neural networks. One exemplar publication, titled "Show Your Work: Improved Reporting of Experimental Results," advocates for reporting the expected validation effectiveness of the best-tuned model, with respect to the computational budget. In the present work, we critically examine this paper. As far as statistical generalizability is concerned, we find unspoken pitfalls and caveats with this approach. We analytically show that their estimator is biased and uses error-prone assumptions. We find that the estimator favors negative errors and yields poor bootstrapped confidence intervals. We derive an unbiased alternative and bolster our claims with empirical evidence from statistical simulation. Our codebase is at http://github.com/castorini/meanmax.
Synthesis of 3D on-air signatures with the Sigma-Lognormal model
Signature synthesis is a computation technique that generates artificial specimens which can support decision making in automatic signature verification. A lot of work has been dedicated to this subject, which centres on synthesizing dynamic and static two-dimensional handwriting on canvas. This paper proposes a framework to generate synthetic 3D on-air signatures exploiting the lognormality principle, which mimics the complex neuromotor control processes at play as the fingertip moves. Addressing the usual cases involving the development of artificial individuals and duplicated samples, this paper contributes to the synthesis of: (1) the trajectory and velocity of entirely 3D new signatures; (2) kinematic information when only the 3D trajectory of the signature is known, and (3) duplicate samples of 3D real signatures. Validation was conducted by generating synthetic 3D signature databases mimicking real ones and showing that automatic signature verifications of genuine and skilled forgeries report performances similar to those of real and synthetic databases. We also observed that training 3D automatic signature verifiers with duplicates can reduce errors. We further demonstrated that our proposal is also valid for synthesizing 3D air writing and gestures. Finally, a perception test confirmed the human likeness of the generated specimens. The databases generated are publicly available, only for research purposes, at .
DocXPand-25k: a large and diverse benchmark dataset for identity documents analysis
Identity document (ID) image analysis has become essential for many online services, like bank account opening or insurance subscription. In recent years, much research has been conducted on subjects like document localization, text recognition and fraud detection, to achieve a level of accuracy reliable enough to automatize identity verification. However, there are only a few available datasets to benchmark ID analysis methods, mainly because of privacy restrictions, security requirements and legal reasons. In this paper, we present the DocXPand-25k dataset, which consists of 24,994 richly labeled IDs images, generated using custom-made vectorial templates representing nine fictitious ID designs, including four identity cards, two residence permits and three passports designs. These synthetic IDs feature artificially generated personal information (names, dates, identifiers, faces, barcodes, ...), and present a rich diversity in the visual layouts and textual contents. We collected about 5.8k diverse backgrounds coming from real-world photos, scans and screenshots of IDs to guarantee the variety of the backgrounds. The software we wrote to generate these images has been published (https://github.com/QuickSign/docxpand/) under the terms of the MIT license, and our dataset has been published (https://github.com/QuickSign/docxpand/releases/tag/v1.0.0) under the terms of the CC-BY-NC-SA 4.0 License.
Statistical Indistinguishability of Learning Algorithms
When two different parties use the same learning rule on their own data, how can we test whether the distributions of the two outcomes are similar? In this paper, we study the similarity of outcomes of learning rules through the lens of the Total Variation (TV) distance of distributions. We say that a learning rule is TV indistinguishable if the expected TV distance between the posterior distributions of its outputs, executed on two training data sets drawn independently from the same distribution, is small. We first investigate the learnability of hypothesis classes using TV indistinguishable learners. Our main results are information-theoretic equivalences between TV indistinguishability and existing algorithmic stability notions such as replicability and approximate differential privacy. Then, we provide statistical amplification and boosting algorithms for TV indistinguishable learners.
Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors
We present a straightforward statistical test to detect certain violations of the assumption that the data are Independent and Identically Distributed (IID). The specific form of violation considered is common across real-world applications: whether the examples are ordered in the dataset such that almost adjacent examples tend to have more similar feature values (e.g. due to distributional drift, or attractive interactions between datapoints). Based on a k-Nearest Neighbors estimate, our approach can be used to audit any multivariate numeric data as well as other data types (image, text, audio, etc.) that can be numerically represented, perhaps with model embeddings. Compared with existing methods to detect drift or auto-correlation, our approach is both applicable to more types of data and also able to detect a wider variety of IID violations in practice. Code: https://github.com/cleanlab/cleanlab
Shapley Based Residual Decomposition for Instance Analysis
In this paper, we introduce the idea of decomposing the residuals of regression with respect to the data instances instead of features. This allows us to determine the effects of each individual instance on the model and each other, and in doing so makes for a model-agnostic method of identifying instances of interest. In doing so, we can also determine the appropriateness of the model and data in the wider context of a given study. The paper focuses on the possible applications that such a framework brings to the relatively unexplored field of instance analysis in the context of Explainable AI tasks.
MatheMagic: Generating Dynamic Mathematics Benchmarks Robust to Memorization
Conducting contamination-free evaluation of mathematical capabilities can be difficult for two reasons: models may memorize a test set once it is made public, and current mathematical benchmarks are prone to overfitting due to having limited diversity of symbols and rules, coupled with closed-ended answers. This paper proposes a method to leverage these shortcomings as useful features to a construct dynamic, counterfactual benchmark, which can be used to both reveal overfitting and measure true reasoning. We demonstrate this via MatheMagic, which generates math test instances with the interpretations of numbers and operators altered, yet has automatically verifiable answers. Test instances are randomly seeded and constructed at test time to evaluate a model's induction or deduction capability, offering stability, extensibility, comparability, and robustness to overfitting. Our experiments find that models solve deduction more easily than induction, but they revert to standard math. Further analysis reveals that math-adapted models fail to exhibit a general "skill" of reasoning, and fine-tuning on induction tasks generalizes poorly.
A Safety Framework for Critical Systems Utilising Deep Neural Networks
Increasingly sophisticated mathematical modelling processes from Machine Learning are being used to analyse complex data. However, the performance and explainability of these models within practical critical systems requires a rigorous and continuous verification of their safe utilisation. Working towards addressing this challenge, this paper presents a principled novel safety argument framework for critical systems that utilise deep neural networks. The approach allows various forms of predictions, e.g., future reliability of passing some demands, or confidence on a required reliability level. It is supported by a Bayesian analysis using operational data and the recent verification and validation techniques for deep learning. The prediction is conservative -- it starts with partial prior knowledge obtained from lifecycle activities and then determines the worst-case prediction. Open challenges are also identified.
Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning
Malicious server (MS) attacks have enabled the scaling of data stealing in federated learning to large batch sizes and secure aggregation, settings previously considered private. However, many concerns regarding client-side detectability of MS attacks were raised, questioning their practicality once they are publicly known. In this work, for the first time, we thoroughly study the problem of client-side detectability.We demonstrate that most prior MS attacks, which fundamentally rely on one of two key principles, are detectable by principled client-side checks. Further, we formulate desiderata for practical MS attacks and propose SEER, a novel attack framework that satisfies all desiderata, while stealing user data from gradients of realistic networks, even for large batch sizes (up to 512 in our experiments) and under secure aggregation. The key insight of SEER is the use of a secret decoder, which is jointly trained with the shared model. Our work represents a promising first step towards more principled treatment of MS attacks, paving the way for realistic data stealing that can compromise user privacy in real-world deployments.
ACTI at EVALITA 2023: Overview of the Conspiracy Theory Identification Task
Conspiracy Theory Identication task is a new shared task proposed for the first time at the Evalita 2023. The ACTI challenge, based exclusively on comments published on conspiratorial channels of telegram, is divided into two subtasks: (i) Conspiratorial Content Classification: identifying conspiratorial content and (ii) Conspiratorial Category Classification about specific conspiracy theory classification. A total of fifteen teams participated in the task for a total of 81 submissions. We illustrate the best performing approaches were based on the utilization of large language models. We finally draw conclusions about the utilization of these models for counteracting the spreading of misinformation in online platforms.
An Analysis of Causal Effect Estimation using Outcome Invariant Data Augmentation
The technique of data augmentation (DA) is often used in machine learning for regularization purposes to better generalize under i.i.d. settings. In this work, we present a unifying framework with topics in causal inference to make a case for the use of DA beyond just the i.i.d. setting, but for generalization across interventions as well. Specifically, we argue that when the outcome generating mechanism is invariant to our choice of DA, then such augmentations can effectively be thought of as interventions on the treatment generating mechanism itself. This can potentially help to reduce bias in causal effect estimation arising from hidden confounders. In the presence of such unobserved confounding we typically make use of instrumental variables (IVs) -- sources of treatment randomization that are conditionally independent of the outcome. However, IVs may not be as readily available as DA for many applications, which is the main motivation behind this work. By appropriately regularizing IV based estimators, we introduce the concept of IV-like (IVL) regression for mitigating confounding bias and improving predictive performance across interventions even when certain IV properties are relaxed. Finally, we cast parameterized DA as an IVL regression problem and show that when used in composition can simulate a worst-case application of such DA, further improving performance on causal estimation and generalization tasks beyond what simple DA may offer. This is shown both theoretically for the population case and via simulation experiments for the finite sample case using a simple linear example. We also present real data experiments to support our case.
Does CLIP Know My Face?
With the rise of deep learning in various applications, privacy concerns around the protection of training data has become a critical area of research. Whereas prior studies have focused on privacy risks in single-modal models, we introduce a novel method to assess privacy for multi-modal models, specifically vision-language models like CLIP. The proposed Identity Inference Attack (IDIA) reveals whether an individual was included in the training data by querying the model with images of the same person. Letting the model choose from a wide variety of possible text labels, the model reveals whether it recognizes the person and, therefore, was used for training. Our large-scale experiments on CLIP demonstrate that individuals used for training can be identified with very high accuracy. We confirm that the model has learned to associate names with depicted individuals, implying the existence of sensitive information that can be extracted by adversaries. Our results highlight the need for stronger privacy protection in large-scale models and suggest that IDIAs can be used to prove the unauthorized use of data for training and to enforce privacy laws.
A Practical Upper Bound for the Worst-Case Attribution Deviations
Model attribution is a critical component of deep neural networks (DNNs) for its interpretability to complex models. Recent studies bring up attention to the security of attribution methods as they are vulnerable to attribution attacks that generate similar images with dramatically different attributions. Existing works have been investigating empirically improving the robustness of DNNs against those attacks; however, none of them explicitly quantifies the actual deviations of attributions. In this work, for the first time, a constrained optimization problem is formulated to derive an upper bound that measures the largest dissimilarity of attributions after the samples are perturbed by any noises within a certain region while the classification results remain the same. Based on the formulation, different practical approaches are introduced to bound the attributions above using Euclidean distance and cosine similarity under both ell_2 and ell_infty-norm perturbations constraints. The bounds developed by our theoretical study are validated on various datasets and two different types of attacks (PGD attack and IFIA attribution attack). Over 10 million attacks in the experiments indicate that the proposed upper bounds effectively quantify the robustness of models based on the worst-case attribution dissimilarities.
À la recherche du sens perdu: your favourite LLM might have more to say than you can understand
We report a peculiar observation that LLMs can assign hidden meanings to sequences that seem visually incomprehensible to humans: for example, a nonsensical phrase consisting of Byzantine musical symbols is recognized by gpt-4o as "say abracadabra". Moreover, some models can communicate using these sequences. Some of these meanings are hypothesized to partly originate in the massive spurious correlations due to BPE tokenization. We systematically evaluate the presence of such abilities in a wide range of models: Claude-3.5 Haiku, Claude-3.5 Sonnet (New and Old), Claude-3.7 Sonnet, gpt-4o mini, gpt-4o, o1-mini, Llama-3.3 70B, DeepSeek-R1-Distill-Lllama 70B, Qwen2.5 1.5B, Qwen2.5 32B, Phi-3.5 mini, GigaChat-Max, Vikhr-Llama-3.2 1B. We argue that this observation might have far-reaching consequences for both safety and security of the modern and future LLMs and systems that employ them. As an illustration, we show that applying this method in combination with simple templates is sufficient to jailbreak previous generation models, with ASR = 0.4 on gpt-4o mini. Our code and data artifacts are available at https://github.com/L3G5/llm-hidden-meanings
A Robust Optimisation Perspective on Counterexample-Guided Repair of Neural Networks
Counterexample-guided repair aims at creating neural networks with mathematical safety guarantees, facilitating the application of neural networks in safety-critical domains. However, whether counterexample-guided repair is guaranteed to terminate remains an open question. We approach this question by showing that counterexample-guided repair can be viewed as a robust optimisation algorithm. While termination guarantees for neural network repair itself remain beyond our reach, we prove termination for more restrained machine learning models and disprove termination in a general setting. We empirically study the practical implications of our theoretical results, demonstrating the suitability of common verifiers and falsifiers for repair despite a disadvantageous theoretical result. Additionally, we use our theoretical insights to devise a novel algorithm for repairing linear regression models based on quadratic programming, surpassing existing approaches.
Advancing Ear Biometrics: Enhancing Accuracy and Robustness through Deep Learning
Biometric identification is a reliable method to verify individuals based on their unique physical or behavioral traits, offering a secure alternative to traditional methods like passwords or PINs. This study focuses on ear biometric identification, exploiting its distinctive features for enhanced accuracy, reliability, and usability. While past studies typically investigate face recognition and fingerprint analysis, our research demonstrates the effectiveness of ear biometrics in overcoming limitations such as variations in facial expressions and lighting conditions. We utilized two datasets: AMI (700 images from 100 individuals) and EarNV1.0 (28,412 images from 164 individuals). To improve the accuracy and robustness of our ear biometric identification system, we applied various techniques including data preprocessing and augmentation. Our models achieved a testing accuracy of 99.35% on the AMI Dataset and 98.1% on the EarNV1.0 dataset, showcasing the effectiveness of our approach in precisely identifying individuals based on ear biometric characteristics.
Black-Box Detection of Language Model Watermarks
Watermarking has emerged as a promising way to detect LLM-generated text, by augmenting LLM generations with later detectable signals. Recent work has proposed multiple families of watermarking schemes, several of which focus on preserving the LLM distribution. This distribution-preservation property is motivated by the fact that it is a tractable proxy for retaining LLM capabilities, as well as the inherently implied undetectability of the watermark by downstream users. Yet, despite much discourse around undetectability, no prior work has investigated the practical detectability of any of the current watermarking schemes in a realistic black-box setting. In this work we tackle this for the first time, developing rigorous statistical tests to detect the presence, and estimate parameters, of all three popular watermarking scheme families, using only a limited number of black-box queries. We experimentally confirm the effectiveness of our methods on a range of schemes and a diverse set of open-source models. Further, we validate the feasibility of our tests on real-world APIs. Our findings indicate that current watermarking schemes are more detectable than previously believed.
When the signal is in the noise: Exploiting Diffix's Sticky Noise
Anonymized data is highly valuable to both businesses and researchers. A large body of research has however shown the strong limits of the de-identification release-and-forget model, where data is anonymized and shared. This has led to the development of privacy-preserving query-based systems. Based on the idea of "sticky noise", Diffix has been recently proposed as a novel query-based mechanism satisfying alone the EU Article~29 Working Party's definition of anonymization. According to its authors, Diffix adds less noise to answers than solutions based on differential privacy while allowing for an unlimited number of queries. This paper presents a new class of noise-exploitation attacks, exploiting the noise added by the system to infer private information about individuals in the dataset. Our first differential attack uses samples extracted from Diffix in a likelihood ratio test to discriminate between two probability distributions. We show that using this attack against a synthetic best-case dataset allows us to infer private information with 89.4% accuracy using only 5 attributes. Our second cloning attack uses dummy conditions that conditionally strongly affect the output of the query depending on the value of the private attribute. Using this attack on four real-world datasets, we show that we can infer private attributes of at least 93% of the users in the dataset with accuracy between 93.3% and 97.1%, issuing a median of 304 queries per user. We show how to optimize this attack, targeting 55.4% of the users and achieving 91.7% accuracy, using a maximum of only 32 queries per user. Our attacks demonstrate that adding data-dependent noise, as done by Diffix, is not sufficient to prevent inference of private attributes. We furthermore argue that Diffix alone fails to satisfy Art. 29 WP's definition of anonymization. [...]
Do Parameters Reveal More than Loss for Membership Inference?
Membership inference attacks aim to infer whether an individual record was used to train a model, serving as a key tool for disclosure auditing. While such evaluations are useful to demonstrate risk, they are computationally expensive and often make strong assumptions about potential adversaries' access to models and training environments, and thus do not provide very tight bounds on leakage from potential attacks. We show how prior claims around black-box access being sufficient for optimal membership inference do not hold for most useful settings such as stochastic gradient descent, and that optimal membership inference indeed requires white-box access. We validate our findings with a new white-box inference attack IHA (Inverse Hessian Attack) that explicitly uses model parameters by taking advantage of computing inverse-Hessian vector products. Our results show that both audits and adversaries may be able to benefit from access to model parameters, and we advocate for further research into white-box methods for membership privacy auditing.
Unveiling the Truth: Exploring Human Gaze Patterns in Fake Images
Creating high-quality and realistic images is now possible thanks to the impressive advancements in image generation. A description in natural language of your desired output is all you need to obtain breathtaking results. However, as the use of generative models grows, so do concerns about the propagation of malicious content and misinformation. Consequently, the research community is actively working on the development of novel fake detection techniques, primarily focusing on low-level features and possible fingerprints left by generative models during the image generation process. In a different vein, in our work, we leverage human semantic knowledge to investigate the possibility of being included in frameworks of fake image detection. To achieve this, we collect a novel dataset of partially manipulated images using diffusion models and conduct an eye-tracking experiment to record the eye movements of different observers while viewing real and fake stimuli. A preliminary statistical analysis is conducted to explore the distinctive patterns in how humans perceive genuine and altered images. Statistical findings reveal that, when perceiving counterfeit samples, humans tend to focus on more confined regions of the image, in contrast to the more dispersed observational pattern observed when viewing genuine images. Our dataset is publicly available at: https://github.com/aimagelab/unveiling-the-truth.
ID and OOD Performance Are Sometimes Inversely Correlated on Real-world Datasets
Several studies have compared the in-distribution (ID) and out-of-distribution (OOD) performance of models in computer vision and NLP. They report a frequent positive correlation and some surprisingly never even observe an inverse correlation indicative of a necessary trade-off. The possibility of inverse patterns is important to determine whether ID performance can serve as a proxy for OOD generalization capabilities. This paper shows with multiple datasets that inverse correlations between ID and OOD performance do happen in real-world data - not only in theoretical worst-case settings. We also explain theoretically how these cases can arise even in a minimal linear setting, and why past studies could miss such cases due to a biased selection of models. Our observations lead to recommendations that contradict those found in much of the current literature. - High OOD performance sometimes requires trading off ID performance. - Focusing on ID performance alone may not lead to optimal OOD performance. It may produce diminishing (eventually negative) returns in OOD performance. - In these cases, studies on OOD generalization that use ID performance for model selection (a common recommended practice) will necessarily miss the best-performing models, making these studies blind to a whole range of phenomena.
