new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 3

HiPhO: How Far Are (M)LLMs from Humans in the Latest High School Physics Olympiad Benchmark?

Recently, the physical capabilities of (M)LLMs have garnered increasing attention. However, existing benchmarks for physics suffer from two major gaps: they neither provide systematic and up-to-date coverage of real-world physics competitions such as physics Olympiads, nor enable direct performance comparison with humans. To bridge these gaps, we present HiPhO, the first benchmark dedicated to high school physics Olympiads with human-aligned evaluation. Specifically, HiPhO highlights three key innovations. (1) Comprehensive Data: It compiles 13 latest Olympiad exams from 2024-2025, spanning both international and regional competitions, and covering mixed modalities that encompass problems spanning text-only to diagram-based. (2) Professional Evaluation: We adopt official marking schemes to perform fine-grained grading at both the answer and step level, fully aligned with human examiners to ensure high-quality and domain-specific evaluation. (3) Comparison with Human Contestants: We assign gold, silver, and bronze medals to models based on official medal thresholds, thereby enabling direct comparison between (M)LLMs and human contestants. Our large-scale evaluation of 30 state-of-the-art (M)LLMs shows that: across 13 exams, open-source MLLMs mostly remain at or below the bronze level; open-source LLMs show promising progress with occasional golds; closed-source reasoning MLLMs can achieve 6 to 12 gold medals; and most models still have a significant gap from full marks. These results highlight a substantial performance gap between open-source models and top students, the strong physical reasoning capabilities of closed-source reasoning models, and the fact that there is still significant room for improvement. HiPhO, as a rigorous, human-aligned, and Olympiad-focused benchmark for advancing multimodal physical reasoning, is open-source and available at https://github.com/SciYu/HiPhO.

  • 17 authors
·
Sep 9

PsyLite Technical Report

With the rapid development of digital technology, AI-driven psychological counseling has gradually become an important research direction in the field of mental health. However, existing models still have deficiencies in dialogue safety, detailed scenario handling, and lightweight deployment. To address these issues, this study proposes PsyLite, a lightweight psychological counseling large language model agent developed based on the base model InternLM2.5-7B-chat. Through a two-stage training strategy (hybrid distillation data fine-tuning and ORPO preference optimization), PsyLite enhances the model's deep-reasoning ability, psychological counseling ability, and safe dialogue ability. After deployment using Ollama and Open WebUI, a custom workflow is created with Pipelines. An innovative conditional RAG is designed to introduce crosstalk humor elements at appropriate times during psychological counseling to enhance user experience and decline dangerous requests to strengthen dialogue safety. Evaluations show that PsyLite outperforms the baseline models in the Chinese general evaluation (CEval), psychological counseling professional evaluation (CPsyCounE), and dialogue safety evaluation (SafeDialBench), particularly in psychological counseling professionalism (CPsyCounE score improvement of 47.6\%) and dialogue safety ( score improvement of 2.4\%). Additionally, the model uses quantization technology (GGUF q4\_k\_m) to achieve low hardware deployment (5GB memory is sufficient for operation), providing a feasible solution for psychological counseling applications in resource-constrained environments.

  • 6 authors
·
Jun 26

PsyDraw: A Multi-Agent Multimodal System for Mental Health Screening in Left-Behind Children

Left-behind children (LBCs), numbering over 66 million in China, face severe mental health challenges due to parental migration for work. Early screening and identification of at-risk LBCs is crucial, yet challenging due to the severe shortage of mental health professionals, especially in rural areas. While the House-Tree-Person (HTP) test shows higher child participation rates, its requirement for expert interpretation limits its application in resource-scarce regions. To address this challenge, we propose PsyDraw, a multi-agent system based on Multimodal Large Language Models that assists mental health professionals in analyzing HTP drawings. The system employs specialized agents for feature extraction and psychological interpretation, operating in two stages: comprehensive feature analysis and professional report generation. Evaluation of HTP drawings from 290 primary school students reveals that 71.03% of the analyzes achieved High Consistency with professional evaluations, 26.21% Moderate Consistency and only 2.41% Low Consistency. The system identified 31.03% of cases requiring professional attention, demonstrating its effectiveness as a preliminary screening tool. Currently deployed in pilot schools, \method shows promise in supporting mental health professionals, particularly in resource-limited areas, while maintaining high professional standards in psychological assessment.