Optimal Counterfactual Explanations for Scorecard modelling
Counterfactual explanations is one of the post-hoc methods used to provide explainability to machine learning models that have been attracting attention in recent years. Most examples in the literature, address the problem of generating post-hoc explanations for black-box machine learning models after the rejection of a loan application. In contrast, in this work, we investigate mathematical programming formulations for scorecard models, a type of interpretable model predominant within the banking industry for lending. The proposed mixed-integer programming formulations combine objective functions to ensure close, realistic and sparse counterfactuals using multi-objective optimization techniques for a binary, probability or continuous outcome. Moreover, we extend these formulations to generate multiple optimal counterfactuals simultaneously while guaranteeing diversity. Experiments on two real-world datasets confirm that the presented approach can generate optimal diverse counterfactuals addressing desired properties with assumable CPU times for practice use.
Privacy-Preserving Biometric Verification with Handwritten Random Digit String
Handwriting verification has stood as a steadfast identity authentication method for decades. However, this technique risks potential privacy breaches due to the inclusion of personal information in handwritten biometrics such as signatures. To address this concern, we propose using the Random Digit String (RDS) for privacy-preserving handwriting verification. This approach allows users to authenticate themselves by writing an arbitrary digit sequence, effectively ensuring privacy protection. To evaluate the effectiveness of RDS, we construct a new HRDS4BV dataset composed of online naturally handwritten RDS. Unlike conventional handwriting, RDS encompasses unconstrained and variable content, posing significant challenges for modeling consistent personal writing style. To surmount this, we propose the Pattern Attentive VErification Network (PAVENet), along with a Discriminative Pattern Mining (DPM) module. DPM adaptively enhances the recognition of consistent and discriminative writing patterns, thus refining handwriting style representation. Through comprehensive evaluations, we scrutinize the applicability of online RDS verification and showcase a pronounced outperformance of our model over existing methods. Furthermore, we discover a noteworthy forgery phenomenon that deviates from prior findings and discuss its positive impact in countering malicious impostor attacks. Substantially, our work underscores the feasibility of privacy-preserving biometric verification and propels the prospects of its broader acceptance and application.
Dissecting Distribution Inference
A distribution inference attack aims to infer statistical properties of data used to train machine learning models. These attacks are sometimes surprisingly potent, but the factors that impact distribution inference risk are not well understood and demonstrated attacks often rely on strong and unrealistic assumptions such as full knowledge of training environments even in supposedly black-box threat scenarios. To improve understanding of distribution inference risks, we develop a new black-box attack that even outperforms the best known white-box attack in most settings. Using this new attack, we evaluate distribution inference risk while relaxing a variety of assumptions about the adversary's knowledge under black-box access, like known model architectures and label-only access. Finally, we evaluate the effectiveness of previously proposed defenses and introduce new defenses. We find that although noise-based defenses appear to be ineffective, a simple re-sampling defense can be highly effective. Code is available at https://github.com/iamgroot42/dissecting_distribution_inference
Categorical Stochastic Processes and Likelihood
In this work we take a Category Theoretic perspective on the relationship between probabilistic modeling and function approximation. We begin by defining two extensions of function composition to stochastic process subordination: one based on the co-Kleisli category under the comonad (Omega x -) and one based on the parameterization of a category with a Lawvere theory. We show how these extensions relate to the category Stoch and other Markov Categories. Next, we apply the Para construction to extend stochastic processes to parameterized statistical models and we define a way to compose the likelihood functions of these models. We conclude with a demonstration of how the Maximum Likelihood Estimation procedure defines an identity-on-objects functor from the category of statistical models to the category of Learners. Code to accompany this paper can be found at https://github.com/dshieble/Categorical_Stochastic_Processes_and_Likelihood
Are CLIP features all you need for Universal Synthetic Image Origin Attribution?
The steady improvement of Diffusion Models for visual synthesis has given rise to many new and interesting use cases of synthetic images but also has raised concerns about their potential abuse, which poses significant societal threats. To address this, fake images need to be detected and attributed to their source model, and given the frequent release of new generators, realistic applications need to consider an Open-Set scenario where some models are unseen at training time. Existing forensic techniques are either limited to Closed-Set settings or to GAN-generated images, relying on fragile frequency-based "fingerprint" features. By contrast, we propose a simple yet effective framework that incorporates features from large pre-trained foundation models to perform Open-Set origin attribution of synthetic images produced by various generative models, including Diffusion Models. We show that our method leads to remarkable attribution performance, even in the low-data regime, exceeding the performance of existing methods and generalizes better on images obtained from a diverse set of architectures. We make the code publicly available at: https://github.com/ciodar/UniversalAttribution.
Improving Text-to-SQL Evaluation Methodology
To be informative, an evaluation must measure how well systems generalize to realistic unseen data. We identify limitations of and propose improvements to current evaluations of text-to-SQL systems. First, we compare human-generated and automatically generated questions, characterizing properties of queries necessary for real-world applications. To facilitate evaluation on multiple datasets, we release standardized and improved versions of seven existing datasets and one new text-to-SQL dataset. Second, we show that the current division of data into training and test sets measures robustness to variations in the way questions are asked, but only partially tests how well systems generalize to new queries; therefore, we propose a complementary dataset split for evaluation of future work. Finally, we demonstrate how the common practice of anonymizing variables during evaluation removes an important challenge of the task. Our observations highlight key difficulties, and our methodology enables effective measurement of future development.
Counterfactual Density Estimation using Kernel Stein Discrepancies
Causal effects are usually studied in terms of the means of counterfactual distributions, which may be insufficient in many scenarios. Given a class of densities known up to normalizing constants, we propose to model counterfactual distributions by minimizing kernel Stein discrepancies in a doubly robust manner. This enables the estimation of counterfactuals over large classes of distributions while exploiting the desired double robustness. We present a theoretical analysis of the proposed estimator, providing sufficient conditions for consistency and asymptotic normality, as well as an examination of its empirical performance.
Closed-Form Bounds for DP-SGD against Record-level Inference
Machine learning models trained with differentially-private (DP) algorithms such as DP-SGD enjoy resilience against a wide range of privacy attacks. Although it is possible to derive bounds for some attacks based solely on an (varepsilon,delta)-DP guarantee, meaningful bounds require a small enough privacy budget (i.e., injecting a large amount of noise), which results in a large loss in utility. This paper presents a new approach to evaluate the privacy of machine learning models against specific record-level threats, such as membership and attribute inference, without the indirection through DP. We focus on the popular DP-SGD algorithm, and derive simple closed-form bounds. Our proofs model DP-SGD as an information theoretic channel whose inputs are the secrets that an attacker wants to infer (e.g., membership of a data record) and whose outputs are the intermediate model parameters produced by iterative optimization. We obtain bounds for membership inference that match state-of-the-art techniques, whilst being orders of magnitude faster to compute. Additionally, we present a novel data-dependent bound against attribute inference. Our results provide a direct, interpretable, and practical way to evaluate the privacy of trained models against specific inference threats without sacrificing utility.
Synthetic dataset of ID and Travel Document
This paper presents a new synthetic dataset of ID and travel documents, called SIDTD. The SIDTD dataset is created to help training and evaluating forged ID documents detection systems. Such a dataset has become a necessity as ID documents contain personal information and a public dataset of real documents can not be released. Moreover, forged documents are scarce, compared to legit ones, and the way they are generated varies from one fraudster to another resulting in a class of high intra-variability. In this paper we trained state-of-the-art models on this dataset and we compare them to the performance achieved in larger, but private, datasets. The creation of this dataset will help to document image analysis community to progress in the task of ID document verification.
On the Existence of Simpler Machine Learning Models
It is almost always easier to find an accurate-but-complex model than an accurate-yet-simple model. Finding optimal, sparse, accurate models of various forms (linear models with integer coefficients, decision sets, rule lists, decision trees) is generally NP-hard. We often do not know whether the search for a simpler model will be worthwhile, and thus we do not go to the trouble of searching for one. In this work, we ask an important practical question: can accurate-yet-simple models be proven to exist, or shown likely to exist, before explicitly searching for them? We hypothesize that there is an important reason that simple-yet-accurate models often do exist. This hypothesis is that the size of the Rashomon set is often large, where the Rashomon set is the set of almost-equally-accurate models from a function class. If the Rashomon set is large, it contains numerous accurate models, and perhaps at least one of them is the simple model we desire. In this work, we formally present the Rashomon ratio as a new gauge of simplicity for a learning problem, depending on a function class and a data set. The Rashomon ratio is the ratio of the volume of the set of accurate models to the volume of the hypothesis space, and it is different from standard complexity measures from statistical learning theory. Insight from studying the Rashomon ratio provides an easy way to check whether a simpler model might exist for a problem before finding it, namely whether several different machine learning methods achieve similar performance on the data. In that sense, the Rashomon ratio is a powerful tool for understanding why and when an accurate-yet-simple model might exist. If, as we hypothesize in this work, many real-world data sets admit large Rashomon sets, the implications are vast: it means that simple or interpretable models may often be used for high-stakes decisions without losing accuracy.
Tracing the Origin of Adversarial Attack for Forensic Investigation and Deterrence
Deep neural networks are vulnerable to adversarial attacks. In this paper, we take the role of investigators who want to trace the attack and identify the source, that is, the particular model which the adversarial examples are generated from. Techniques derived would aid forensic investigation of attack incidents and serve as deterrence to potential attacks. We consider the buyers-seller setting where a machine learning model is to be distributed to various buyers and each buyer receives a slightly different copy with same functionality. A malicious buyer generates adversarial examples from a particular copy M_i and uses them to attack other copies. From these adversarial examples, the investigator wants to identify the source M_i. To address this problem, we propose a two-stage separate-and-trace framework. The model separation stage generates multiple copies of a model for a same classification task. This process injects unique characteristics into each copy so that adversarial examples generated have distinct and traceable features. We give a parallel structure which embeds a ``tracer'' in each copy, and a noise-sensitive training loss to achieve this goal. The tracing stage takes in adversarial examples and a few candidate models, and identifies the likely source. Based on the unique features induced by the noise-sensitive loss function, we could effectively trace the potential adversarial copy by considering the output logits from each tracer. Empirical results show that it is possible to trace the origin of the adversarial example and the mechanism can be applied to a wide range of architectures and datasets.
IDiff-Face: Synthetic-based Face Recognition through Fizzy Identity-Conditioned Diffusion Models
The availability of large-scale authentic face databases has been crucial to the significant advances made in face recognition research over the past decade. However, legal and ethical concerns led to the recent retraction of many of these databases by their creators, raising questions about the continuity of future face recognition research without one of its key resources. Synthetic datasets have emerged as a promising alternative to privacy-sensitive authentic data for face recognition development. However, recent synthetic datasets that are used to train face recognition models suffer either from limitations in intra-class diversity or cross-class (identity) discrimination, leading to less optimal accuracies, far away from the accuracies achieved by models trained on authentic data. This paper targets this issue by proposing IDiff-Face, a novel approach based on conditional latent diffusion models for synthetic identity generation with realistic identity variations for face recognition training. Through extensive evaluations, our proposed synthetic-based face recognition approach pushed the limits of state-of-the-art performances, achieving, for example, 98.00% accuracy on the Labeled Faces in the Wild (LFW) benchmark, far ahead from the recent synthetic-based face recognition solutions with 95.40% and bridging the gap to authentic-based face recognition with 99.82% accuracy.
DFIR-Metric: A Benchmark Dataset for Evaluating Large Language Models in Digital Forensics and Incident Response
Digital Forensics and Incident Response (DFIR) involves analyzing digital evidence to support legal investigations. Large Language Models (LLMs) offer new opportunities in DFIR tasks such as log analysis and memory forensics, but their susceptibility to errors and hallucinations raises concerns in high-stakes contexts. Despite growing interest, there is no comprehensive benchmark to evaluate LLMs across both theoretical and practical DFIR domains. To address this gap, we present DFIR-Metric, a benchmark with three components: (1) Knowledge Assessment: a set of 700 expert-reviewed multiple-choice questions sourced from industry-standard certifications and official documentation; (2) Realistic Forensic Challenges: 150 CTF-style tasks testing multi-step reasoning and evidence correlation; and (3) Practical Analysis: 500 disk and memory forensics cases from the NIST Computer Forensics Tool Testing Program (CFTT). We evaluated 14 LLMs using DFIR-Metric, analyzing both their accuracy and consistency across trials. We also introduce a new metric, the Task Understanding Score (TUS), designed to more effectively evaluate models in scenarios where they achieve near-zero accuracy. This benchmark offers a rigorous, reproducible foundation for advancing AI in digital forensics. All scripts, artifacts, and results are available on the project website at https://github.com/DFIR-Metric.
Robust Counterfactual Explanations for Neural Networks With Probabilistic Guarantees
There is an emerging interest in generating robust counterfactual explanations that would remain valid if the model is updated or changed even slightly. Towards finding robust counterfactuals, existing literature often assumes that the original model m and the new model M are bounded in the parameter space, i.e., |Params(M){-}Params(m)|{<}Delta. However, models can often change significantly in the parameter space with little to no change in their predictions or accuracy on the given dataset. In this work, we introduce a mathematical abstraction termed naturally-occurring model change, which allows for arbitrary changes in the parameter space such that the change in predictions on points that lie on the data manifold is limited. Next, we propose a measure -- that we call Stability -- to quantify the robustness of counterfactuals to potential model changes for differentiable models, e.g., neural networks. Our main contribution is to show that counterfactuals with sufficiently high value of Stability as defined by our measure will remain valid after potential ``naturally-occurring'' model changes with high probability (leveraging concentration bounds for Lipschitz function of independent Gaussians). Since our quantification depends on the local Lipschitz constant around a data point which is not always available, we also examine practical relaxations of our proposed measure and demonstrate experimentally how they can be incorporated to find robust counterfactuals for neural networks that are close, realistic, and remain valid after potential model changes.
Beyond Accuracy: Automated De-Identification of Large Real-World Clinical Text Datasets
Recent research advances achieve human-level accuracy for de-identifying free-text clinical notes on research datasets, but gaps remain in reproducing this in large real-world settings. This paper summarizes lessons learned from building a system used to de-identify over one billion real clinical notes, in a fully automated way, that was independently certified by multiple organizations for production use. A fully automated solution requires a very high level of accuracy that does not require manual review. A hybrid context-based model architecture is described, which outperforms a Named Entity Recogniton (NER) - only model by 10% on the i2b2-2014 benchmark. The proposed system makes 50%, 475%, and 575% fewer errors than the comparable AWS, Azure, and GCP services respectively while also outperforming ChatGPT by 33%. It exceeds 98% coverage of sensitive data across 7 European languages, without a need for fine tuning. A second set of described models enable data obfuscation -- replacing sensitive data with random surrogates -- while retaining name, date, gender, clinical, and format consistency. Both the practical need and the solution architecture that provides for reliable & linked anonymized documents are described.
FairProof : Confidential and Certifiable Fairness for Neural Networks
Machine learning models are increasingly used in societal applications, yet legal and privacy concerns demand that they very often be kept confidential. Consequently, there is a growing distrust about the fairness properties of these models in the minds of consumers, who are often at the receiving end of model predictions. To this end, we propose \name -- a system that uses Zero-Knowledge Proofs (a cryptographic primitive) to publicly verify the fairness of a model, while maintaining confidentiality. We also propose a fairness certification algorithm for fully-connected neural networks which is befitting to ZKPs and is used in this system. We implement \name in Gnark and demonstrate empirically that our system is practically feasible. Code is available at https://github.com/infinite-pursuits/FairProof.
Leave-one-out Distinguishability in Machine Learning
We introduce a new analytical framework to quantify the changes in a machine learning algorithm's output distribution following the inclusion of a few data points in its training set, a notion we define as leave-one-out distinguishability (LOOD). This problem is key to measuring data **memorization** and **information leakage** in machine learning, and the **influence** of training data points on model predictions. We illustrate how our method broadens and refines existing empirical measures of memorization and privacy risks associated with training data. We use Gaussian processes to model the randomness of machine learning algorithms, and validate LOOD with extensive empirical analysis of information leakage using membership inference attacks. Our theoretical framework enables us to investigate the causes of information leakage and where the leakage is high. For example, we analyze the influence of activation functions, on data memorization. Additionally, our method allows us to optimize queries that disclose the most significant information about the training data in the leave-one-out setting. We illustrate how optimal queries can be used for accurate **reconstruction** of training data.
Learning the Dynamics of Sparsely Observed Interacting Systems
We address the problem of learning the dynamics of an unknown non-parametric system linking a target and a feature time series. The feature time series is measured on a sparse and irregular grid, while we have access to only a few points of the target time series. Once learned, we can use these dynamics to predict values of the target from the previous values of the feature time series. We frame this task as learning the solution map of a controlled differential equation (CDE). By leveraging the rich theory of signatures, we are able to cast this non-linear problem as a high-dimensional linear regression. We provide an oracle bound on the prediction error which exhibits explicit dependencies on the individual-specific sampling schemes. Our theoretical results are illustrated by simulations which show that our method outperforms existing algorithms for recovering the full time series while being computationally cheap. We conclude by demonstrating its potential on real-world epidemiological data.
A Watermark for Large Language Models
Potential harms of large language models can be mitigated by watermarking model output, i.e., embedding signals into generated text that are invisible to humans but algorithmically detectable from a short span of tokens. We propose a watermarking framework for proprietary language models. The watermark can be embedded with negligible impact on text quality, and can be detected using an efficient open-source algorithm without access to the language model API or parameters. The watermark works by selecting a randomized set of "green" tokens before a word is generated, and then softly promoting use of green tokens during sampling. We propose a statistical test for detecting the watermark with interpretable p-values, and derive an information-theoretic framework for analyzing the sensitivity of the watermark. We test the watermark using a multi-billion parameter model from the Open Pretrained Transformer (OPT) family, and discuss robustness and security.
Optimizing Decomposition for Optimal Claim Verification
Current research on the Decompose-Then-Verify paradigm for evaluating the factuality of long-form text typically treats decomposition and verification in isolation, overlooking their interactions and potential misalignment. We find that existing decomposition policies, typically hand-crafted demonstrations, do not align well with downstream verifiers in terms of atomicity -- a novel metric quantifying information density -- leading to suboptimal verification results. We formulate finding the optimal decomposition policy for optimal verification as a bilevel optimization problem. To approximate a solution for this strongly NP-hard problem, we propose dynamic decomposition, a reinforcement learning framework that leverages verifier feedback to learn a policy for dynamically decomposing claims to verifier-preferred atomicity. Experimental results show that dynamic decomposition outperforms existing decomposition policies, improving verification confidence by 0.07 and accuracy by 0.12 (on a 0-1 scale) on average across varying verifiers, datasets, and atomcities of input claims.
Uncertainty Quantification via Stable Distribution Propagation
We propose a new approach for propagating stable probability distributions through neural networks. Our method is based on local linearization, which we show to be an optimal approximation in terms of total variation distance for the ReLU non-linearity. This allows propagating Gaussian and Cauchy input uncertainties through neural networks to quantify their output uncertainties. To demonstrate the utility of propagating distributions, we apply the proposed method to predicting calibrated confidence intervals and selective prediction on out-of-distribution data. The results demonstrate a broad applicability of propagating distributions and show the advantages of our method over other approaches such as moment matching.