  • 8 authors
·
Dec 19, 2024

Stable Cinemetrics : Structured Taxonomy and Evaluation for Professional Video Generation

Recent advances in video generation have enabled high-fidelity video synthesis from user provided prompts. However, existing models and benchmarks fail to capture the complexity and requirements of professional video generation. Towards that goal, we introduce Stable Cinemetrics, a structured evaluation framework that formalizes filmmaking controls into four disentangled, hierarchical taxonomies: Setup, Event, Lighting, and Camera. Together, these taxonomies define 76 fine-grained control nodes grounded in industry practices. Using these taxonomies, we construct a benchmark of prompts aligned with professional use cases and develop an automated pipeline for prompt categorization and question generation, enabling independent evaluation of each control dimension. We conduct a large-scale human study spanning 10+ models and 20K videos, annotated by a pool of 80+ film professionals. Our analysis, both coarse and fine-grained reveal that even the strongest current models exhibit significant gaps, particularly in Events and Camera-related controls. To enable scalable evaluation, we train an automatic evaluator, a vision-language model aligned with expert annotations that outperforms existing zero-shot baselines. SCINE is the first approach to situate professional video generation within the landscape of video generative models, introducing taxonomies centered around cinematic controls and supporting them with structured evaluation pipelines and detailed analyses to guide future research.

stabilityai Stability AI
·
Sep 30 2

Beyond Direct Generation: A Decomposed Approach to Well-Crafted Screenwriting with LLMs

The screenplay serves as the foundation for television production, defining narrative structure, character development, and dialogue. While Large Language Models (LLMs) show great potential in creative writing, direct end-to-end generation approaches often fail to produce well-crafted screenplays. We argue this failure stems from forcing a single model to simultaneously master two disparate capabilities: creative narrative construction and rigid format adherence. The resulting outputs may mimic superficial style but lack the deep structural integrity and storytelling substance required for professional use. To enable LLMs to generate high-quality screenplays, we introduce Dual-Stage Refinement (DSR), a decomposed framework that decouples creative narrative generation from format conversion. The first stage transforms a brief outline into rich, novel-style prose. The second stage refines this narrative into a professionally formatted screenplay. This separation enables the model to specialize in one distinct capability at each stage. A key challenge in implementing DSR is the scarcity of paired outline-to-novel training data. We address this through hybrid data synthesis: reverse synthesis deconstructs existing screenplays into structured inputs, while forward synthesis leverages these inputs to generate high-quality narrative texts as training targets. Blind evaluations by professional screenwriters show that DSR achieves a 75% win rate against strong baselines like Gemini-2.5-Pro and reaches 82.7% of human-level performance. Our work demonstrates that decomposed generation architecture with tailored data synthesis effectively specializes LLMs in complex creative domains.

  • 5 authors
·
Oct 27

I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors

Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic metaphors. This is a challenging task for diffusion-based text-to-image models, such as DALLcdotE 2, since it requires the ability to model implicit meaning and compositionality. We propose to solve the task through the collaboration between Large Language Models (LLMs) and Diffusion Models: Instruct GPT-3 (davinci-002) with Chain-of-Thought prompting generates text that represents a visual elaboration of the linguistic metaphor containing the implicit meaning and relevant objects, which is then used as input to the diffusion-based text-to-image models.Using a human-AI collaboration framework, where humans interact both with the LLM and the top-performing diffusion model, we create a high-quality dataset containing 6,476 visual metaphors for 1,540 linguistic metaphors and their associated visual elaborations. Evaluation by professional illustrators shows the promise of LLM-Diffusion Model collaboration for this task . To evaluate the utility of our Human-AI collaboration framework and the quality of our dataset, we perform both an intrinsic human-based evaluation and an extrinsic evaluation using visual entailment as a downstream task.

  • 7 authors
·
May 24, 2023

PRBench: Large-Scale Expert Rubrics for Evaluating High-Stakes Professional Reasoning

Frontier model progress is often measured by academic benchmarks, which offer a limited view of performance in real-world professional contexts. Existing evaluations often fail to assess open-ended, economically consequential tasks in high-stakes domains like Legal and Finance, where practical returns are paramount. To address this, we introduce Professional Reasoning Bench (PRBench), a realistic, open-ended, and difficult benchmark of real-world problems in Finance and Law. We open-source its 1,100 expert-authored tasks and 19,356 expert-curated criteria, making it, to our knowledge, the largest public, rubric-based benchmark for both legal and finance domains. We recruit 182 qualified professionals, holding JDs, CFAs, or 6+ years of experience, who contributed tasks inspired by their actual workflows. This process yields significant diversity, with tasks spanning 114 countries and 47 US jurisdictions. Our expert-curated rubrics are validated through a rigorous quality pipeline, including independent expert validation. Subsequent evaluation of 20 leading models reveals substantial room for improvement, with top scores of only 0.39 (Finance) and 0.37 (Legal) on our Hard subsets. We further catalog associated economic impacts of the prompts and analyze performance using human-annotated rubric categories. Our analysis shows that models with similar overall scores can diverge significantly on specific capabilities. Common failure modes include inaccurate judgments, a lack of process transparency and incomplete reasoning, highlighting critical gaps in their reliability for professional adoption.

  • 24 authors
·
Nov 14

JMLR: Joint Medical LLM and Retrieval Training for Enhancing Reasoning and Professional Question Answering Capability

Large Language Models (LLMs) have demonstrated a remarkable potential in medical knowledge acquisition and question-answering. However, LLMs can potentially hallucinate and yield factually incorrect outcomes, even with domain-specific pretraining. Previously, retrieval augmented generation (RAG) has limited success in addressing hallucinations. Unlike previous methods in RAG where the retrieval model was trained separately from the LLM, we introduce JMLR (for Jointly trains LLM and information Retrieval) during the fine-tuning phase. The synchronized training mechanism enhances JMLR's ability to retrieve clinical guidelines and leverage medical knowledge to reason and answer questions and reduces the demand for computational resources. We evaluated JMLR on the important medical question-answering application. Our experimental results demonstrate that JMLR-13B (70.5%) outperforms a previous state-of-the-art open-source model using conventional pre-training and fine-tuning Meditron-70B (68.9%) and Llama2-13B with RAG (67.7%) on a medical question-answering dataset. Comprehensive evaluations reveal JMLR-13B enhances reasoning quality and reduces hallucinations better than Claude3-Opus. Additionally, JMLR-13B (148 GPU hours) also trains much faster than Meditron-70B (42630 GPU hours). Through this work, we provide a new and efficient knowledge enhancement method for healthcare, demonstrating the potential of integrating retrieval and LLM training for medical question-answering systems.

  • 4 authors
·
Feb 27, 2024

PokerBench: Training Large Language Models to become Professional Poker Players

We introduce PokerBench - a benchmark for evaluating the poker-playing abilities of large language models (LLMs). As LLMs excel in traditional NLP tasks, their application to complex, strategic games like poker poses a new challenge. Poker, an incomplete information game, demands a multitude of skills such as mathematics, reasoning, planning, strategy, and a deep understanding of game theory and human psychology. This makes Poker the ideal next frontier for large language models. PokerBench consists of a comprehensive compilation of 11,000 most important scenarios, split between pre-flop and post-flop play, developed in collaboration with trained poker players. We evaluate prominent models including GPT-4, ChatGPT 3.5, and various Llama and Gemma series models, finding that all state-of-the-art LLMs underperform in playing optimal poker. However, after fine-tuning, these models show marked improvements. We validate PokerBench by having models with different scores compete with each other, demonstrating that higher scores on PokerBench lead to higher win rates in actual poker games. Through gameplay between our fine-tuned model and GPT-4, we also identify limitations of simple supervised fine-tuning for learning optimal playing strategy, suggesting the need for more advanced methodologies for effectively training language models to excel in games. PokerBench thus presents a unique benchmark for a quick and reliable evaluation of the poker-playing ability of LLMs as well as a comprehensive benchmark to study the progress of LLMs in complex game-playing scenarios. The dataset and code will be made available at: https://github.com/pokerllm/pokerbench.