Faceless Person Recognition; Privacy Implications in Social Media
As we shift more of our lives into the virtual domain, the volume of data shared on the web keeps increasing and presents a threat to our privacy. This works contributes to the understanding of privacy implications of such data sharing by analysing how well people are recognisable in social media data. To facilitate a systematic study we define a number of scenarios considering factors such as how many heads of a person are tagged and if those heads are obfuscated or not. We propose a robust person recognition system that can handle large variations in pose and clothing, and can be trained with few training samples. Our results indicate that a handful of images is enough to threaten users' privacy, even in the presence of obfuscation. We show detailed experimental results, and discuss their implications.
Leveraging Unlabeled Data to Predict Out-of-Distribution Performance
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions that may cause performance drops. In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data. We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples for which model confidence exceeds that threshold. ATC outperforms previous methods across several model architectures, types of distribution shifts (e.g., due to synthetic corruptions, dataset reproduction, or novel subpopulations), and datasets (Wilds, ImageNet, Breeds, CIFAR, and MNIST). In our experiments, ATC estimates target performance 2-4times more accurately than prior methods. We also explore the theoretical foundations of the problem, proving that, in general, identifying the accuracy is just as hard as identifying the optimal predictor and thus, the efficacy of any method rests upon (perhaps unstated) assumptions on the nature of the shift. Finally, analyzing our method on some toy distributions, we provide insights concerning when it works. Code is available at https://github.com/saurabhgarg1996/ATC_code/.
Mixture Proportion Estimation Beyond Irreducibility
The task of mixture proportion estimation (MPE) is to estimate the weight of a component distribution in a mixture, given observations from both the component and mixture. Previous work on MPE adopts the irreducibility assumption, which ensures identifiablity of the mixture proportion. In this paper, we propose a more general sufficient condition that accommodates several settings of interest where irreducibility does not hold. We further present a resampling-based meta-algorithm that takes any existing MPE algorithm designed to work under irreducibility and adapts it to work under our more general condition. Our approach empirically exhibits improved estimation performance relative to baseline methods and to a recently proposed regrouping-based algorithm.
Regions of Reliability in the Evaluation of Multivariate Probabilistic Forecasts
Multivariate probabilistic time series forecasts are commonly evaluated via proper scoring rules, i.e., functions that are minimal in expectation for the ground-truth distribution. However, this property is not sufficient to guarantee good discrimination in the non-asymptotic regime. In this paper, we provide the first systematic finite-sample study of proper scoring rules for time-series forecasting evaluation. Through a power analysis, we identify the "region of reliability" of a scoring rule, i.e., the set of practical conditions where it can be relied on to identify forecasting errors. We carry out our analysis on a comprehensive synthetic benchmark, specifically designed to test several key discrepancies between ground-truth and forecast distributions, and we gauge the generalizability of our findings to real-world tasks with an application to an electricity production problem. Our results reveal critical shortcomings in the evaluation of multivariate probabilistic forecasts as commonly performed in the literature.
Digitize-PID: Automatic Digitization of Piping and Instrumentation Diagrams
Digitization of scanned Piping and Instrumentation diagrams(P&ID), widely used in manufacturing or mechanical industries such as oil and gas over several decades, has become a critical bottleneck in dynamic inventory management and creation of smart P&IDs that are compatible with the latest CAD tools. Historically, P&ID sheets have been manually generated at the design stage, before being scanned and stored as PDFs. Current digitization initiatives involve manual processing and are consequently very time consuming, labour intensive and error-prone.Thanks to advances in image processing, machine and deep learning techniques there are emerging works on P&ID digitization. However, existing solutions face several challenges owing to the variation in the scale, size and noise in the P&IDs, sheer complexity and crowdedness within drawings, domain knowledge required to interpret the drawings. This motivates our current solution called Digitize-PID which comprises of an end-to-end pipeline for detection of core components from P&IDs like pipes, symbols and textual information, followed by their association with each other and eventually, the validation and correction of output data based on inherent domain knowledge. A novel and efficient kernel-based line detection and a two-step method for detection of complex symbols based on a fine-grained deep recognition technique is presented in the paper. In addition, we have created an annotated synthetic dataset, Dataset-P&ID, of 500 P&IDs by incorporating different types of noise and complex symbols which is made available for public use (currently there exists no public P&ID dataset). We evaluate our proposed method on this synthetic dataset and a real-world anonymized private dataset of 12 P&ID sheets. Results show that Digitize-PID outperforms the existing state-of-the-art for P&ID digitization.
A likelihood approach to nonparametric estimation of a singular distribution using deep generative models
We investigate statistical properties of a likelihood approach to nonparametric estimation of a singular distribution using deep generative models. More specifically, a deep generative model is used to model high-dimensional data that are assumed to concentrate around some low-dimensional structure. Estimating the distribution supported on this low-dimensional structure, such as a low-dimensional manifold, is challenging due to its singularity with respect to the Lebesgue measure in the ambient space. In the considered model, a usual likelihood approach can fail to estimate the target distribution consistently due to the singularity. We prove that a novel and effective solution exists by perturbing the data with an instance noise, which leads to consistent estimation of the underlying distribution with desirable convergence rates. We also characterize the class of distributions that can be efficiently estimated via deep generative models. This class is sufficiently general to contain various structured distributions such as product distributions, classically smooth distributions and distributions supported on a low-dimensional manifold. Our analysis provides some insights on how deep generative models can avoid the curse of dimensionality for nonparametric distribution estimation. We conduct a thorough simulation study and real data analysis to empirically demonstrate that the proposed data perturbation technique improves the estimation performance significantly.
Automated Profile Inference with Language Model Agents
Impressive progress has been made in automated problem-solving by the collaboration of large language models (LLMs) based agents. However, these automated capabilities also open avenues for malicious applications. In this paper, we study a new threat that LLMs pose to online pseudonymity, called automated profile inference, where an adversary can instruct LLMs to automatically scrape and extract sensitive personal attributes from publicly visible user activities on pseudonymous platforms. We also introduce an automated profiling framework called AutoProfiler to assess the feasibility of such threats in real-world scenarios. AutoProfiler consists of four specialized LLM agents, who work collaboratively to collect and process user online activities and generate a profile with extracted personal information. Experimental results on two real-world datasets and one synthetic dataset demonstrate that AutoProfiler is highly effective and efficient, and can be easily deployed on a web scale. We demonstrate that the inferred attributes are both sensitive and identifiable, posing significant risks of privacy breaches, such as de-anonymization and sensitive information leakage. Additionally, we explore mitigation strategies from different perspectives and advocate for increased public awareness of this emerging privacy threat to online pseudonymity.
Multicalibration as Boosting for Regression
We study the connection between multicalibration and boosting for squared error regression. First we prove a useful characterization of multicalibration in terms of a ``swap regret'' like condition on squared error. Using this characterization, we give an exceedingly simple algorithm that can be analyzed both as a boosting algorithm for regression and as a multicalibration algorithm for a class H that makes use only of a standard squared error regression oracle for H. We give a weak learning assumption on H that ensures convergence to Bayes optimality without the need to make any realizability assumptions -- giving us an agnostic boosting algorithm for regression. We then show that our weak learning assumption on H is both necessary and sufficient for multicalibration with respect to H to imply Bayes optimality. We also show that if H satisfies our weak learning condition relative to another class C then multicalibration with respect to H implies multicalibration with respect to C. Finally we investigate the empirical performance of our algorithm experimentally using an open source implementation that we make available. Our code repository can be found at https://github.com/Declancharrison/Level-Set-Boosting.
Input-Specific Robustness Certification for Randomized Smoothing
Although randomized smoothing has demonstrated high certified robustness and superior scalability to other certified defenses, the high computational overhead of the robustness certification bottlenecks the practical applicability, as it depends heavily on the large sample approximation for estimating the confidence interval. In existing works, the sample size for the confidence interval is universally set and agnostic to the input for prediction. This Input-Agnostic Sampling (IAS) scheme may yield a poor Average Certified Radius (ACR)-runtime trade-off which calls for improvement. In this paper, we propose Input-Specific Sampling (ISS) acceleration to achieve the cost-effectiveness for robustness certification, in an adaptive way of reducing the sampling size based on the input characteristic. Furthermore, our method universally controls the certified radius decline from the ISS sample size reduction. The empirical results on CIFAR-10 and ImageNet show that ISS can speed up the certification by more than three times at a limited cost of 0.05 certified radius. Meanwhile, ISS surpasses IAS on the average certified radius across the extensive hyperparameter settings. Specifically, ISS achieves ACR=0.958 on ImageNet (sigma=1.0) in 250 minutes, compared to ACR=0.917 by IAS under the same condition. We release our code in https://github.com/roy-ch/Input-Specific-Certification.
Instructional Fingerprinting of Large Language Models
The exorbitant cost of training Large language models (LLMs) from scratch makes it essential to fingerprint the models to protect intellectual property via ownership authentication and to ensure downstream users and developers comply with their license terms (e.g. restricting commercial use). In this study, we present a pilot study on LLM fingerprinting as a form of very lightweight instruction tuning. Model publisher specifies a confidential private key and implants it as an instruction backdoor that causes the LLM to generate specific text when the key is present. Results on 11 popularly-used LLMs showed that this approach is lightweight and does not affect the normal behavior of the model. It also prevents publisher overclaim, maintains robustness against fingerprint guessing and parameter-efficient training, and supports multi-stage fingerprinting akin to MIT License. Code is available in https://cnut1648.github.io/Model-Fingerprint/.
Challenging common interpretability assumptions in feature attribution explanations
As machine learning and algorithmic decision making systems are increasingly being leveraged in high-stakes human-in-the-loop settings, there is a pressing need to understand the rationale of their predictions. Researchers have responded to this need with explainable AI (XAI), but often proclaim interpretability axiomatically without evaluation. When these systems are evaluated, they are often tested through offline simulations with proxy metrics of interpretability (such as model complexity). We empirically evaluate the veracity of three common interpretability assumptions through a large scale human-subjects experiment with a simple "placebo explanation" control. We find that feature attribution explanations provide marginal utility in our task for a human decision maker and in certain cases result in worse decisions due to cognitive and contextual confounders. This result challenges the assumed universal benefit of applying these methods and we hope this work will underscore the importance of human evaluation in XAI research. Supplemental materials -- including anonymized data from the experiment, code to replicate the study, an interactive demo of the experiment, and the models used in the analysis -- can be found at: https://doi.pizza/challenging-xai.
Estimating the Contamination Factor's Distribution in Unsupervised Anomaly Detection
Anomaly detection methods identify examples that do not follow the expected behaviour, typically in an unsupervised fashion, by assigning real-valued anomaly scores to the examples based on various heuristics. These scores need to be transformed into actual predictions by thresholding, so that the proportion of examples marked as anomalies equals the expected proportion of anomalies, called contamination factor. Unfortunately, there are no good methods for estimating the contamination factor itself. We address this need from a Bayesian perspective, introducing a method for estimating the posterior distribution of the contamination factor of a given unlabeled dataset. We leverage on outputs of several anomaly detectors as a representation that already captures the basic notion of anomalousness and estimate the contamination using a specific mixture formulation. Empirically on 22 datasets, we show that the estimated distribution is well-calibrated and that setting the threshold using the posterior mean improves the anomaly detectors' performance over several alternative methods. All code is publicly available for full reproducibility.
Predictive Multiplicity in Classification
Prediction problems often admit competing models that perform almost equally well. This effect challenges key assumptions in machine learning when competing models assign conflicting predictions. In this paper, we define predictive multiplicity as the ability of a prediction problem to admit competing models with conflicting predictions. We introduce formal measures to evaluate the severity of predictive multiplicity and develop integer programming tools to compute them exactly for linear classification problems. We apply our tools to measure predictive multiplicity in recidivism prediction problems. Our results show that real-world datasets may admit competing models that assign wildly conflicting predictions, and motivate the need to measure and report predictive multiplicity in model development.
WCLD: Curated Large Dataset of Criminal Cases from Wisconsin Circuit Courts
Machine learning based decision-support tools in criminal justice systems are subjects of intense discussions and academic research. There are important open questions about the utility and fairness of such tools. Academic researchers often rely on a few small datasets that are not sufficient to empirically study various real-world aspects of these questions. In this paper, we contribute WCLD, a curated large dataset of 1.5 million criminal cases from circuit courts in the U.S. state of Wisconsin. We used reliable public data from 1970 to 2020 to curate attributes like prior criminal counts and recidivism outcomes. The dataset contains large number of samples from five racial groups, in addition to information like sex and age (at judgment and first offense). Other attributes in this dataset include neighborhood characteristics obtained from census data, detailed types of offense, charge severity, case decisions, sentence lengths, year of filing etc. We also provide pseudo-identifiers for judge, county and zipcode. The dataset will not only enable researchers to more rigorously study algorithmic fairness in the context of criminal justice, but also relate algorithmic challenges with various systemic issues. We also discuss in detail the process of constructing the dataset and provide a datasheet. The WCLD dataset is available at https://clezdata.github.io/wcld/.
Disentangled Representation Learning for RF Fingerprint Extraction under Unknown Channel Statistics
Deep learning (DL) applied to a device's radio-frequency fingerprint~(RFF) has attracted significant attention in physical-layer authentication due to its extraordinary classification performance. Conventional DL-RFF techniques are trained by adopting maximum likelihood estimation~(MLE). Although their discriminability has recently been extended to unknown devices in open-set scenarios, they still tend to overfit the channel statistics embedded in the training dataset. This restricts their practical applications as it is challenging to collect sufficient training data capturing the characteristics of all possible wireless channel environments. To address this challenge, we propose a DL framework of disentangled representation~(DR) learning that first learns to factor the signals into a device-relevant component and a device-irrelevant component via adversarial learning. Then, it shuffles these two parts within a dataset for implicit data augmentation, which imposes a strong regularization on RFF extractor learning to avoid the possible overfitting of device-irrelevant channel statistics, without collecting additional data from unknown channels. Experiments validate that the proposed approach, referred to as DR-based RFF, outperforms conventional methods in terms of generalizability to unknown devices even under unknown complicated propagation environments, e.g., dispersive multipath fading channels, even though all the training data are collected in a simple environment with dominated direct line-of-sight~(LoS) propagation paths.
Data Authenticity, Consent, & Provenance for AI are all broken: what will it take to fix them?
New capabilities in foundation models are owed in large part to massive, widely-sourced, and under-documented training data collections. Existing practices in data collection have led to challenges in documenting data transparency, tracing authenticity, verifying consent, privacy, representation, bias, copyright infringement, and the overall development of ethical and trustworthy foundation models. In response, regulation is emphasizing the need for training data transparency to understand foundation models' limitations. Based on a large-scale analysis of the foundation model training data landscape and existing solutions, we identify the missing infrastructure to facilitate responsible foundation model development practices. We examine the current shortcomings of common tools for tracing data authenticity, consent, and documentation, and outline how policymakers, developers, and data creators can facilitate responsible foundation model development by adopting universal data provenance standards.
Formalizing and Estimating Distribution Inference Risks
Distribution inference, sometimes called property inference, infers statistical properties about a training set from access to a model trained on that data. Distribution inference attacks can pose serious risks when models are trained on private data, but are difficult to distinguish from the intrinsic purpose of statistical machine learning -- namely, to produce models that capture statistical properties about a distribution. Motivated by Yeom et al.'s membership inference framework, we propose a formal definition of distribution inference attacks that is general enough to describe a broad class of attacks distinguishing between possible training distributions. We show how our definition captures previous ratio-based property inference attacks as well as new kinds of attack including revealing the average node degree or clustering coefficient of a training graph. To understand distribution inference risks, we introduce a metric that quantifies observed leakage by relating it to the leakage that would occur if samples from the training distribution were provided directly to the adversary. We report on a series of experiments across a range of different distributions using both novel black-box attacks and improved versions of the state-of-the-art white-box attacks. Our results show that inexpensive attacks are often as effective as expensive meta-classifier attacks, and that there are surprising asymmetries in the effectiveness of attacks. Code is available at https://github.com/iamgroot42/FormEstDistRisks
Effective Robustness against Natural Distribution Shifts for Models with Different Training Data
"Effective robustness" measures the extra out-of-distribution (OOD) robustness beyond what can be predicted from the in-distribution (ID) performance. Existing effective robustness evaluations typically use a single test set such as ImageNet to evaluate the ID accuracy. This becomes problematic when evaluating models trained on different data distributions, e.g., comparing models trained on ImageNet vs. zero-shot language-image pre-trained models trained on LAION. In this paper, we propose a new evaluation metric to evaluate and compare the effective robustness of models trained on different data. To do this, we control for the accuracy on multiple ID test sets that cover the training distributions for all the evaluated models. Our new evaluation metric provides a better estimate of effective robustness when there are models with different training data. It may also explain the surprising effective robustness gains of zero-shot CLIP-like models exhibited in prior works that used ImageNet as the only ID test set, while the gains diminish under our new evaluation. Additional artifacts including interactive visualizations are provided at https://shizhouxing.github.io/effective-robustness.
DF40: Toward Next-Generation Deepfake Detection
We propose a new comprehensive benchmark to revolutionize the current deepfake detection field to the next generation. Predominantly, existing works identify top-notch detection algorithms and models by adhering to the common practice: training detectors on one specific dataset (e.g., FF++) and testing them on other prevalent deepfake datasets. This protocol is often regarded as a "golden compass" for navigating SoTA detectors. But can these stand-out "winners" be truly applied to tackle the myriad of realistic and diverse deepfakes lurking in the real world? If not, what underlying factors contribute to this gap? In this work, we found the dataset (both train and test) can be the "primary culprit" due to: (1) forgery diversity: Deepfake techniques are commonly referred to as both face forgery and entire image synthesis. Most existing datasets only contain partial types of them, with limited forgery methods implemented; (2) forgery realism: The dominated training dataset, FF++, contains out-of-date forgery techniques from the past four years. "Honing skills" on these forgeries makes it difficult to guarantee effective detection generalization toward nowadays' SoTA deepfakes; (3) evaluation protocol: Most detection works perform evaluations on one type, which hinders the development of universal deepfake detectors. To address this dilemma, we construct a highly diverse deepfake detection dataset called DF40, which comprises 40 distinct deepfake techniques. We then conduct comprehensive evaluations using 4 standard evaluation protocols and 8 representative detection methods, resulting in over 2,000 evaluations. Through these evaluations, we provide an extensive analysis from various perspectives, leading to 7 new insightful findings. We also open up 4 valuable yet previously underexplored research questions to inspire future works. Our project page is https://github.com/YZY-stack/DF40.
Subset-Based Instance Optimality in Private Estimation
We propose a new definition of instance optimality for differentially private estimation algorithms. Our definition requires an optimal algorithm to compete, simultaneously for every dataset D, with the best private benchmark algorithm that (a) knows D in advance and (b) is evaluated by its worst-case performance on large subsets of D. That is, the benchmark algorithm need not perform well when potentially extreme points are added to D; it only has to handle the removal of a small number of real data points that already exist. This makes our benchmark significantly stronger than those proposed in prior work. We nevertheless show, for real-valued datasets, how to construct private algorithms that achieve our notion of instance optimality when estimating a broad class of dataset properties, including means, quantiles, and ell_p-norm minimizers. For means in particular, we provide a detailed analysis and show that our algorithm simultaneously matches or exceeds the asymptotic performance of existing algorithms under a range of distributional assumptions.