  • 6 authors
·
Jan 14 2

GPT as Knowledge Worker: A Zero-Shot Evaluation of (AI)CPA Capabilities

The global economy is increasingly dependent on knowledge workers to meet the needs of public and private organizations. While there is no single definition of knowledge work, organizations and industry groups still attempt to measure individuals' capability to engage in it. The most comprehensive assessment of capability readiness for professional knowledge workers is the Uniform CPA Examination developed by the American Institute of Certified Public Accountants (AICPA). In this paper, we experimentally evaluate OpenAI's `text-davinci-003` and prior versions of GPT on both a sample Regulation (REG) exam and an assessment of over 200 multiple-choice questions based on the AICPA Blueprints for legal, financial, accounting, technology, and ethical tasks. First, we find that `text-davinci-003` achieves a correct rate of 14.4% on a sample REG exam section, significantly underperforming human capabilities on quantitative reasoning in zero-shot prompts. Second, `text-davinci-003` appears to be approaching human-level performance on the Remembering & Understanding and Application skill levels in the Exam absent calculation. For best prompt and parameters, the model answers 57.6% of questions correctly, significantly better than the 25% guessing rate, and its top two answers are correct 82.1% of the time, indicating strong non-entailment. Finally, we find that recent generations of GPT-3 demonstrate material improvements on this assessment, rising from 30% for `text-davinci-001` to 57% for `text-davinci-003`. These findings strongly suggest that large language models have the potential to transform the quality and efficiency of future knowledge work.

  • 4 authors
·
Jan 11, 2023

IDEA-Bench: How Far are Generative Models from Professional Designing?

Real-world design tasks - such as picture book creation, film storyboard development using character sets, photo retouching, visual effects, and font transfer - are highly diverse and complex, requiring deep interpretation and extraction of various elements from instructions, descriptions, and reference images. The resulting images often implicitly capture key features from references or user inputs, making it challenging to develop models that can effectively address such varied tasks. While existing visual generative models can produce high-quality images based on prompts, they face significant limitations in professional design scenarios that involve varied forms and multiple inputs and outputs, even when enhanced with adapters like ControlNets and LoRAs. To address this, we introduce IDEA-Bench, a comprehensive benchmark encompassing 100 real-world design tasks, including rendering, visual effects, storyboarding, picture books, fonts, style-based, and identity-preserving generation, with 275 test cases to thoroughly evaluate a model's general-purpose generation capabilities. Notably, even the best-performing model only achieves 22.48 on IDEA-Bench, while the best general-purpose model only achieves 6.81. We provide a detailed analysis of these results, highlighting the inherent challenges and providing actionable directions for improvement. Additionally, we provide a subset of 18 representative tasks equipped with multimodal large language model (MLLM)-based auto-evaluation techniques to facilitate rapid model development and comparison. We releases the benchmark data, evaluation toolkits, and an online leaderboard at https://github.com/ali-vilab/IDEA-Bench, aiming to drive the advancement of generative models toward more versatile and applicable intelligent design systems.

  • 10 authors
·
Dec 16, 2024

Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation

Cultural biases in multilingual datasets pose significant challenges for their effectiveness as global benchmarks. These biases stem not only from language but also from the cultural knowledge required to interpret questions, reducing the practical utility of translated datasets like MMLU. Furthermore, translation often introduces artifacts that can distort the meaning or clarity of questions in the target language. A common practice in multilingual evaluation is to rely on machine-translated evaluation sets, but simply translating a dataset is insufficient to address these challenges. In this work, we trace the impact of both of these issues on multilingual evaluations and ensuing model performances. Our large-scale evaluation of state-of-the-art open and proprietary models illustrates that progress on MMLU depends heavily on learning Western-centric concepts, with 28% of all questions requiring culturally sensitive knowledge. Moreover, for questions requiring geographic knowledge, an astounding 84.9% focus on either North American or European regions. Rankings of model evaluations change depending on whether they are evaluated on the full portion or the subset of questions annotated as culturally sensitive, showing the distortion to model rankings when blindly relying on translated MMLU. We release Global-MMLU, an improved MMLU with evaluation coverage across 42 languages -- with improved overall quality by engaging with compensated professional and community annotators to verify translation quality while also rigorously evaluating cultural biases present in the original dataset. This comprehensive Global-MMLU set also includes designated subsets labeled as culturally sensitive and culturally agnostic to allow for more holistic, complete evaluation.

  • 23 authors
·
Dec 4, 2024 2

SCALE: Scaling up the Complexity for Advanced Language Model Evaluation

Recent strides in Large Language Models (LLMs) have saturated many NLP benchmarks (even professional domain-specific ones), emphasizing the need for novel, more challenging novel ones to properly assess LLM capabilities. In this paper, we introduce a novel NLP benchmark that poses challenges to current LLMs across four key dimensions: processing long documents (up to 50K tokens), utilizing domain specific knowledge (embodied in legal texts), multilingual understanding (covering five languages), and multitasking (comprising legal document to document Information Retrieval, Court View Generation, Leading Decision Summarization, Citation Extraction, and eight challenging Text Classification tasks). Our benchmark comprises diverse legal NLP datasets from the Swiss legal system, allowing for a comprehensive study of the underlying Non-English, inherently multilingual, federal legal system. Despite recent advances, efficiently processing long documents for intense review/analysis tasks remains an open challenge for language models. Also, comprehensive, domain-specific benchmarks requiring high expertise to develop are rare, as are multilingual benchmarks. This scarcity underscores our contribution's value, considering most public models are trained predominantly on English corpora, while other languages remain understudied, particularly for practical domain-specific NLP tasks. Our benchmark allows for testing and advancing the state-of-the-art LLMs. As part of our study, we evaluate several pre-trained multilingual language models on our benchmark to establish strong baselines as a point of reference. Despite the large size of our datasets (tens to hundreds of thousands of examples), existing publicly available models struggle with most tasks, even after in-domain pretraining. We publish all resources (benchmark suite, pre-trained models, code) under a fully permissive open CC BY-SA license.

  • 7 authors
·
Jun 15, 2023

FinSearchComp: Towards a Realistic, Expert-Level Evaluation of Financial Search and Reasoning

Search has emerged as core infrastructure for LLM-based agents and is widely viewed as critical on the path toward more general intelligence. Finance is a particularly demanding proving ground: analysts routinely conduct complex, multi-step searches over time-sensitive, domain-specific data, making it ideal for assessing both search proficiency and knowledge-grounded reasoning. Yet no existing open financial datasets evaluate data searching capability of end-to-end agents, largely because constructing realistic, complicated tasks requires deep financial expertise and time-sensitive data is hard to evaluate. We present FinSearchComp, the first fully open-source agent benchmark for realistic, open-domain financial search and reasoning. FinSearchComp comprises three tasks -- Time-Sensitive Data Fetching, Simple Historical Lookup, and Complex Historical Investigation -- closely reproduce real-world financial analyst workflows. To ensure difficulty and reliability, we engage 70 professional financial experts for annotation and implement a rigorous multi-stage quality-assurance pipeline. The benchmark includes 635 questions spanning global and Greater China markets, and we evaluate 21 models (products) on it. Grok 4 (web) tops the global subset, approaching expert-level accuracy. DouBao (web) leads on the Greater China subset. Experimental analyses show that equipping agents with web search and financial plugins substantially improves results on FinSearchComp, and the country origin of models and tools impact performance significantly.By aligning with realistic analyst tasks and providing end-to-end evaluation, FinSearchComp offers a professional, high-difficulty testbed for complex financial search and reasoning.

  • 23 authors
·
Sep 16 2

Basque and Spanish Counter Narrative Generation: Data Creation and Evaluation

Counter Narratives (CNs) are non-negative textual responses to Hate Speech (HS) aiming at defusing online hatred and mitigating its spreading across media. Despite the recent increase in HS content posted online, research on automatic CN generation has been relatively scarce and predominantly focused on English. In this paper, we present CONAN-EUS, a new Basque and Spanish dataset for CN generation developed by means of Machine Translation (MT) and professional post-edition. Being a parallel corpus, also with respect to the original English CONAN, it allows to perform novel research on multilingual and crosslingual automatic generation of CNs. Our experiments on CN generation with mT5, a multilingual encoder-decoder model, show that generation greatly benefits from training on post-edited data, as opposed to relying on silver MT data only. These results are confirmed by their correlation with a qualitative manual evaluation, demonstrating that manually revised training data remains crucial for the quality of the generated CNs. Furthermore, multilingual data augmentation improves results over monolingual settings for structurally similar languages such as English and Spanish, while being detrimental for Basque, a language isolate. Similar findings occur in zero-shot crosslingual evaluations, where model transfer (fine-tuning in English and generating in a different target language) outperforms fine-tuning mT5 on machine translated data for Spanish but not for Basque. This provides an interesting insight into the asymmetry in the multilinguality of generative models, a challenging topic which is still open to research.