Private Statistical Estimation of Many Quantiles
This work studies the estimation of many statistical quantiles under differential privacy. More precisely, given a distribution and access to i.i.d. samples from it, we study the estimation of the inverse of its cumulative distribution function (the quantile function) at specific points. For instance, this task is of key importance in private data generation. We present two different approaches. The first one consists in privately estimating the empirical quantiles of the samples and using this result as an estimator of the quantiles of the distribution. In particular, we study the statistical properties of the recently published algorithm introduced by Kaplan et al. 2022 that privately estimates the quantiles recursively. The second approach is to use techniques of density estimation in order to uniformly estimate the quantile function on an interval. In particular, we show that there is a tradeoff between the two methods. When we want to estimate many quantiles, it is better to estimate the density rather than estimating the quantile function at specific points.
Toward Formal Data Set Verification for Building Effective Machine Learning Models
In order to properly train a machine learning model, data must be properly collected. To guarantee a proper data collection, verifying that the collected data set holds certain properties is a possible solution. For example, guaranteeing that the data set contains samples across the whole input space, or that the data set is balanced w.r.t. different classes. We present a formal approach for verifying a set of arbitrarily stated properties over a data set. The proposed approach relies on the transformation of the data set into a first order logic formula, which can be later verified w.r.t. the different properties also stated in the same logic. A prototype tool, which uses the z3 solver, has been developed; the prototype can take as an input a set of properties stated in a formal language and formally verify a given data set w.r.t. to the given set of properties. Preliminary experimental results show the feasibility and performance of the proposed approach, and furthermore the flexibility for expressing properties of interest.
Self-Calibration and Bilinear Inverse Problems via Linear Least Squares
Whenever we use devices to take measurements, calibration is indispensable. While the purpose of calibration is to reduce bias and uncertainty in the measurements, it can be quite difficult, expensive, and sometimes even impossible to implement. We study a challenging problem called self-calibration, i.e., the task of designing an algorithm for devices so that the algorithm is able to perform calibration automatically. More precisely, we consider the setup y = A(d) x + epsilon where only partial information about the sensing matrix A(d) is known and where A(d) linearly depends on d. The goal is to estimate the calibration parameter d (resolve the uncertainty in the sensing process) and the signal/object of interests x simultaneously. For three different models of practical relevance, we show how such a bilinear inverse problem, including blind deconvolution as an important example, can be solved via a simple linear least squares approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus potentially allowing for real-time deployment. We also present a variation of the least squares approach, which leads to a~spectral method, where the solution to the bilinear inverse problem can be found by computing the singular vector associated with the smallest singular value of a certain matrix derived from the bilinear system. Explicit theoretical guarantees and stability theory are derived for both techniques; and the number of sampling complexity is nearly optimal (up to a poly-log factor). Applications in imaging sciences and signal processing are discussed and numerical simulations are presented to demonstrate the effectiveness and efficiency of our approach.
Inference Scaling scriptsizeFLaws: The Limits of LLM Resampling with Imperfect Verifiers
Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions.
Model Inversion Robustness: Can Transfer Learning Help?
Model Inversion (MI) attacks aim to reconstruct private training data by abusing access to machine learning models. Contemporary MI attacks have achieved impressive attack performance, posing serious threats to privacy. Meanwhile, all existing MI defense methods rely on regularization that is in direct conflict with the training objective, resulting in noticeable degradation in model utility. In this work, we take a different perspective, and propose a novel and simple Transfer Learning-based Defense against Model Inversion (TL-DMI) to render MI-robust models. Particularly, by leveraging TL, we limit the number of layers encoding sensitive information from private training dataset, thereby degrading the performance of MI attack. We conduct an analysis using Fisher Information to justify our method. Our defense is remarkably simple to implement. Without bells and whistles, we show in extensive experiments that TL-DMI achieves state-of-the-art (SOTA) MI robustness. Our code, pre-trained models, demo and inverted data are available at: https://hosytuyen.github.io/projects/TL-DMI
Active Ranking of Experts Based on their Performances in Many Tasks
We consider the problem of ranking n experts based on their performances on d tasks. We make a monotonicity assumption stating that for each pair of experts, one outperforms the other on all tasks. We consider the sequential setting where in each round, the learner has access to noisy evaluations of actively chosen pair of expert-task, given the information available up to the actual round. Given a confidence parameter delta in (0, 1), we provide strategies allowing to recover the correct ranking of experts and develop a bound on the total number of queries made by our algorithm that hold with probability at least 1 -- delta. We show that our strategy is adaptive to the complexity of the problem (our bounds are instance dependent), and develop matching lower bounds up to a poly-logarithmic factor. Finally, we adapt our strategy to the relaxed problem of best expert identification and provide numerical simulation consistent with our theoretical results.
Intention Analysis Prompting Makes Large Language Models A Good Jailbreak Defender
Aligning large language models (LLMs) with human values, particularly in the face of stealthy and complex jailbreaks, presents a formidable challenge. In this study, we present a simple yet highly effective defense strategy, i.e., Intention Analysis Prompting (IAPrompt). The principle behind is to trigger LLMs' inherent self-correct and improve ability through a two-stage process: 1) essential intention analysis, and 2) policy-aligned response. Notably, IAPrompt is an inference-only method, thus could enhance the safety of LLMs without compromising their helpfulness. Extensive experiments on SAP200 and DAN benchmarks across Vicuna, ChatGLM, MPT, DeepSeek, and GPT-3.5 show that IAPrompt could consistently and significantly reduce the harmfulness in response (averagely -46.5% attack success rate) and maintain the general helpfulness. Further analyses present some insights into how our method works. To facilitate reproducibility, We release our code and scripts at: https://github.com/alphadl/SafeLLM_with_IntentionAnalysis
SΩI: Score-based O-INFORMATION Estimation
The analysis of scientific data and complex multivariate systems requires information quantities that capture relationships among multiple random variables. Recently, new information-theoretic measures have been developed to overcome the shortcomings of classical ones, such as mutual information, that are restricted to considering pairwise interactions. Among them, the concept of information synergy and redundancy is crucial for understanding the high-order dependencies between variables. One of the most prominent and versatile measures based on this concept is O-information, which provides a clear and scalable way to quantify the synergy-redundancy balance in multivariate systems. However, its practical application is limited to simplified cases. In this work, we introduce SOmegaI, which allows for the first time to compute O-information without restrictive assumptions about the system. Our experiments validate our approach on synthetic data, and demonstrate the effectiveness of SOmegaI in the context of a real-world use case.
Towards Reliable Neural Specifications
Having reliable specifications is an unavoidable challenge in achieving verifiable correctness, robustness, and interpretability of AI systems. Existing specifications for neural networks are in the paradigm of data as specification. That is, the local neighborhood centering around a reference input is considered to be correct (or robust). While existing specifications contribute to verifying adversarial robustness, a significant problem in many research domains, our empirical study shows that those verified regions are somewhat tight, and thus fail to allow verification of test set inputs, making them impractical for some real-world applications. To this end, we propose a new family of specifications called neural representation as specification, which uses the intrinsic information of neural networks - neural activation patterns (NAPs), rather than input data to specify the correctness and/or robustness of neural network predictions. We present a simple statistical approach to mining neural activation patterns. To show the effectiveness of discovered NAPs, we formally verify several important properties, such as various types of misclassifications will never happen for a given NAP, and there is no ambiguity between different NAPs. We show that by using NAP, we can verify a significant region of the input space, while still recalling 84% of the data on MNIST. Moreover, we can push the verifiable bound to 10 times larger on the CIFAR10 benchmark. Thus, we argue that NAPs can potentially be used as a more reliable and extensible specification for neural network verification.
MAGIC: Near-Optimal Data Attribution for Deep Learning
The goal of predictive data attribution is to estimate how adding or removing a given set of training datapoints will affect model predictions. In convex settings, this goal is straightforward (i.e., via the infinitesimal jackknife). In large-scale (non-convex) settings, however, existing methods are far less successful -- current methods' estimates often only weakly correlate with ground truth. In this work, we present a new data attribution method (MAGIC) that combines classical methods and recent advances in metadifferentiation to (nearly) optimally estimate the effect of adding or removing training data on model predictions.
Fidelity and Privacy of Synthetic Medical Data
The digitization of medical records ushered in a new era of big data to clinical science, and with it the possibility that data could be shared, to multiply insights beyond what investigators could abstract from paper records. The need to share individual-level medical data to accelerate innovation in precision medicine continues to grow, and has never been more urgent, as scientists grapple with the COVID-19 pandemic. However, enthusiasm for the use of big data has been tempered by a fully appropriate concern for patient autonomy and privacy. That is, the ability to extract private or confidential information about an individual, in practice, renders it difficult to share data, since significant infrastructure and data governance must be established before data can be shared. Although HIPAA provided de-identification as an approved mechanism for data sharing, linkage attacks were identified as a major vulnerability. A variety of mechanisms have been established to avoid leaking private information, such as field suppression or abstraction, strictly limiting the amount of information that can be shared, or employing mathematical techniques such as differential privacy. Another approach, which we focus on here, is creating synthetic data that mimics the underlying data. For synthetic data to be a useful mechanism in support of medical innovation and a proxy for real-world evidence, one must demonstrate two properties of the synthetic dataset: (1) any analysis on the real data must be matched by analysis of the synthetic data (statistical fidelity) and (2) the synthetic data must preserve privacy, with minimal risk of re-identification (privacy guarantee). In this paper we propose a framework for quantifying the statistical fidelity and privacy preservation properties of synthetic datasets and demonstrate these metrics for synthetic data generated by Syntegra technology.
Occam's Razor for Self Supervised Learning: What is Sufficient to Learn Good Representations?
Deep Learning is often depicted as a trio of data-architecture-loss. Yet, recent Self Supervised Learning (SSL) solutions have introduced numerous additional design choices, e.g., a projector network, positive views, or teacher-student networks. These additions pose two challenges. First, they limit the impact of theoretical studies that often fail to incorporate all those intertwined designs. Second, they slow-down the deployment of SSL methods to new domains as numerous hyper-parameters need to be carefully tuned. In this study, we bring forward the surprising observation that--at least for pretraining datasets of up to a few hundred thousands samples--the additional designs introduced by SSL do not contribute to the quality of the learned representations. That finding not only provides legitimacy to existing theoretical studies, but also simplifies the practitioner's path to SSL deployment in numerous small and medium scale settings. Our finding answers a long-lasting question: the often-experienced sensitivity to training settings and hyper-parameters encountered in SSL come from their design, rather than the absence of supervised guidance.
Certified ell_2 Attribution Robustness via Uniformly Smoothed Attributions
Model attribution is a popular tool to explain the rationales behind model predictions. However, recent work suggests that the attributions are vulnerable to minute perturbations, which can be added to input samples to fool the attributions while maintaining the prediction outputs. Although empirical studies have shown positive performance via adversarial training, an effective certified defense method is eminently needed to understand the robustness of attributions. In this work, we propose to use uniform smoothing technique that augments the vanilla attributions by noises uniformly sampled from a certain space. It is proved that, for all perturbations within the attack region, the cosine similarity between uniformly smoothed attribution of perturbed sample and the unperturbed sample is guaranteed to be lower bounded. We also derive alternative formulations of the certification that is equivalent to the original one and provides the maximum size of perturbation or the minimum smoothing radius such that the attribution can not be perturbed. We evaluate the proposed method on three datasets and show that the proposed method can effectively protect the attributions from attacks, regardless of the architecture of networks, training schemes and the size of the datasets.
Reliable Fidelity and Diversity Metrics for Generative Models
Devising indicative evaluation metrics for the image generation task remains an open problem. The most widely used metric for measuring the similarity between real and generated images has been the Fr\'echet Inception Distance (FID) score. Because it does not differentiate the fidelity and diversity aspects of the generated images, recent papers have introduced variants of precision and recall metrics to diagnose those properties separately. In this paper, we show that even the latest version of the precision and recall metrics are not reliable yet. For example, they fail to detect the match between two identical distributions, they are not robust against outliers, and the evaluation hyperparameters are selected arbitrarily. We propose density and coverage metrics that solve the above issues. We analytically and experimentally show that density and coverage provide more interpretable and reliable signals for practitioners than the existing metrics. Code: https://github.com/clovaai/generative-evaluation-prdc.
Image Shortcut Squeezing: Countering Perturbative Availability Poisons with Compression
Perturbative availability poisons (PAPs) add small changes to images to prevent their use for model training. Current research adopts the belief that practical and effective approaches to countering PAPs do not exist. In this paper, we argue that it is time to abandon this belief. We present extensive experiments showing that 12 state-of-the-art PAP methods are vulnerable to Image Shortcut Squeezing (ISS), which is based on simple compression. For example, on average, ISS restores the CIFAR-10 model accuracy to 81.73%, surpassing the previous best preprocessing-based countermeasures by 37.97% absolute. ISS also (slightly) outperforms adversarial training and has higher generalizability to unseen perturbation norms and also higher efficiency. Our investigation reveals that the property of PAP perturbations depends on the type of surrogate model used for poison generation, and it explains why a specific ISS compression yields the best performance for a specific type of PAP perturbation. We further test stronger, adaptive poisoning, and show it falls short of being an ideal defense against ISS. Overall, our results demonstrate the importance of considering various (simple) countermeasures to ensure the meaningfulness of analysis carried out during the development of PAP methods.
Towards Bridging the Gaps between the Right to Explanation and the Right to be Forgotten
The Right to Explanation and the Right to be Forgotten are two important principles outlined to regulate algorithmic decision making and data usage in real-world applications. While the right to explanation allows individuals to request an actionable explanation for an algorithmic decision, the right to be forgotten grants them the right to ask for their data to be deleted from all the databases and models of an organization. Intuitively, enforcing the right to be forgotten may trigger model updates which in turn invalidate previously provided explanations, thus violating the right to explanation. In this work, we investigate the technical implications arising due to the interference between the two aforementioned regulatory principles, and propose the first algorithmic framework to resolve the tension between them. To this end, we formulate a novel optimization problem to generate explanations that are robust to model updates due to the removal of training data instances by data deletion requests. We then derive an efficient approximation algorithm to handle the combinatorial complexity of this optimization problem. We theoretically demonstrate that our method generates explanations that are provably robust to worst-case data deletion requests with bounded costs in case of linear models and certain classes of non-linear models. Extensive experimentation with real-world datasets demonstrates the efficacy of the proposed framework.
Data-Copying in Generative Models: A Formal Framework
There has been some recent interest in detecting and addressing memorization of training data by deep neural networks. A formal framework for memorization in generative models, called "data-copying," was proposed by Meehan et. al. (2020). We build upon their work to show that their framework may fail to detect certain kinds of blatant memorization. Motivated by this and the theory of non-parametric methods, we provide an alternative definition of data-copying that applies more locally. We provide a method to detect data-copying, and provably show that it works with high probability when enough data is available. We also provide lower bounds that characterize the sample requirement for reliable detection.
SAM: The Sensitivity of Attribution Methods to Hyperparameters
Attribution methods can provide powerful insights into the reasons for a classifier's decision. We argue that a key desideratum of an explanation method is its robustness to input hyperparameters which are often randomly set or empirically tuned. High sensitivity to arbitrary hyperparameter choices does not only impede reproducibility but also questions the correctness of an explanation and impairs the trust of end-users. In this paper, we provide a thorough empirical study on the sensitivity of existing attribution methods. We found an alarming trend that many methods are highly sensitive to changes in their common hyperparameters e.g. even changing a random seed can yield a different explanation! Interestingly, such sensitivity is not reflected in the average explanation accuracy scores over the dataset as commonly reported in the literature. In addition, explanations generated for robust classifiers (i.e. which are trained to be invariant to pixel-wise perturbations) are surprisingly more robust than those generated for regular classifiers.
Igeood: An Information Geometry Approach to Out-of-Distribution Detection
Reliable out-of-distribution (OOD) detection is fundamental to implementing safer modern machine learning (ML) systems. In this paper, we introduce Igeood, an effective method for detecting OOD samples. Igeood applies to any pre-trained neural network, works under various degrees of access to the ML model, does not require OOD samples or assumptions on the OOD data but can also benefit (if available) from OOD samples. By building on the geodesic (Fisher-Rao) distance between the underlying data distributions, our discriminator can combine confidence scores from the logits outputs and the learned features of a deep neural network. Empirically, we show that Igeood outperforms competing state-of-the-art methods on a variety of network architectures and datasets.
SciClaimHunt: A Large Dataset for Evidence-based Scientific Claim Verification
Verifying scientific claims presents a significantly greater challenge than verifying political or news-related claims. Unlike the relatively broad audience for political claims, the users of scientific claim verification systems can vary widely, ranging from researchers testing specific hypotheses to everyday users seeking information on a medication. Additionally, the evidence for scientific claims is often highly complex, involving technical terminology and intricate domain-specific concepts that require specialized models for accurate verification. Despite considerable interest from the research community, there is a noticeable lack of large-scale scientific claim verification datasets to benchmark and train effective models. To bridge this gap, we introduce two large-scale datasets, SciClaimHunt and SciClaimHunt_Num, derived from scientific research papers. We propose several baseline models tailored for scientific claim verification to assess the effectiveness of these datasets. Additionally, we evaluate models trained on SciClaimHunt and SciClaimHunt_Num against existing scientific claim verification datasets to gauge their quality and reliability. Furthermore, we conduct human evaluations of the claims in proposed datasets and perform error analysis to assess the effectiveness of the proposed baseline models. Our findings indicate that SciClaimHunt and SciClaimHunt_Num serve as highly reliable resources for training models in scientific claim verification.
FoundPAD: Foundation Models Reloaded for Face Presentation Attack Detection
Although face recognition systems have seen a massive performance enhancement in recent years, they are still targeted by threats such as presentation attacks, leading to the need for generalizable presentation attack detection (PAD) algorithms. Current PAD solutions suffer from two main problems: low generalization to unknown cenarios and large training data requirements. Foundation models (FM) are pre-trained on extensive datasets, achieving remarkable results when generalizing to unseen domains and allowing for efficient task-specific adaption even when little training data are available. In this work, we recognize the potential of FMs to address common PAD problems and tackle the PAD task with an adapted FM for the first time. The FM under consideration is adapted with LoRA weights while simultaneously training a classification header. The resultant architecture, FoundPAD, is highly generalizable to unseen domains, achieving competitive results in several settings under different data availability scenarios and even when using synthetic training data. To encourage reproducibility and facilitate further research in PAD, we publicly release the implementation of FoundPAD at https://github.com/gurayozgur/FoundPAD .
ASVspoof 2019: A large-scale public database of synthesized, converted and replayed speech
Automatic speaker verification (ASV) is one of the most natural and convenient means of biometric person recognition. Unfortunately, just like all other biometric systems, ASV is vulnerable to spoofing, also referred to as "presentation attacks." These vulnerabilities are generally unacceptable and call for spoofing countermeasures or "presentation attack detection" systems. In addition to impersonation, ASV systems are vulnerable to replay, speech synthesis, and voice conversion attacks. The ASVspoof 2019 edition is the first to consider all three spoofing attack types within a single challenge. While they originate from the same source database and same underlying protocol, they are explored in two specific use case scenarios. Spoofing attacks within a logical access (LA) scenario are generated with the latest speech synthesis and voice conversion technologies, including state-of-the-art neural acoustic and waveform model techniques. Replay spoofing attacks within a physical access (PA) scenario are generated through carefully controlled simulations that support much more revealing analysis than possible previously. Also new to the 2019 edition is the use of the tandem detection cost function metric, which reflects the impact of spoofing and countermeasures on the reliability of a fixed ASV system. This paper describes the database design, protocol, spoofing attack implementations, and baseline ASV and countermeasure results. It also describes a human assessment on spoofed data in logical access. It was demonstrated that the spoofing data in the ASVspoof 2019 database have varied degrees of perceived quality and similarity to the target speakers, including spoofed data that cannot be differentiated from bona-fide utterances even by human subjects.
A Linear Reconstruction Approach for Attribute Inference Attacks against Synthetic Data
Recent advances in synthetic data generation (SDG) have been hailed as a solution to the difficult problem of sharing sensitive data while protecting privacy. SDG aims to learn statistical properties of real data in order to generate "artificial" data that are structurally and statistically similar to sensitive data. However, prior research suggests that inference attacks on synthetic data can undermine privacy, but only for specific outlier records. In this work, we introduce a new attribute inference attack against synthetic data. The attack is based on linear reconstruction methods for aggregate statistics, which target all records in the dataset, not only outliers. We evaluate our attack on state-of-the-art SDG algorithms, including Probabilistic Graphical Models, Generative Adversarial Networks, and recent differentially private SDG mechanisms. By defining a formal privacy game, we show that our attack can be highly accurate even on arbitrary records, and that this is the result of individual information leakage (as opposed to population-level inference). We then systematically evaluate the tradeoff between protecting privacy and preserving statistical utility. Our findings suggest that current SDG methods cannot consistently provide sufficient privacy protection against inference attacks while retaining reasonable utility. The best method evaluated, a differentially private SDG mechanism, can provide both protection against inference attacks and reasonable utility, but only in very specific settings. Lastly, we show that releasing a larger number of synthetic records can improve utility but at the cost of making attacks far more effective.
Plugin estimators for selective classification with out-of-distribution detection
Real-world classifiers can benefit from the option of abstaining from predicting on samples where they have low confidence. Such abstention is particularly useful on samples which are close to the learned decision boundary, or which are outliers with respect to the training sample. These settings have been the subject of extensive but disjoint study in the selective classification (SC) and out-of-distribution (OOD) detection literature. Recent work on selective classification with OOD detection (SCOD) has argued for the unified study of these problems; however, the formal underpinnings of this problem are still nascent, and existing techniques are heuristic in nature. In this paper, we propose new plugin estimators for SCOD that are theoretically grounded, effective, and generalise existing approaches from the SC and OOD detection literature. In the course of our analysis, we formally explicate how na\"{i}ve use of existing SC and OOD detection baselines may be inadequate for SCOD. We empirically demonstrate that our approaches yields competitive SC and OOD detection performance compared to baselines from both literatures.
Synthetic is all you need: removing the auxiliary data assumption for membership inference attacks against synthetic data
Synthetic data is emerging as one of the most promising solutions to share individual-level data while safeguarding privacy. While membership inference attacks (MIAs), based on shadow modeling, have become the standard to evaluate the privacy of synthetic data, they currently assume the attacker to have access to an auxiliary dataset sampled from a similar distribution as the training dataset. This is often seen as a very strong assumption in practice, especially as the proposed main use cases for synthetic tabular data (e.g. medical data, financial transactions) are very specific and don't have any reference datasets directly available. We here show how this assumption can be removed, allowing for MIAs to be performed using only the synthetic data. Specifically, we developed three different scenarios: (S1) Black-box access to the generator, (S2) only access to the released synthetic dataset and (S3) a theoretical setup as upper bound for the attack performance using only synthetic data. Our results show that MIAs are still successful, across two real-world datasets and two synthetic data generators. These results show how the strong hypothesis made when auditing synthetic data releases - access to an auxiliary dataset - can be relaxed, making the attacks more realistic in practice.
Stealth edits for provably fixing or attacking large language models
We reveal new methods and the theoretical foundations of techniques for editing large language models. We also show how the new theory can be used to assess the editability of models and to expose their susceptibility to previously unknown malicious attacks. Our theoretical approach shows that a single metric (a specific measure of the intrinsic dimensionality of the model's features) is fundamental to predicting the success of popular editing approaches, and reveals new bridges between disparate families of editing methods. We collectively refer to these approaches as stealth editing methods, because they aim to directly and inexpensively update a model's weights to correct the model's responses to known hallucinating prompts without otherwise affecting the model's behaviour, without requiring retraining. By carefully applying the insight gleaned from our theoretical investigation, we are able to introduce a new network block -- named a jet-pack block -- which is optimised for highly selective model editing, uses only standard network operations, and can be inserted into existing networks. The intrinsic dimensionality metric also determines the vulnerability of a language model to a stealth attack: a small change to a model's weights which changes its response to a single attacker-chosen prompt. Stealth attacks do not require access to or knowledge of the model's training data, therefore representing a potent yet previously unrecognised threat to redistributed foundation models. They are computationally simple enough to be implemented in malware in many cases. Extensive experimental results illustrate and support the method and its theoretical underpinnings. Demos and source code for editing language models are available at https://github.com/qinghua-zhou/stealth-edits.
Effective dimension of machine learning models
Making statements about the performance of trained models on tasks involving new data is one of the primary goals of machine learning, i.e., to understand the generalization power of a model. Various capacity measures try to capture this ability, but usually fall short in explaining important characteristics of models that we observe in practice. In this study, we propose the local effective dimension as a capacity measure which seems to correlate well with generalization error on standard data sets. Importantly, we prove that the local effective dimension bounds the generalization error and discuss the aptness of this capacity measure for machine learning models.
Fixed-Budget Differentially Private Best Arm Identification
We study best arm identification (BAI) in linear bandits in the fixed-budget regime under differential privacy constraints, when the arm rewards are supported on the unit interval. Given a finite budget T and a privacy parameter varepsilon>0, the goal is to minimise the error probability in finding the arm with the largest mean after T sampling rounds, subject to the constraint that the policy of the decision maker satisfies a certain {\em varepsilon-differential privacy} (varepsilon-DP) constraint. We construct a policy satisfying the varepsilon-DP constraint (called {\sc DP-BAI}) by proposing the principle of {\em maximum absolute determinants}, and derive an upper bound on its error probability. Furthermore, we derive a minimax lower bound on the error probability, and demonstrate that the lower and the upper bounds decay exponentially in T, with exponents in the two bounds matching order-wise in (a) the sub-optimality gaps of the arms, (b) varepsilon, and (c) the problem complexity that is expressible as the sum of two terms, one characterising the complexity of standard fixed-budget BAI (without privacy constraints), and the other accounting for the varepsilon-DP constraint. Additionally, we present some auxiliary results that contribute to the derivation of the lower bound on the error probability. These results, we posit, may be of independent interest and could prove instrumental in proving lower bounds on error probabilities in several other bandit problems. Whereas prior works provide results for BAI in the fixed-budget regime without privacy constraints or in the fixed-confidence regime with privacy constraints, our work fills the gap in the literature by providing the results for BAI in the fixed-budget regime under the varepsilon-DP constraint.
Solving Data Quality Problems with Desbordante: a Demo
Data profiling is an essential process in modern data-driven industries. One of its critical components is the discovery and validation of complex statistics, including functional dependencies, data constraints, association rules, and others. However, most existing data profiling systems that focus on complex statistics do not provide proper integration with the tools used by contemporary data scientists. This creates a significant barrier to the adoption of these tools in the industry. Moreover, existing systems were not created with industrial-grade workloads in mind. Finally, they do not aim to provide descriptive explanations, i.e. why a given pattern is not found. It is a significant issue as it is essential to understand the underlying reasons for a specific pattern's absence to make informed decisions based on the data. Because of that, these patterns are effectively rest in thin air: their application scope is rather limited, they are rarely used by the broader public. At the same time, as we are going to demonstrate in this presentation, complex statistics can be efficiently used to solve many classic data quality problems. Desbordante is an open-source data profiler that aims to close this gap. It is built with emphasis on industrial application: it is efficient, scalable, resilient to crashes, and provides explanations. Furthermore, it provides seamless Python integration by offloading various costly operations to the C++ core, not only mining. In this demonstration, we show several scenarios that allow end users to solve different data quality problems. Namely, we showcase typo detection, data deduplication, and data anomaly detection scenarios.
Stacking Brick by Brick: Aligned Feature Isolation for Incremental Face Forgery Detection
The rapid advancement of face forgery techniques has introduced a growing variety of forgeries. Incremental Face Forgery Detection (IFFD), involving gradually adding new forgery data to fine-tune the previously trained model, has been introduced as a promising strategy to deal with evolving forgery methods. However, a naively trained IFFD model is prone to catastrophic forgetting when new forgeries are integrated, as treating all forgeries as a single ''Fake" class in the Real/Fake classification can cause different forgery types overriding one another, thereby resulting in the forgetting of unique characteristics from earlier tasks and limiting the model's effectiveness in learning forgery specificity and generality. In this paper, we propose to stack the latent feature distributions of previous and new tasks brick by brick, i.e., achieving aligned feature isolation. In this manner, we aim to preserve learned forgery information and accumulate new knowledge by minimizing distribution overriding, thereby mitigating catastrophic forgetting. To achieve this, we first introduce Sparse Uniform Replay (SUR) to obtain the representative subsets that could be treated as the uniformly sparse versions of the previous global distributions. We then propose a Latent-space Incremental Detector (LID) that leverages SUR data to isolate and align distributions. For evaluation, we construct a more advanced and comprehensive benchmark tailored for IFFD. The leading experimental results validate the superiority of our method.
Hardware and Software Platform Inference
It is now a common business practice to buy access to large language model (LLM) inference rather than self-host, because of significant upfront hardware infrastructure and energy costs. However, as a buyer, there is no mechanism to verify the authenticity of the advertised service including the serving hardware platform, e.g. that it is actually being served using an NVIDIA H100. Furthermore, there are reports suggesting that model providers may deliver models that differ slightly from the advertised ones, often to make them run on less expensive hardware. That way, a client pays premium for a capable model access on more expensive hardware, yet ends up being served by a (potentially less capable) cheaper model on cheaper hardware. In this paper we introduce \textbf{hardware and software platform inference (HSPI)} -- a method for identifying the underlying architecture and software stack of a (black-box) machine learning model solely based on its input-output behavior. Our method leverages the inherent differences of various architectures and compilers to distinguish between different types and software stacks. By analyzing the numerical patterns in the model's outputs, we propose a classification framework capable of accurately identifying the used for model inference as well as the underlying software configuration. Our findings demonstrate the feasibility of inferring type from black-box models. We evaluate HSPI against models served on different real hardware and find that in a white-box setting we can distinguish between different s with between 83.9% and 100% accuracy. Even in a black-box setting we are able to achieve results that are up to three times higher than random guess accuracy.
RFUAV: A Benchmark Dataset for Unmanned Aerial Vehicle Detection and Identification
In this paper, we propose RFUAV as a new benchmark dataset for radio-frequency based (RF-based) unmanned aerial vehicle (UAV) identification and address the following challenges: Firstly, many existing datasets feature a restricted variety of drone types and insufficient volumes of raw data, which fail to meet the demands of practical applications. Secondly, existing datasets often lack raw data covering a broad range of signal-to-noise ratios (SNR), or do not provide tools for transforming raw data to different SNR levels. This limitation undermines the validity of model training and evaluation. Lastly, many existing datasets do not offer open-access evaluation tools, leading to a lack of unified evaluation standards in current research within this field. RFUAV comprises approximately 1.3 TB of raw frequency data collected from 37 distinct UAVs using the Universal Software Radio Peripheral (USRP) device in real-world environments. Through in-depth analysis of the RF data in RFUAV, we define a drone feature sequence called RF drone fingerprint, which aids in distinguishing drone signals. In addition to the dataset, RFUAV provides a baseline preprocessing method and model evaluation tools. Rigorous experiments demonstrate that these preprocessing methods achieve state-of-the-art (SOTA) performance using the provided evaluation tools. The RFUAV dataset and baseline implementation are publicly available at https://github.com/kitoweeknd/RFUAV/.
Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography
We often interact with untrusted parties. Prioritization of privacy can limit the effectiveness of these interactions, as achieving certain goals necessitates sharing private data. Traditionally, addressing this challenge has involved either seeking trusted intermediaries or constructing cryptographic protocols that restrict how much data is revealed, such as multi-party computations or zero-knowledge proofs. While significant advances have been made in scaling cryptographic approaches, they remain limited in terms of the size and complexity of applications they can be used for. In this paper, we argue that capable machine learning models can fulfill the role of a trusted third party, thus enabling secure computations for applications that were previously infeasible. In particular, we describe Trusted Capable Model Environments (TCMEs) as an alternative approach for scaling secure computation, where capable machine learning model(s) interact under input/output constraints, with explicit information flow control and explicit statelessness. This approach aims to achieve a balance between privacy and computational efficiency, enabling private inference where classical cryptographic solutions are currently infeasible. We describe a number of use cases that are enabled by TCME, and show that even some simple classic cryptographic problems can already be solved with TCME. Finally, we outline current limitations and discuss the path forward in implementing them.
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Likelihood-free inference methods typically make use of a distance between simulated and real data. A common example is the maximum mean discrepancy (MMD), which has previously been used for approximate Bayesian computation, minimum distance estimation, generalised Bayesian inference, and within the nonparametric learning framework. The MMD is commonly estimated at a root-m rate, where m is the number of simulated samples. This can lead to significant computational challenges since a large m is required to obtain an accurate estimate, which is crucial for parameter estimation. In this paper, we propose a novel estimator for the MMD with significantly improved sample complexity. The estimator is particularly well suited for computationally expensive smooth simulators with low- to mid-dimensional inputs. This claim is supported through both theoretical results and an extensive simulation study on benchmark simulators.
Detecting Edit Failures In Large Language Models: An Improved Specificity Benchmark
Recent model editing techniques promise to mitigate the problem of memorizing false or outdated associations during LLM training. However, we show that these techniques can introduce large unwanted side effects which are not detected by existing specificity benchmarks. We extend the existing CounterFact benchmark to include a dynamic component and dub our benchmark CounterFact+. Additionally, we extend the metrics used for measuring specificity by a principled KL divergence-based metric. We use this improved benchmark to evaluate recent model editing techniques and find that they suffer from low specificity. Our findings highlight the need for improved specificity benchmarks that identify and prevent unwanted side effects.
Federated Causal Discovery from Heterogeneous Data
Conventional causal discovery methods rely on centralized data, which is inconsistent with the decentralized nature of data in many real-world situations. This discrepancy has motivated the development of federated causal discovery (FCD) approaches. However, existing FCD methods may be limited by their potentially restrictive assumptions of identifiable functional causal models or homogeneous data distributions, narrowing their applicability in diverse scenarios. In this paper, we propose a novel FCD method attempting to accommodate arbitrary causal models and heterogeneous data. We first utilize a surrogate variable corresponding to the client index to account for the data heterogeneity across different clients. We then develop a federated conditional independence test (FCIT) for causal skeleton discovery and establish a federated independent change principle (FICP) to determine causal directions. These approaches involve constructing summary statistics as a proxy of the raw data to protect data privacy. Owing to the nonparametric properties, FCIT and FICP make no assumption about particular functional forms, thereby facilitating the handling of arbitrary causal models. We conduct extensive experiments on synthetic and real datasets to show the efficacy of our method. The code is available at https://github.com/lokali/FedCDH.git.
Dropout-Based Rashomon Set Exploration for Efficient Predictive Multiplicity Estimation
Predictive multiplicity refers to the phenomenon in which classification tasks may admit multiple competing models that achieve almost-equally-optimal performance, yet generate conflicting outputs for individual samples. This presents significant concerns, as it can potentially result in systemic exclusion, inexplicable discrimination, and unfairness in practical applications. Measuring and mitigating predictive multiplicity, however, is computationally challenging due to the need to explore all such almost-equally-optimal models, known as the Rashomon set, in potentially huge hypothesis spaces. To address this challenge, we propose a novel framework that utilizes dropout techniques for exploring models in the Rashomon set. We provide rigorous theoretical derivations to connect the dropout parameters to properties of the Rashomon set, and empirically evaluate our framework through extensive experimentation. Numerical results show that our technique consistently outperforms baselines in terms of the effectiveness of predictive multiplicity metric estimation, with runtime speedup up to 20times sim 5000times. With efficient Rashomon set exploration and metric estimation, mitigation of predictive multiplicity is then achieved through dropout ensemble and model selection.
Deep Learning Model Security: Threats and Defenses
Deep learning has transformed AI applications but faces critical security challenges, including adversarial attacks, data poisoning, model theft, and privacy leakage. This survey examines these vulnerabilities, detailing their mechanisms and impact on model integrity and confidentiality. Practical implementations, including adversarial examples, label flipping, and backdoor attacks, are explored alongside defenses such as adversarial training, differential privacy, and federated learning, highlighting their strengths and limitations. Advanced methods like contrastive and self-supervised learning are presented for enhancing robustness. The survey concludes with future directions, emphasizing automated defenses, zero-trust architectures, and the security challenges of large AI models. A balanced approach to performance and security is essential for developing reliable deep learning systems.
Beyond AUROC & co. for evaluating out-of-distribution detection performance
While there has been a growing research interest in developing out-of-distribution (OOD) detection methods, there has been comparably little discussion around how these methods should be evaluated. Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs. In this work, we take a closer look at the go-to metrics for evaluating OOD detection, and question the approach of exclusively reducing OOD detection to a binary classification task with little consideration for the detection threshold. We illustrate the limitations of current metrics (AUROC & its friends) and propose a new metric - Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples. Scripts and data are available at https://github.com/glhr/beyond-auroc
Forensic Self-Descriptions Are All You Need for Zero-Shot Detection, Open-Set Source Attribution, and Clustering of AI-generated Images
The emergence of advanced AI-based tools to generate realistic images poses significant challenges for forensic detection and source attribution, especially as new generative techniques appear rapidly. Traditional methods often fail to generalize to unseen generators due to reliance on features specific to known sources during training. To address this problem, we propose a novel approach that explicitly models forensic microstructures - subtle, pixel-level patterns unique to the image creation process. Using only real images in a self-supervised manner, we learn a set of diverse predictive filters to extract residuals that capture different aspects of these microstructures. By jointly modeling these residuals across multiple scales, we obtain a compact model whose parameters constitute a unique forensic self-description for each image. This self-description enables us to perform zero-shot detection of synthetic images, open-set source attribution of images, and clustering based on source without prior knowledge. Extensive experiments demonstrate that our method achieves superior accuracy and adaptability compared to competing techniques, advancing the state of the art in synthetic media forensics.