  • 4 authors
·
Mar 14, 2024

Automating Legal Interpretation with LLMs: Retrieval, Generation, and Evaluation

Interpreting the law is always essential for the law to adapt to the ever-changing society. It is a critical and challenging task even for legal practitioners, as it requires meticulous and professional annotations and summarizations by legal experts, which are admittedly time-consuming and expensive to collect at scale. To alleviate the burden on legal experts, we propose a method for automated legal interpretation. Specifically, by emulating doctrinal legal research, we introduce a novel framework, ATRIE, to address Legal Concept Interpretation, a typical task in legal interpretation. ATRIE utilizes large language models (LLMs) to AuTomatically Retrieve concept-related information, Interpret legal concepts, and Evaluate generated interpretations, eliminating dependence on legal experts. ATRIE comprises a legal concept interpreter and a legal concept interpretation evaluator. The interpreter uses LLMs to retrieve relevant information from previous cases and interpret legal concepts. The evaluator uses performance changes on Legal Concept Entailment, a downstream task we propose, as a proxy of interpretation quality. Automated and multifaceted human evaluations indicate that the quality of our interpretations is comparable to those written by legal experts, with superior comprehensiveness and readability. Although there remains a slight gap in accuracy, it can already assist legal practitioners in improving the efficiency of legal interpretation.

  • 4 authors
·
Jan 3

Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs

Empowering large language models to accurately express confidence in their answers is essential for trustworthy decision-making. Previous confidence elicitation methods, which primarily rely on white-box access to internal model information or model fine-tuning, have become less suitable for LLMs, especially closed-source commercial APIs. This leads to a growing need to explore the untapped area of black-box approaches for LLM uncertainty estimation. To better break down the problem, we define a systematic framework with three components: prompting strategies for eliciting verbalized confidence, sampling methods for generating multiple responses, and aggregation techniques for computing consistency. We then benchmark these methods on two key tasks-confidence calibration and failure prediction-across five types of datasets (e.g., commonsense and arithmetic reasoning) and five widely-used LLMs including GPT-4 and LLaMA 2 Chat. Our analysis uncovers several key insights: 1) LLMs, when verbalizing their confidence, tend to be overconfident, potentially imitating human patterns of expressing confidence. 2) As model capability scales up, both calibration and failure prediction performance improve. 3) Employing our proposed strategies, such as human-inspired prompts, consistency among multiple responses, and better aggregation strategies can help mitigate this overconfidence from various perspectives. 4) Comparisons with white-box methods indicate that while white-box methods perform better, the gap is narrow, e.g., 0.522 to 0.605 in AUROC. Despite these advancements, none of these techniques consistently outperform others, and all investigated methods struggle in challenging tasks, such as those requiring professional knowledge, indicating significant scope for improvement. We believe this study can serve as a strong baseline and provide insights for eliciting confidence in black-box LLMs.

  • 7 authors
·
Jun 22, 2023

Can LLMs Beat Humans in Debating? A Dynamic Multi-agent Framework for Competitive Debate

Competitive debate is a complex task of computational argumentation. Large Language Models (LLMs) suffer from hallucinations and lack competitiveness in this field. To address these challenges, we introduce Agent for Debate (Agent4Debate), a dynamic multi-agent framework based on LLMs designed to enhance their capabilities in competitive debate. Drawing inspiration from human behavior in debate preparation and execution, Agent4Debate employs a collaborative architecture where four specialized agents, involving Searcher, Analyzer, Writer, and Reviewer, dynamically interact and cooperate. These agents work throughout the debate process, covering multiple stages from initial research and argument formulation to rebuttal and summary. To comprehensively evaluate framework performance, we construct the Competitive Debate Arena, comprising 66 carefully selected Chinese debate motions. We recruit ten experienced human debaters and collect records of 200 debates involving Agent4Debate, baseline models, and humans. The evaluation employs the Debatrix automatic scoring system and professional human reviewers based on the established Debatrix-Elo and Human-Elo ranking. Experimental results indicate that the state-of-the-art Agent4Debate exhibits capabilities comparable to those of humans. Furthermore, ablation studies demonstrate the effectiveness of each component in the agent structure.