Proper losses for discrete generative models
We initiate the study of proper losses for evaluating generative models in the discrete setting. Unlike traditional proper losses, we treat both the generative model and the target distribution as black-boxes, only assuming ability to draw i.i.d. samples. We define a loss to be black-box proper if the generative distribution that minimizes expected loss is equal to the target distribution. Using techniques from statistical estimation theory, we give a general construction and characterization of black-box proper losses: they must take a polynomial form, and the number of draws from the model and target distribution must exceed the degree of the polynomial. The characterization rules out a loss whose expectation is the cross-entropy between the target distribution and the model. By extending the construction to arbitrary sampling schemes such as Poisson sampling, however, we show that one can construct such a loss.
Probabilistic Precision and Recall Towards Reliable Evaluation of Generative Models
Assessing the fidelity and diversity of the generative model is a difficult but important issue for technological advancement. So, recent papers have introduced k-Nearest Neighbor (kNN) based precision-recall metrics to break down the statistical distance into fidelity and diversity. While they provide an intuitive method, we thoroughly analyze these metrics and identify oversimplified assumptions and undesirable properties of kNN that result in unreliable evaluation, such as susceptibility to outliers and insensitivity to distributional changes. Thus, we propose novel metrics, P-precision and P-recall (PP\&PR), based on a probabilistic approach that address the problems. Through extensive investigations on toy experiments and state-of-the-art generative models, we show that our PP\&PR provide more reliable estimates for comparing fidelity and diversity than the existing metrics. The codes are available at https://github.com/kdst-team/Probablistic_precision_recall.
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine learning based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
Causal Inference with Conditional Front-Door Adjustment and Identifiable Variational Autoencoder
An essential and challenging problem in causal inference is causal effect estimation from observational data. The problem becomes more difficult with the presence of unobserved confounding variables. The front-door adjustment is a practical approach for dealing with unobserved confounding variables. However, the restriction for the standard front-door adjustment is difficult to satisfy in practice. In this paper, we relax some of the restrictions by proposing the concept of conditional front-door (CFD) adjustment and develop the theorem that guarantees the causal effect identifiability of CFD adjustment. Furthermore, as it is often impossible for a CFD variable to be given in practice, it is desirable to learn it from data. By leveraging the ability of deep generative models, we propose CFDiVAE to learn the representation of the CFD adjustment variable directly from data with the identifiable Variational AutoEncoder and formally prove the model identifiability. Extensive experiments on synthetic datasets validate the effectiveness of CFDiVAE and its superiority over existing methods. The experiments also show that the performance of CFDiVAE is less sensitive to the causal strength of unobserved confounding variables. We further apply CFDiVAE to a real-world dataset to demonstrate its potential application.
Nonparametric extensions of randomized response for private confidence sets
This work derives methods for performing nonparametric, nonasymptotic statistical inference for population means under the constraint of local differential privacy (LDP). Given bounded observations (X_1, dots, X_n) with mean mu^star that are privatized into (Z_1, dots, Z_n), we present confidence intervals (CI) and time-uniform confidence sequences (CS) for mu^star when only given access to the privatized data. To achieve this, we introduce a nonparametric and sequentially interactive generalization of Warner's famous ``randomized response'' mechanism, satisfying LDP for arbitrary bounded random variables, and then provide CIs and CSs for their means given access to the resulting privatized observations. For example, our results yield private analogues of Hoeffding's inequality in both fixed-time and time-uniform regimes. We extend these Hoeffding-type CSs to capture time-varying (non-stationary) means, and conclude by illustrating how these methods can be used to conduct private online A/B tests.
AI Competitions and Benchmarks: Dataset Development
Machine learning is now used in many applications thanks to its ability to predict, generate, or discover patterns from large quantities of data. However, the process of collecting and transforming data for practical use is intricate. Even in today's digital era, where substantial data is generated daily, it is uncommon for it to be readily usable; most often, it necessitates meticulous manual data preparation. The haste in developing new models can frequently result in various shortcomings, potentially posing risks when deployed in real-world scenarios (eg social discrimination, critical failures), leading to the failure or substantial escalation of costs in AI-based projects. This chapter provides a comprehensive overview of established methodological tools, enriched by our practical experience, in the development of datasets for machine learning. Initially, we develop the tasks involved in dataset development and offer insights into their effective management (including requirements, design, implementation, evaluation, distribution, and maintenance). Then, we provide more details about the implementation process which includes data collection, transformation, and quality evaluation. Finally, we address practical considerations regarding dataset distribution and maintenance.
Verifying the Verifiers: Unveiling Pitfalls and Potentials in Fact Verifiers
Fact verification is essential for ensuring the reliability of LLM applications. In this study, we evaluate 12 pre-trained LLMs and one specialized fact-verifier, including frontier LLMs and open-weight reasoning LLMs, using a collection of examples from 14 fact-checking benchmarks. We share three findings intended to guide future development of more robust fact verifiers. First, we highlight the importance of addressing annotation errors and ambiguity in datasets, demonstrating that approximately 16\% of ambiguous or incorrectly labeled data substantially influences model rankings. Neglecting this issue may result in misleading conclusions during comparative evaluations, and we suggest using a systematic pipeline utilizing LLM-as-a-judge to help identify these issues at scale. Second, we discover that frontier LLMs with few-shot in-context examples, often overlooked in previous works, achieve top-tier performance. We therefore recommend future studies include comparisons with these simple yet highly effective baselines. Lastly, despite their effectiveness, frontier LLMs incur substantial costs, motivating the development of small, fine-tuned fact verifiers. We show that these small models still have room for improvement, particularly on instances that require complex reasoning. Encouragingly, we demonstrate that augmenting training with synthetic multi-hop reasoning data significantly enhances their capabilities in such instances. We release our code, model, and dataset at https://github.com/just1nseo/verifying-the-verifiers
A Unified Experiment Design Approach for Cyclic and Acyclic Causal Models
We study experiment design for unique identification of the causal graph of a simple SCM, where the graph may contain cycles. The presence of cycles in the structure introduces major challenges for experiment design as, unlike acyclic graphs, learning the skeleton of causal graphs with cycles may not be possible from merely the observational distribution. Furthermore, intervening on a variable in such graphs does not necessarily lead to orienting all the edges incident to it. In this paper, we propose an experiment design approach that can learn both cyclic and acyclic graphs and hence, unifies the task of experiment design for both types of graphs. We provide a lower bound on the number of experiments required to guarantee the unique identification of the causal graph in the worst case, showing that the proposed approach is order-optimal in terms of the number of experiments up to an additive logarithmic term. Moreover, we extend our result to the setting where the size of each experiment is bounded by a constant. For this case, we show that our approach is optimal in terms of the size of the largest experiment required for uniquely identifying the causal graph in the worst case.
Controlled Generation for Private Synthetic Text
Text anonymization is essential for responsibly developing and deploying AI in high-stakes domains such as healthcare, social services, and law. In this work, we propose a novel methodology for privacy-preserving synthetic text generation that leverages the principles of de-identification and the Hiding In Plain Sight (HIPS) theory. Our approach introduces entity-aware control codes to guide controllable generation using either in-context learning (ICL) or prefix tuning. The ICL variant ensures privacy levels consistent with the underlying de-identification system, while the prefix tuning variant incorporates a custom masking strategy and loss function to support scalable, high-quality generation. Experiments on legal and clinical datasets demonstrate that our method achieves a strong balance between privacy protection and utility, offering a practical and effective solution for synthetic text generation in sensitive domains.
Stochastic Parameter Decomposition
A key step in reverse engineering neural networks is to decompose them into simpler parts that can be studied in relative isolation. Linear parameter decomposition -- a framework that has been proposed to resolve several issues with current decomposition methods -- decomposes neural network parameters into a sum of sparsely used vectors in parameter space. However, the current main method in this framework, Attribution-based Parameter Decomposition (APD), is impractical on account of its computational cost and sensitivity to hyperparameters. In this work, we introduce Stochastic Parameter Decomposition (SPD), a method that is more scalable and robust to hyperparameters than APD, which we demonstrate by decomposing models that are slightly larger and more complex than was possible to decompose with APD. We also show that SPD avoids other issues, such as shrinkage of the learned parameters, and better identifies ground truth mechanisms in toy models. By bridging causal mediation analysis and network decomposition methods, this demonstration opens up new research possibilities in mechanistic interpretability by removing barriers to scaling linear parameter decomposition methods to larger models. We release a library for running SPD and reproducing our experiments at https://github.com/goodfire-ai/spd.
ChaosMining: A Benchmark to Evaluate Post-Hoc Local Attribution Methods in Low SNR Environments
In this study, we examine the efficacy of post-hoc local attribution methods in identifying features with predictive power from irrelevant ones in domains characterized by a low signal-to-noise ratio (SNR), a common scenario in real-world machine learning applications. We developed synthetic datasets encompassing symbolic functional, image, and audio data, incorporating a benchmark on the {\it (Model \(\times\) Attribution\(\times\) Noise Condition)} triplet. By rigorously testing various classic models trained from scratch, we gained valuable insights into the performance of these attribution methods in multiple conditions. Based on these findings, we introduce a novel extension to the notable recursive feature elimination (RFE) algorithm, enhancing its applicability for neural networks. Our experiments highlight its strengths in prediction and feature selection, alongside limitations in scalability. Further details and additional minor findings are included in the appendix, with extensive discussions. The codes and resources are available at https://github.com/geshijoker/ChaosMining/{URL}.
Emergent and Predictable Memorization in Large Language Models
Memorization, or the tendency of large language models (LLMs) to output entire sequences from their training data verbatim, is a key concern for safely deploying language models. In particular, it is vital to minimize a model's memorization of sensitive datapoints such as those containing personal identifiable information (PII). The prevalence of such undesirable memorization can pose issues for model trainers, and may even require discarding an otherwise functional model. We therefore seek to predict which sequences will be memorized before a large model's full train-time by extrapolating the memorization behavior of lower-compute trial runs. We measure memorization of the Pythia model suite and plot scaling laws for forecasting memorization, allowing us to provide equi-compute recommendations to maximize the reliability (recall) of such predictions. We additionally provide further novel discoveries on the distribution of memorization scores across models and data. We release all code and data necessary to reproduce the results in this paper at https://github.com/EleutherAI/pythia
FP-VEC: Fingerprinting Large Language Models via Efficient Vector Addition
Training Large Language Models (LLMs) requires immense computational power and vast amounts of data. As a result, protecting the intellectual property of these models through fingerprinting is essential for ownership authentication. While adding fingerprints to LLMs through fine-tuning has been attempted, it remains costly and unscalable. In this paper, we introduce FP-VEC, a pilot study on using fingerprint vectors as an efficient fingerprinting method for LLMs. Our approach generates a fingerprint vector that represents a confidential signature embedded in the model, allowing the same fingerprint to be seamlessly incorporated into an unlimited number of LLMs via vector addition. Results on several LLMs show that FP-VEC is lightweight by running on CPU-only devices for fingerprinting, scalable with a single training and unlimited fingerprinting process, and preserves the model's normal behavior. The project page is available at https://fingerprintvector.github.io .
Thunder-DeID: Accurate and Efficient De-identification Framework for Korean Court Judgments
To ensure a balance between open access to justice and personal data protection, the South Korean judiciary mandates the de-identification of court judgments before they can be publicly disclosed. However, the current de-identification process is inadequate for handling court judgments at scale while adhering to strict legal requirements. Additionally, the legal definitions and categorizations of personal identifiers are vague and not well-suited for technical solutions. To tackle these challenges, we propose a de-identification framework called Thunder-DeID, which aligns with relevant laws and practices. Specifically, we (i) construct and release the first Korean legal dataset containing annotated judgments along with corresponding lists of entity mentions, (ii) introduce a systematic categorization of Personally Identifiable Information (PII), and (iii) develop an end-to-end deep neural network (DNN)-based de-identification pipeline. Our experimental results demonstrate that our model achieves state-of-the-art performance in the de-identification of court judgments.
Selective Machine Learning of the Average Treatment Effect with an Invalid Instrumental Variable
Instrumental variable methods have been widely used to identify causal effects in the presence of unmeasured confounding. A key identification condition known as the exclusion restriction states that the instrument cannot have a direct effect on the outcome which is not mediated by the exposure in view. In the health and social sciences, such an assumption is often not credible. To address this concern, we consider identification conditions of the population average treatment effect with an invalid instrumental variable which does not satisfy the exclusion restriction, and derive the efficient influence function targeting the identifying functional under a nonparametric observed data model. We propose a novel multiply robust locally efficient estimator of the average treatment effect that is consistent in the union of multiple parametric nuisance models, as well as a multiply debiased machine learning estimator for which the nuisance parameters are estimated using generic machine learning methods, that effectively exploit various forms of linear or nonlinear structured sparsity in the nuisance parameter space. When one cannot be confident that any of these machine learners is consistent at sufficiently fast rates to ensure n-consistency for the average treatment effect, we introduce a new criteria for selective machine learning which leverages the multiple robustness property in order to ensure small bias. The proposed methods are illustrated through extensive simulations and a data analysis evaluating the causal effect of 401(k) participation on savings.
Introducing an Improved Information-Theoretic Measure of Predictive Uncertainty
Applying a machine learning model for decision-making in the real world requires to distinguish what the model knows from what it does not. A critical factor in assessing the knowledge of a model is to quantify its predictive uncertainty. Predictive uncertainty is commonly measured by the entropy of the Bayesian model average (BMA) predictive distribution. Yet, the properness of this current measure of predictive uncertainty was recently questioned. We provide new insights regarding those limitations. Our analyses show that the current measure erroneously assumes that the BMA predictive distribution is equivalent to the predictive distribution of the true model that generated the dataset. Consequently, we introduce a theoretically grounded measure to overcome these limitations. We experimentally verify the benefits of our introduced measure of predictive uncertainty. We find that our introduced measure behaves more reasonably in controlled synthetic tasks. Moreover, our evaluations on ImageNet demonstrate that our introduced measure is advantageous in real-world applications utilizing predictive uncertainty.
Two-parameter superposable S-curves
Straight line equation y=mx with slope m, when singularly perturbed as ay^3+y=mx with a positive parameter a, results in S-shaped curves or S-curves on a real plane. As arightarrow 0, we get back y=mx which is a cumulative distribution function of a continuous uniform distribution that describes the occurrence of every event in an interval to be equally probable. As arightarrowinfty, the derivative of y has finite support only at y=0 resembling a degenerate distribution. Based on these arguments, in this work, we propose that these S-curves can represent maximum entropy uniform distribution to a zero entropy single value. We also argue that these S-curves are superposable as they are only parametrically nonlinear but fundamentally linear. So far, the superposed forms have been used to capture the patterns of natural systems such as nonlinear dynamics of biological growth and kinetics of enzyme reactions. Here, we attempt to use the S-curve and its superposed form as statistical models. We fit the models on a classical dataset containing flower measurements of iris plants and analyze their usefulness in pattern recognition. Based on these models, we claim that any non-uniform pattern can be represented as a singular perturbation to uniform distribution. However, our parametric estimation procedure have some limitations such as sensitivity to initial conditions depending on the data at hand.
SafeSynthDP: Leveraging Large Language Models for Privacy-Preserving Synthetic Data Generation Using Differential Privacy
Machine learning (ML) models frequently rely on training data that may include sensitive or personal information, raising substantial privacy concerns. Legislative frameworks such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA) have necessitated the development of strategies that preserve privacy while maintaining the utility of data. In this paper, we investigate the capability of Large Language Models (LLMs) to generate synthetic datasets integrated with Differential Privacy (DP) mechanisms, thereby enabling data-driven research and model training without direct exposure of sensitive information. Our approach incorporates DP-based noise injection methods, including Laplace and Gaussian distributions, into the data generation process. We then evaluate the utility of these DP-enhanced synthetic datasets by comparing the performance of ML models trained on them against models trained on the original data. To substantiate privacy guarantees, we assess the resilience of the generated synthetic data to membership inference attacks and related threats. The experimental results demonstrate that integrating DP within LLM-driven synthetic data generation offers a viable balance between privacy protection and data utility. This study provides a foundational methodology and insight into the privacy-preserving capabilities of LLMs, paving the way for compliant and effective ML research and applications.
Axiomatic Attribution for Deep Networks
We study the problem of attributing the prediction of a deep network to its input features, a problem previously studied by several other works. We identify two fundamental axioms---Sensitivity and Implementation Invariance that attribution methods ought to satisfy. We show that they are not satisfied by most known attribution methods, which we consider to be a fundamental weakness of those methods. We use the axioms to guide the design of a new attribution method called Integrated Gradients. Our method requires no modification to the original network and is extremely simple to implement; it just needs a few calls to the standard gradient operator. We apply this method to a couple of image models, a couple of text models and a chemistry model, demonstrating its ability to debug networks, to extract rules from a network, and to enable users to engage with models better.
T2IShield: Defending Against Backdoors on Text-to-Image Diffusion Models
While text-to-image diffusion models demonstrate impressive generation capabilities, they also exhibit vulnerability to backdoor attacks, which involve the manipulation of model outputs through malicious triggers. In this paper, for the first time, we propose a comprehensive defense method named T2IShield to detect, localize, and mitigate such attacks. Specifically, we find the "Assimilation Phenomenon" on the cross-attention maps caused by the backdoor trigger. Based on this key insight, we propose two effective backdoor detection methods: Frobenius Norm Threshold Truncation and Covariance Discriminant Analysis. Besides, we introduce a binary-search approach to localize the trigger within a backdoor sample and assess the efficacy of existing concept editing methods in mitigating backdoor attacks. Empirical evaluations on two advanced backdoor attack scenarios show the effectiveness of our proposed defense method. For backdoor sample detection, T2IShield achieves a detection F1 score of 88.9% with low computational cost. Furthermore, T2IShield achieves a localization F1 score of 86.4% and invalidates 99% poisoned samples. Codes are released at https://github.com/Robin-WZQ/T2IShield.
SLANT: Spurious Logo ANalysis Toolkit
Online content is filled with logos, from ads and social media posts to website branding and product placements. Consequently, these logos are prevalent in the extensive web-scraped datasets used to pretrain Vision-Language Models, which are used for a wide array of tasks (content moderation, object classification). While these models have been shown to learn harmful correlations in various tasks, whether these correlations include logos remains understudied. Understanding this is especially important due to logos often being used by public-facing entities like brands and government agencies. To that end, we develop SLANT: A Spurious Logo ANalysis Toolkit. Our key finding is that some logos indeed lead to spurious incorrect predictions, for example, adding the Adidas logo to a photo of a person causes a model classify the person as greedy. SLANT contains a semi-automatic mechanism for mining such "spurious" logos. The mechanism consists of a comprehensive logo bank, CC12M-LogoBank, and an algorithm that searches the bank for logos that VLMs spuriously correlate with a user-provided downstream recognition target. We uncover various seemingly harmless logos that VL models correlate 1) with negative human adjectives 2) with the concept of `harmlessness'; causing models to misclassify harmful online content as harmless, and 3) with user-provided object concepts; causing lower recognition accuracy on ImageNet zero-shot classification. Furthermore, SLANT's logos can be seen as effective attacks against foundational models; an attacker could place a spurious logo on harmful content, causing the model to misclassify it as harmless. This threat is alarming considering the simplicity of logo attacks, increasing the attack surface of VL models. As a defense, we include in our Toolkit two effective mitigation strategies that seamlessly integrate with zero-shot inference of foundation models.
Synthetic Data Privacy Metrics
Recent advancements in generative AI have made it possible to create synthetic datasets that can be as accurate as real-world data for training AI models, powering statistical insights, and fostering collaboration with sensitive datasets while offering strong privacy guarantees. Effectively measuring the empirical privacy of synthetic data is an important step in the process. However, while there is a multitude of new privacy metrics being published every day, there currently is no standardization. In this paper, we review the pros and cons of popular metrics that include simulations of adversarial attacks. We also review current best practices for amending generative models to enhance the privacy of the data they create (e.g. differential privacy).
De-identification of Patient Notes with Recurrent Neural Networks
Objective: Patient notes in electronic health records (EHRs) may contain critical information for medical investigations. However, the vast majority of medical investigators can only access de-identified notes, in order to protect the confidentiality of patients. In the United States, the Health Insurance Portability and Accountability Act (HIPAA) defines 18 types of protected health information (PHI) that needs to be removed to de-identify patient notes. Manual de-identification is impractical given the size of EHR databases, the limited number of researchers with access to the non-de-identified notes, and the frequent mistakes of human annotators. A reliable automated de-identification system would consequently be of high value. Materials and Methods: We introduce the first de-identification system based on artificial neural networks (ANNs), which requires no handcrafted features or rules, unlike existing systems. We compare the performance of the system with state-of-the-art systems on two datasets: the i2b2 2014 de-identification challenge dataset, which is the largest publicly available de-identification dataset, and the MIMIC de-identification dataset, which we assembled and is twice as large as the i2b2 2014 dataset. Results: Our ANN model outperforms the state-of-the-art systems. It yields an F1-score of 97.85 on the i2b2 2014 dataset, with a recall 97.38 and a precision of 97.32, and an F1-score of 99.23 on the MIMIC de-identification dataset, with a recall 99.25 and a precision of 99.06. Conclusion: Our findings support the use of ANNs for de-identification of patient notes, as they show better performance than previously published systems while requiring no feature engineering.
Speak, Memory: An Archaeology of Books Known to ChatGPT/GPT-4
In this work, we carry out a data archaeology to infer books that are known to ChatGPT and GPT-4 using a name cloze membership inference query. We find that OpenAI models have memorized a wide collection of copyrighted materials, and that the degree of memorization is tied to the frequency with which passages of those books appear on the web. The ability of these models to memorize an unknown set of books complicates assessments of measurement validity for cultural analytics by contaminating test data; we show that models perform much better on memorized books than on non-memorized books for downstream tasks. We argue that this supports a case for open models whose training data is known.
FCert: Certifiably Robust Few-Shot Classification in the Era of Foundation Models
Few-shot classification with foundation models (e.g., CLIP, DINOv2, PaLM-2) enables users to build an accurate classifier with a few labeled training samples (called support samples) for a classification task. However, an attacker could perform data poisoning attacks by manipulating some support samples such that the classifier makes the attacker-desired, arbitrary prediction for a testing input. Empirical defenses cannot provide formal robustness guarantees, leading to a cat-and-mouse game between the attacker and defender. Existing certified defenses are designed for traditional supervised learning, resulting in sub-optimal performance when extended to few-shot classification. In our work, we propose FCert, the first certified defense against data poisoning attacks to few-shot classification. We show our FCert provably predicts the same label for a testing input under arbitrary data poisoning attacks when the total number of poisoned support samples is bounded. We perform extensive experiments on benchmark few-shot classification datasets with foundation models released by OpenAI, Meta, and Google in both vision and text domains. Our experimental results show our FCert: 1) maintains classification accuracy without attacks, 2) outperforms existing state-of-the-art certified defenses for data poisoning attacks, and 3) is efficient and general.
Nonintrusive approximation of parametrized limits of matrix power algorithms -- application to matrix inverses and log-determinants
We consider in this work quantities that can be obtained as limits of powers of parametrized matrices, for instance the inverse matrix or the logarithm of the determinant. Under the assumption of affine dependence in the parameters, we use the Empirical Interpolation Method (EIM) to derive an approximation for powers of these matrices, from which we derive a nonintrusive approximation for the aforementioned limits. We derive upper bounds of the error made by the obtained formula. Finally, numerical comparisons with classical intrusive and nonintrusive approximation techniques are provided: in the considered test-cases, our algorithm performs well compared to the nonintrusive ones.
Long-term Conversation Analysis: Exploring Utility and Privacy
The analysis of conversations recorded in everyday life requires privacy protection. In this contribution, we explore a privacy-preserving feature extraction method based on input feature dimension reduction, spectral smoothing and the low-cost speaker anonymization technique based on McAdams coefficient. We assess the utility of the feature extraction methods with a voice activity detection and a speaker diarization system, while privacy protection is determined with a speech recognition and a speaker verification model. We show that the combination of McAdams coefficient and spectral smoothing maintains the utility while improving privacy.
An In-kernel Forensics Engine for Investigating Evasive Attacks
Over the years, adversarial attempts against critical services have become more effective and sophisticated in launching low-profile attacks. This trend has always been concerning. However, an even more alarming trend is the increasing difficulty of collecting relevant evidence about these attacks and the involved threat actors in the early stages before significant damage is done. This issue puts defenders at a significant disadvantage, as it becomes exceedingly difficult to understand the attack details and formulate an appropriate response. Developing robust forensics tools to collect evidence about modern threats has never been easy. One main challenge is to provide a robust trade-off between achieving sufficient visibility while leaving minimal detectable artifacts. This paper will introduce LASE, an open-source Low-Artifact Forensics Engine to perform threat analysis and forensics in Windows operating system. LASE augments current analysis tools by providing detailed, system-wide monitoring capabilities while minimizing detectable artifacts. We designed multiple deployment scenarios, showing LASE's potential in evidence gathering and threat reasoning in a real-world setting. By making LASE and its execution trace data available to the broader research community, this work encourages further exploration in the field by reducing the engineering costs for threat analysis and building a longitudinal behavioral analysis catalog for diverse security domains.
Phase Transitions in the Detection of Correlated Databases
We study the problem of detecting the correlation between two Gaussian databases XinR^{ntimes d} and Y^{ntimes d}, each composed of n users with d features. This problem is relevant in the analysis of social media, computational biology, etc. We formulate this as a hypothesis testing problem: under the null hypothesis, these two databases are statistically independent. Under the alternative, however, there exists an unknown permutation sigma over the set of n users (or, row permutation), such that X is rho-correlated with Y^sigma, a permuted version of Y. We determine sharp thresholds at which optimal testing exhibits a phase transition, depending on the asymptotic regime of n and d. Specifically, we prove that if rho^2dto0, as dtoinfty, then weak detection (performing slightly better than random guessing) is statistically impossible, irrespectively of the value of n. This compliments the performance of a simple test that thresholds the sum all entries of X^TY. Furthermore, when d is fixed, we prove that strong detection (vanishing error probability) is impossible for any rho<rho^star, where rho^star is an explicit function of d, while weak detection is again impossible as long as rho^2dto0. These results close significant gaps in current recent related studies.
TDDBench: A Benchmark for Training data detection
Training Data Detection (TDD) is a task aimed at determining whether a specific data instance is used to train a machine learning model. In the computer security literature, TDD is also referred to as Membership Inference Attack (MIA). Given its potential to assess the risks of training data breaches, ensure copyright authentication, and verify model unlearning, TDD has garnered significant attention in recent years, leading to the development of numerous methods. Despite these advancements, there is no comprehensive benchmark to thoroughly evaluate the effectiveness of TDD methods. In this work, we introduce TDDBench, which consists of 13 datasets spanning three data modalities: image, tabular, and text. We benchmark 21 different TDD methods across four detection paradigms and evaluate their performance from five perspectives: average detection performance, best detection performance, memory consumption, and computational efficiency in both time and memory. With TDDBench, researchers can identify bottlenecks and areas for improvement in TDD algorithms, while practitioners can make informed trade-offs between effectiveness and efficiency when selecting TDD algorithms for specific use cases. Our large-scale benchmarking also reveals the generally unsatisfactory performance of TDD algorithms across different datasets. To enhance accessibility and reproducibility, we open-source TDDBench for the research community.
A Meta-Learning Approach to Predicting Performance and Data Requirements
We propose an approach to estimate the number of samples required for a model to reach a target performance. We find that the power law, the de facto principle to estimate model performance, leads to large error when using a small dataset (e.g., 5 samples per class) for extrapolation. This is because the log-performance error against the log-dataset size follows a nonlinear progression in the few-shot regime followed by a linear progression in the high-shot regime. We introduce a novel piecewise power law (PPL) that handles the two data regimes differently. To estimate the parameters of the PPL, we introduce a random forest regressor trained via meta learning that generalizes across classification/detection tasks, ResNet/ViT based architectures, and random/pre-trained initializations. The PPL improves the performance estimation on average by 37% across 16 classification and 33% across 10 detection datasets, compared to the power law. We further extend the PPL to provide a confidence bound and use it to limit the prediction horizon that reduces over-estimation of data by 76% on classification and 91% on detection datasets.
Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior?
Algorithmic approaches to interpreting machine learning models have proliferated in recent years. We carry out human subject tests that are the first of their kind to isolate the effect of algorithmic explanations on a key aspect of model interpretability, simulatability, while avoiding important confounding experimental factors. A model is simulatable when a person can predict its behavior on new inputs. Through two kinds of simulation tests involving text and tabular data, we evaluate five explanations methods: (1) LIME, (2) Anchor, (3) Decision Boundary, (4) a Prototype model, and (5) a Composite approach that combines explanations from each method. Clear evidence of method effectiveness is found in very few cases: LIME improves simulatability in tabular classification, and our Prototype method is effective in counterfactual simulation tests. We also collect subjective ratings of explanations, but we do not find that ratings are predictive of how helpful explanations are. Our results provide the first reliable and comprehensive estimates of how explanations influence simulatability across a variety of explanation methods and data domains. We show that (1) we need to be careful about the metrics we use to evaluate explanation methods, and (2) there is significant room for improvement in current methods. All our supporting code, data, and models are publicly available at: https://github.com/peterbhase/InterpretableNLP-ACL2020
Learning More with Less: A Generalizable, Self-Supervised Framework for Privacy-Preserving Capacity Estimation with EV Charging Data
Accurate battery capacity estimation is key to alleviating consumer concerns about battery performance and reliability of electric vehicles (EVs). However, practical data limitations imposed by stringent privacy regulations and labeled data shortages hamper the development of generalizable capacity estimation models that remain robust to real-world data distribution shifts. While self-supervised learning can leverage unlabeled data, existing techniques are not particularly designed to learn effectively from challenging field data -- let alone from privacy-friendly data, which are often less feature-rich and noisier. In this work, we propose a first-of-its-kind capacity estimation model based on self-supervised pre-training, developed on a large-scale dataset of privacy-friendly charging data snippets from real-world EV operations. Our pre-training framework, snippet similarity-weighted masked input reconstruction, is designed to learn rich, generalizable representations even from less feature-rich and fragmented privacy-friendly data. Our key innovation lies in harnessing contrastive learning to first capture high-level similarities among fragmented snippets that otherwise lack meaningful context. With our snippet-wise contrastive learning and subsequent similarity-weighted masked reconstruction, we are able to learn rich representations of both granular charging patterns within individual snippets and high-level associative relationships across different snippets. Bolstered by this rich representation learning, our model consistently outperforms state-of-the-art baselines, achieving 31.9% lower test error than the best-performing benchmark, even under challenging domain-shifted settings affected by both manufacturer and age-induced distribution shifts. Source code is available at https://github.com/en-research/GenEVBattery.
Exploiting locality in high-dimensional factorial hidden Markov models
We propose algorithms for approximate filtering and smoothing in high-dimensional Factorial hidden Markov models. The approximation involves discarding, in a principled way, likelihood factors according to a notion of locality in a factor graph associated with the emission distribution. This allows the exponential-in-dimension cost of exact filtering and smoothing to be avoided. We prove that the approximation accuracy, measured in a local total variation norm, is "dimension-free" in the sense that as the overall dimension of the model increases the error bounds we derive do not necessarily degrade. A key step in the analysis is to quantify the error introduced by localizing the likelihood function in a Bayes' rule update. The factorial structure of the likelihood function which we exploit arises naturally when data have known spatial or network structure. We demonstrate the new algorithms on synthetic examples and a London Underground passenger flow problem, where the factor graph is effectively given by the train network.
Prediction without Preclusion: Recourse Verification with Reachable Sets
Machine learning models are often used to decide who will receive a loan, a job interview, or a public benefit. Standard techniques to build these models use features about people but overlook their actionability. In turn, models can assign predictions that are fixed, meaning that consumers who are denied loans, interviews, or benefits may be permanently locked out from access to credit, employment, or assistance. In this work, we introduce a formal testing procedure to flag models that assign fixed predictions that we call recourse verification. We develop machinery to reliably determine if a given model can provide recourse to its decision subjects from a set of user-specified actionability constraints. We demonstrate how our tools can ensure recourse and adversarial robustness in real-world datasets and use them to study the infeasibility of recourse in real-world lending datasets. Our results highlight how models can inadvertently assign fixed predictions that permanently bar access, and we provide tools to design algorithms that account for actionability when developing models.
Interpreting Black Box Models via Hypothesis Testing
In science and medicine, model interpretations may be reported as discoveries of natural phenomena or used to guide patient treatments. In such high-stakes tasks, false discoveries may lead investigators astray. These applications would therefore benefit from control over the finite-sample error rate of interpretations. We reframe black box model interpretability as a multiple hypothesis testing problem. The task is to discover "important" features by testing whether the model prediction is significantly different from what would be expected if the features were replaced with uninformative counterfactuals. We propose two testing methods: one that provably controls the false discovery rate but which is not yet feasible for large-scale applications, and an approximate testing method which can be applied to real-world data sets. In simulation, both tests have high power relative to existing interpretability methods. When applied to state-of-the-art vision and language models, the framework selects features that intuitively explain model predictions. The resulting explanations have the additional advantage that they are themselves easy to interpret.
Intrinsic Sliced Wasserstein Distances for Comparing Collections of Probability Distributions on Manifolds and Graphs
Collections of probability distributions arise in a variety of applications ranging from user activity pattern analysis to brain connectomics. In practice these distributions can be defined over diverse domain types including finite intervals, circles, cylinders, spheres, other manifolds, and graphs. This paper introduces an approach for detecting differences between two collections of distributions over such general domains. To this end, we propose the intrinsic slicing construction that yields a novel class of Wasserstein distances on manifolds and graphs. These distances are Hilbert embeddable, allowing us to reduce the distribution collection comparison problem to a more familiar mean testing problem in a Hilbert space. We provide two testing procedures one based on resampling and another on combining p-values from coordinate-wise tests. Our experiments in various synthetic and real data settings show that the resulting tests are powerful and the p-values are well-calibrated.
Probabilistic Circuits That Know What They Don't Know
Probabilistic circuits (PCs) are models that allow exact and tractable probabilistic inference. In contrast to neural networks, they are often assumed to be well-calibrated and robust to out-of-distribution (OOD) data. In this paper, we show that PCs are in fact not robust to OOD data, i.e., they don't know what they don't know. We then show how this challenge can be overcome by model uncertainty quantification. To this end, we propose tractable dropout inference (TDI), an inference procedure to estimate uncertainty by deriving an analytical solution to Monte Carlo dropout (MCD) through variance propagation. Unlike MCD in neural networks, which comes at the cost of multiple network evaluations, TDI provides tractable sampling-free uncertainty estimates in a single forward pass. TDI improves the robustness of PCs to distribution shift and OOD data, demonstrated through a series of experiments evaluating the classification confidence and uncertainty estimates on real-world data.
Adversarial Parameter Attack on Deep Neural Networks
In this paper, a new parameter perturbation attack on DNNs, called adversarial parameter attack, is proposed, in which small perturbations to the parameters of the DNN are made such that the accuracy of the attacked DNN does not decrease much, but its robustness becomes much lower. The adversarial parameter attack is stronger than previous parameter perturbation attacks in that the attack is more difficult to be recognized by users and the attacked DNN gives a wrong label for any modified sample input with high probability. The existence of adversarial parameters is proved. For a DNN F_{Theta} with the parameter set Theta satisfying certain conditions, it is shown that if the depth of the DNN is sufficiently large, then there exists an adversarial parameter set Theta_a for Theta such that the accuracy of F_{Theta_a} is equal to that of F_{Theta}, but the robustness measure of F_{Theta_a} is smaller than any given bound. An effective training algorithm is given to compute adversarial parameters and numerical experiments are used to demonstrate that the algorithms are effective to produce high quality adversarial parameters.
Improved Analysis of Sparse Linear Regression in Local Differential Privacy Model
In this paper, we revisit the problem of sparse linear regression in the local differential privacy (LDP) model. Existing research in the non-interactive and sequentially local models has focused on obtaining the lower bounds for the case where the underlying parameter is 1-sparse, and extending such bounds to the more general k-sparse case has proven to be challenging. Moreover, it is unclear whether efficient non-interactive LDP (NLDP) algorithms exist. To address these issues, we first consider the problem in the epsilon non-interactive LDP model and provide a lower bound of Omega(sqrt{dklog d}{nepsilon}) on the ell_2-norm estimation error for sub-Gaussian data, where n is the sample size and d is the dimension of the space. We propose an innovative NLDP algorithm, the very first of its kind for the problem. As a remarkable outcome, this algorithm also yields a novel and highly efficient estimator as a valuable by-product. Our algorithm achieves an upper bound of O({dsqrt{k}{nepsilon}}) for the estimation error when the data is sub-Gaussian, which can be further improved by a factor of O(d) if the server has additional public but unlabeled data. For the sequentially interactive LDP model, we show a similar lower bound of Omega({sqrt{dk}{nepsilon}}). As for the upper bound, we rectify a previous method and show that it is possible to achieve a bound of O(ksqrt{d}{nepsilon}). Our findings reveal fundamental differences between the non-private case, central DP model, and local DP model in the sparse linear regression problem.
Human Expertise in Algorithmic Prediction
We introduce a novel framework for incorporating human expertise into algorithmic predictions. Our approach leverages human judgment to distinguish inputs which are algorithmically indistinguishable, or "look the same" to predictive algorithms. We argue that this framing clarifies the problem of human-AI collaboration in prediction tasks, as experts often form judgments by drawing on information which is not encoded in an algorithm's training data. Algorithmic indistinguishability yields a natural test for assessing whether experts incorporate this kind of "side information", and further provides a simple but principled method for selectively incorporating human feedback into algorithmic predictions. We show that this method provably improves the performance of any feasible algorithmic predictor and precisely quantify this improvement. We find empirically that although algorithms often outperform their human counterparts on average, human judgment can improve algorithmic predictions on specific instances (which can be identified ex-ante). In an X-ray classification task, we find that this subset constitutes nearly 30% of the patient population. Our approach provides a natural way of uncovering this heterogeneity and thus enabling effective human-AI collaboration.
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Popular approaches for quantifying predictive uncertainty in deep neural networks often involve distributions over weights or multiple models, for instance via Markov Chain sampling, ensembling, or Monte Carlo dropout. These techniques usually incur overhead by having to train multiple model instances or do not produce very diverse predictions. This comprehensive and extensive survey aims to familiarize the reader with an alternative class of models based on the concept of Evidential Deep Learning: For unfamiliar data, they aim to admit "what they don't know", and fall back onto a prior belief. Furthermore, they allow uncertainty estimation in a single model and forward pass by parameterizing distributions over distributions. This survey recapitulates existing works, focusing on the implementation in a classification setting, before surveying the application of the same paradigm to regression. We also reflect on the strengths and weaknesses compared to other existing methods and provide the most fundamental derivations using a unified notation to aid future research.
Locally Private Nonparametric Contextual Multi-armed Bandits
Motivated by privacy concerns in sequential decision-making on sensitive data, we address the challenge of nonparametric contextual multi-armed bandits (MAB) under local differential privacy (LDP). We develop a uniform-confidence-bound-type estimator, showing its minimax optimality supported by a matching minimax lower bound. We further consider the case where auxiliary datasets are available, subject also to (possibly heterogeneous) LDP constraints. Under the widely-used covariate shift framework, we propose a jump-start scheme to effectively utilize the auxiliary data, the minimax optimality of which is further established by a matching lower bound. Comprehensive experiments on both synthetic and real-world datasets validate our theoretical results and underscore the effectiveness of the proposed methods.
Feature Shift Detection: Localizing Which Features Have Shifted via Conditional Distribution Tests
While previous distribution shift detection approaches can identify if a shift has occurred, these approaches cannot localize which specific features have caused a distribution shift -- a critical step in diagnosing or fixing any underlying issue. For example, in military sensor networks, users will want to detect when one or more of the sensors has been compromised, and critically, they will want to know which specific sensors might be compromised. Thus, we first define a formalization of this problem as multiple conditional distribution hypothesis tests and propose both non-parametric and parametric statistical tests. For both efficiency and flexibility, we then propose to use a test statistic based on the density model score function (i.e. gradient with respect to the input) -- which can easily compute test statistics for all dimensions in a single forward and backward pass. Any density model could be used for computing the necessary statistics including deep density models such as normalizing flows or autoregressive models. We additionally develop methods for identifying when and where a shift occurs in multivariate time-series data and show results for multiple scenarios using realistic attack models on both simulated and real world data.
Post-processing Private Synthetic Data for Improving Utility on Selected Measures
Existing private synthetic data generation algorithms are agnostic to downstream tasks. However, end users may have specific requirements that the synthetic data must satisfy. Failure to meet these requirements could significantly reduce the utility of the data for downstream use. We introduce a post-processing technique that improves the utility of the synthetic data with respect to measures selected by the end user, while preserving strong privacy guarantees and dataset quality. Our technique involves resampling from the synthetic data to filter out samples that do not meet the selected utility measures, using an efficient stochastic first-order algorithm to find optimal resampling weights. Through comprehensive numerical experiments, we demonstrate that our approach consistently improves the utility of synthetic data across multiple benchmark datasets and state-of-the-art synthetic data generation algorithms.
Fine-grained TLS services classification with reject option
The recent success and proliferation of machine learning and deep learning have provided powerful tools, which are also utilized for encrypted traffic analysis, classification, and threat detection in computer networks. These methods, neural networks in particular, are often complex and require a huge corpus of training data. Therefore, this paper focuses on collecting a large up-to-date dataset with almost 200 fine-grained service labels and 140 million network flows extended with packet-level metadata. The number of flows is three orders of magnitude higher than in other existing public labeled datasets of encrypted traffic. The number of service labels, which is important to make the problem hard and realistic, is four times higher than in the public dataset with the most class labels. The published dataset is intended as a benchmark for identifying services in encrypted traffic. Service identification can be further extended with the task of "rejecting" unknown services, i.e., the traffic not seen during the training phase. Neural networks offer superior performance for tackling this more challenging problem. To showcase the dataset's usefulness, we implemented a neural network with a multi-modal architecture, which is the state-of-the-art approach, and achieved 97.04% classification accuracy and detected 91.94% of unknown services with 5% false positive rate.
RAP-SM: Robust Adversarial Prompt via Shadow Models for Copyright Verification of Large Language Models
Recent advances in large language models (LLMs) have underscored the importance of safeguarding intellectual property rights through robust fingerprinting techniques. Traditional fingerprint verification approaches typically focus on a single model, seeking to improve the robustness of its fingerprint.However, these single-model methods often struggle to capture intrinsic commonalities across multiple related models. In this paper, we propose RAP-SM (Robust Adversarial Prompt via Shadow Models), a novel framework that extracts a public fingerprint for an entire series of LLMs. Experimental results demonstrate that RAP-SM effectively captures the intrinsic commonalities among different models while exhibiting strong adversarial robustness. Our findings suggest that RAP-SM presents a valuable avenue for scalable fingerprint verification, offering enhanced protection against potential model breaches in the era of increasingly prevalent LLMs.
Real-IAD: A Real-World Multi-View Dataset for Benchmarking Versatile Industrial Anomaly Detection
Industrial anomaly detection (IAD) has garnered significant attention and experienced rapid development. However, the recent development of IAD approach has encountered certain difficulties due to dataset limitations. On the one hand, most of the state-of-the-art methods have achieved saturation (over 99% in AUROC) on mainstream datasets such as MVTec, and the differences of methods cannot be well distinguished, leading to a significant gap between public datasets and actual application scenarios. On the other hand, the research on various new practical anomaly detection settings is limited by the scale of the dataset, posing a risk of overfitting in evaluation results. Therefore, we propose a large-scale, Real-world, and multi-view Industrial Anomaly Detection dataset, named Real-IAD, which contains 150K high-resolution images of 30 different objects, an order of magnitude larger than existing datasets. It has a larger range of defect area and ratio proportions, making it more challenging than previous datasets. To make the dataset closer to real application scenarios, we adopted a multi-view shooting method and proposed sample-level evaluation metrics. In addition, beyond the general unsupervised anomaly detection setting, we propose a new setting for Fully Unsupervised Industrial Anomaly Detection (FUIAD) based on the observation that the yield rate in industrial production is usually greater than 60%, which has more practical application value. Finally, we report the results of popular IAD methods on the Real-IAD dataset, providing a highly challenging benchmark to promote the development of the IAD field.
SGMM: Stochastic Approximation to Generalized Method of Moments
We introduce a new class of algorithms, Stochastic Generalized Method of Moments (SGMM), for estimation and inference on (overidentified) moment restriction models. Our SGMM is a novel stochastic approximation alternative to the popular Hansen (1982) (offline) GMM, and offers fast and scalable implementation with the ability to handle streaming datasets in real time. We establish the almost sure convergence, and the (functional) central limit theorem for the inefficient online 2SLS and the efficient SGMM. Moreover, we propose online versions of the Durbin-Wu-Hausman and Sargan-Hansen tests that can be seamlessly integrated within the SGMM framework. Extensive Monte Carlo simulations show that as the sample size increases, the SGMM matches the standard (offline) GMM in terms of estimation accuracy and gains over computational efficiency, indicating its practical value for both large-scale and online datasets. We demonstrate the efficacy of our approach by a proof of concept using two well known empirical examples with large sample sizes.
PANORAMA: A synthetic PII-laced dataset for studying sensitive data memorization in LLMs
The memorization of sensitive and personally identifiable information (PII) by large language models (LLMs) poses growing privacy risks as models scale and are increasingly deployed in real-world applications. Existing efforts to study sensitive and PII data memorization and develop mitigation strategies are hampered by the absence of comprehensive, realistic, and ethically sourced datasets reflecting the diversity of sensitive information found on the web. We introduce PANORAMA - Profile-based Assemblage for Naturalistic Online Representation and Attribute Memorization Analysis, a large-scale synthetic corpus of 384,789 samples derived from 9,674 synthetic profiles designed to closely emulate the distribution, variety, and context of PII and sensitive data as it naturally occurs in online environments. Our data generation pipeline begins with the construction of internally consistent, multi-attribute human profiles using constrained selection to reflect real-world demographics such as education, health attributes, financial status, etc. Using a combination of zero-shot prompting and OpenAI o3-mini, we generate diverse content types - including wiki-style articles, social media posts, forum discussions, online reviews, comments, and marketplace listings - each embedding realistic, contextually appropriate PII and other sensitive information. We validate the utility of PANORAMA by fine-tuning the Mistral-7B model on 1x, 5x, 10x, and 25x data replication rates with a subset of data and measure PII memorization rates - revealing not only consistent increases with repetition but also variation across content types, highlighting PANORAMA's ability to model how memorization risks differ by context. Our dataset and code are publicly available, providing a much-needed resource for privacy risk assessment, model auditing, and the development of privacy-preserving LLMs.
Balancing Transparency and Risk: The Security and Privacy Risks of Open-Source Machine Learning Models
The field of artificial intelligence (AI) has experienced remarkable progress in recent years, driven by the widespread adoption of open-source machine learning models in both research and industry. Considering the resource-intensive nature of training on vast datasets, many applications opt for models that have already been trained. Hence, a small number of key players undertake the responsibility of training and publicly releasing large pre-trained models, providing a crucial foundation for a wide range of applications. However, the adoption of these open-source models carries inherent privacy and security risks that are often overlooked. To provide a concrete example, an inconspicuous model may conceal hidden functionalities that, when triggered by specific input patterns, can manipulate the behavior of the system, such as instructing self-driving cars to ignore the presence of other vehicles. The implications of successful privacy and security attacks encompass a broad spectrum, ranging from relatively minor damage like service interruptions to highly alarming scenarios, including physical harm or the exposure of sensitive user data. In this work, we present a comprehensive overview of common privacy and security threats associated with the use of open-source models. By raising awareness of these dangers, we strive to promote the responsible and secure use of AI systems.
AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement
As AI models are increasingly deployed across diverse real-world scenarios, ensuring their safety remains a critical yet underexplored challenge. While substantial efforts have been made to evaluate and enhance AI safety, the lack of a standardized framework and comprehensive toolkit poses significant obstacles to systematic research and practical adoption. To bridge this gap, we introduce AISafetyLab, a unified framework and toolkit that integrates representative attack, defense, and evaluation methodologies for AI safety. AISafetyLab features an intuitive interface that enables developers to seamlessly apply various techniques while maintaining a well-structured and extensible codebase for future advancements. Additionally, we conduct empirical studies on Vicuna, analyzing different attack and defense strategies to provide valuable insights into their comparative effectiveness. To facilitate ongoing research and development in AI safety, AISafetyLab is publicly available at https://github.com/thu-coai/AISafetyLab, and we are committed to its continuous maintenance and improvement.
IfQA: A Dataset for Open-domain Question Answering under Counterfactual Presuppositions
Although counterfactual reasoning is a fundamental aspect of intelligence, the lack of large-scale counterfactual open-domain question-answering (QA) benchmarks makes it difficult to evaluate and improve models on this ability. To address this void, we introduce the first such dataset, named IfQA, where each question is based on a counterfactual presupposition via an "if" clause. For example, if Los Angeles was on the east coast of the U.S., what would be the time difference between Los Angeles and Paris? Such questions require models to go beyond retrieving direct factual knowledge from the Web: they must identify the right information to retrieve and reason about an imagined situation that may even go against the facts built into their parameters. The IfQA dataset contains over 3,800 questions that were annotated annotated by crowdworkers on relevant Wikipedia passages. Empirical analysis reveals that the IfQA dataset is highly challenging for existing open-domain QA methods, including supervised retrieve-then-read pipeline methods (EM score 36.2), as well as recent few-shot approaches such as chain-of-thought prompting with GPT-3 (EM score 27.4). The unique challenges posed by the IfQA benchmark will push open-domain QA research on both retrieval and counterfactual reasoning fronts.
Towards Optimal and Efficient Best Arm Identification in Linear Bandits
We give a new algorithm for best arm identification in linearly parameterised bandits in the fixed confidence setting. The algorithm generalises the well-known LUCB algorithm of Kalyanakrishnan et al. (2012) by playing an arm which minimises a suitable notion of geometric overlap of the statistical confidence set for the unknown parameter, and is fully adaptive and computationally efficient as compared to several state-of-the methods. We theoretically analyse the sample complexity of the algorithm for problems with two and three arms, showing optimality in many cases. Numerical results indicate favourable performance over other algorithms with which we compare.
Handling Large-scale Cardinality in building recommendation systems
Effective recommendation systems rely on capturing user preferences, often requiring incorporating numerous features such as universally unique identifiers (UUIDs) of entities. However, the exceptionally high cardinality of UUIDs poses a significant challenge in terms of model degradation and increased model size due to sparsity. This paper presents two innovative techniques to address the challenge of high cardinality in recommendation systems. Specifically, we propose a bag-of-words approach, combined with layer sharing, to substantially decrease the model size while improving performance. Our techniques were evaluated through offline and online experiments on Uber use cases, resulting in promising results demonstrating our approach's effectiveness in optimizing recommendation systems and enhancing their overall performance.
WAPITI: A Watermark for Finetuned Open-Source LLMs
Watermarking of large language models (LLMs) generation embeds an imperceptible statistical pattern within texts, making it algorithmically detectable. Watermarking is a promising method for addressing potential harm and biases from LLMs, as it enables traceability, accountability, and detection of manipulated content, helping to mitigate unintended consequences. However, for open-source models, watermarking faces two major challenges: (i) incompatibility with fine-tuned models, and (ii) vulnerability to fine-tuning attacks. In this work, we propose WAPITI, a new method that transfers watermarking from base models to fine-tuned models through parameter integration. To the best of our knowledge, we propose the first watermark for fine-tuned open-source LLMs that preserves their fine-tuned capabilities. Furthermore, our approach offers an effective defense against fine-tuning attacks. We test our method on various model architectures and watermarking strategies. Results demonstrate that our method can successfully inject watermarks and is highly compatible with fine-tuned models. Additionally, we offer an in-depth analysis of how parameter editing influences the watermark strength and overall capabilities of the resulting models.
Learning Invariant Representations with Missing Data
Spurious correlations allow flexible models to predict well during training but poorly on related test distributions. Recent work has shown that models that satisfy particular independencies involving correlation-inducing nuisance variables have guarantees on their test performance. Enforcing such independencies requires nuisances to be observed during training. However, nuisances, such as demographics or image background labels, are often missing. Enforcing independence on just the observed data does not imply independence on the entire population. Here we derive mmd estimators used for invariance objectives under missing nuisances. On simulations and clinical data, optimizing through these estimates achieves test performance similar to using estimators that make use of the full data.
D2A: A Dataset Built for AI-Based Vulnerability Detection Methods Using Differential Analysis
Static analysis tools are widely used for vulnerability detection as they understand programs with complex behavior and millions of lines of code. Despite their popularity, static analysis tools are known to generate an excess of false positives. The recent ability of Machine Learning models to understand programming languages opens new possibilities when applied to static analysis. However, existing datasets to train models for vulnerability identification suffer from multiple limitations such as limited bug context, limited size, and synthetic and unrealistic source code. We propose D2A, a differential analysis based approach to label issues reported by static analysis tools. The D2A dataset is built by analyzing version pairs from multiple open source projects. From each project, we select bug fixing commits and we run static analysis on the versions before and after such commits. If some issues detected in a before-commit version disappear in the corresponding after-commit version, they are very likely to be real bugs that got fixed by the commit. We use D2A to generate a large labeled dataset to train models for vulnerability identification. We show that the dataset can be used to build a classifier to identify possible false alarms among the issues reported by static analysis, hence helping developers prioritize and investigate potential true positives first.
Anomaly detection optimization using big data and deep learning to reduce false-positive
Anomaly-based Intrusion Detection System (IDS) has been a hot research topic because of its ability to detect new threats rather than only memorized signatures threats of signature-based IDS. Especially after the availability of advanced technologies that increase the number of hacking tools and increase the risk impact of an attack. The problem of any anomaly-based model is its high false-positive rate. The high false-positive rate is the reason why anomaly IDS is not commonly applied in practice. Because anomaly-based models classify an unseen pattern as a threat where it may be normal but not included in the training dataset. This type of problem is called overfitting where the model is not able to generalize. Optimizing Anomaly-based models by having a big training dataset that includes all possible normal cases may be an optimal solution but could not be applied in practice. Although we can increase the number of training samples to include much more normal cases, still we need a model that has more ability to generalize. In this research paper, we propose applying deep model instead of traditional models because it has more ability to generalize. Thus, we will obtain less false-positive by using big data and deep model. We made a comparison between machine learning and deep learning algorithms in the optimization of anomaly-based IDS by decreasing the false-positive rate. We did an experiment on the NSL-KDD benchmark and compared our results with one of the best used classifiers in traditional learning in IDS optimization. The experiment shows 10% lower false-positive by using deep learning instead of traditional learning.
Tighter Information-Theoretic Generalization Bounds from Supersamples
In this work, we present a variety of novel information-theoretic generalization bounds for learning algorithms, from the supersample setting of Steinke & Zakynthinou (2020)-the setting of the "conditional mutual information" framework. Our development exploits projecting the loss pair (obtained from a training instance and a testing instance) down to a single number and correlating loss values with a Rademacher sequence (and its shifted variants). The presented bounds include square-root bounds, fast-rate bounds, including those based on variance and sharpness, and bounds for interpolating algorithms etc. We show theoretically or empirically that these bounds are tighter than all information-theoretic bounds known to date on the same supersample setting.
A False Sense of Safety: Unsafe Information Leakage in 'Safe' AI Responses
Large Language Models (LLMs) are vulnerable to jailbreaksx2013methods to elicit harmful or generally impermissible outputs. Safety measures are developed and assessed on their effectiveness at defending against jailbreak attacks, indicating a belief that safety is equivalent to robustness. We assert that current defense mechanisms, such as output filters and alignment fine-tuning, are, and will remain, fundamentally insufficient for ensuring model safety. These defenses fail to address risks arising from dual-intent queries and the ability to composite innocuous outputs to achieve harmful goals. To address this critical gap, we introduce an information-theoretic threat model called inferential adversaries who exploit impermissible information leakage from model outputs to achieve malicious goals. We distinguish these from commonly studied security adversaries who only seek to force victim models to generate specific impermissible outputs. We demonstrate the feasibility of automating inferential adversaries through question decomposition and response aggregation. To provide safety guarantees, we define an information censorship criterion for censorship mechanisms, bounding the leakage of impermissible information. We propose a defense mechanism which ensures this bound and reveal an intrinsic safety-utility trade-off. Our work provides the first theoretically grounded understanding of the requirements for releasing safe LLMs and the utility costs involved.
Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data
Diffusion models achieve state-of-the-art performance in various generation tasks. However, their theoretical foundations fall far behind. This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace. Our result provides sample complexity bounds for distribution estimation using diffusion models. We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated. Furthermore, the generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution. The convergence rate depends on the subspace dimension, indicating that diffusion models can circumvent the curse of data ambient dimensionality.