  • 6 authors
·
Aug 8, 2024

UI-Vision: A Desktop-centric GUI Benchmark for Visual Perception and Interaction

Autonomous agents that navigate Graphical User Interfaces (GUIs) to automate tasks like document editing and file management can greatly enhance computer workflows. While existing research focuses on online settings, desktop environments, critical for many professional and everyday tasks, remain underexplored due to data collection challenges and licensing issues. We introduce UI-Vision, the first comprehensive, license-permissive benchmark for offline, fine-grained evaluation of computer use agents in real-world desktop environments. Unlike online benchmarks, UI-Vision provides: (i) dense, high-quality annotations of human demonstrations, including bounding boxes, UI labels, and action trajectories (clicks, drags, and keyboard inputs) across 83 software applications, and (ii) three fine-to-coarse grained tasks-Element Grounding, Layout Grounding, and Action Prediction-with well-defined metrics to rigorously evaluate agents' performance in desktop environments. Our evaluation reveals critical limitations in state-of-the-art models like UI-TARS-72B, including issues with understanding professional software, spatial reasoning, and complex actions like drag-and-drop. These findings highlight the challenges in developing fully autonomous computer use agents. By releasing UI-Vision as open-source, we aim to advance the development of more capable agents for real-world desktop tasks.

  • 14 authors
·
Mar 19

GraphiMind: LLM-centric Interface for Information Graphics Design

Information graphics are pivotal in effective information dissemination and storytelling. However, creating such graphics is extremely challenging for non-professionals, since the design process requires multifaceted skills and comprehensive knowledge. Thus, despite the many available authoring tools, a significant gap remains in enabling non-experts to produce compelling information graphics seamlessly, especially from scratch. Recent breakthroughs show that Large Language Models (LLMs), especially when tool-augmented, can autonomously engage with external tools, making them promising candidates for enabling innovative graphic design applications. In this work, we propose a LLM-centric interface with the agent GraphiMind for automatic generation, recommendation, and composition of information graphics design resources, based on user intent expressed through natural language. Our GraphiMind integrates a Textual Conversational Interface, powered by tool-augmented LLM, with a traditional Graphical Manipulation Interface, streamlining the entire design process from raw resource curation to composition and refinement. Extensive evaluations highlight our tool's proficiency in simplifying the design process, opening avenues for its use by non-professional users. Moreover, we spotlight the potential of LLMs in reshaping the domain of information graphics design, offering a blend of automation, versatility, and user-centric interactivity.

  • 6 authors
·
Jan 24, 2024

CityBench: Evaluating the Capabilities of Large Language Model as World Model

Large language models (LLMs) with powerful generalization ability has been widely used in many domains. A systematic and reliable evaluation of LLMs is a crucial step in their development and applications, especially for specific professional fields. In the urban domain, there have been some early explorations about the usability of LLMs, but a systematic and scalable evaluation benchmark is still lacking. The challenge in constructing a systematic evaluation benchmark for the urban domain lies in the diversity of data and scenarios, as well as the complex and dynamic nature of cities. In this paper, we propose CityBench, an interactive simulator based evaluation platform, as the first systematic evaluation benchmark for the capability of LLMs for urban domain. First, we build CitySim to integrate the multi-source data and simulate fine-grained urban dynamics. Based on CitySim, we design 7 tasks in 2 categories of perception-understanding and decision-making group to evaluate the capability of LLMs as city-scale world model for urban domain. Due to the flexibility and ease-of-use of CitySim, our evaluation platform CityBench can be easily extended to any city in the world. We evaluate 13 well-known LLMs including open source LLMs and commercial LLMs in 13 cities around the world. Extensive experiments demonstrate the scalability and effectiveness of proposed CityBench and shed lights for the future development of LLMs in urban domain. The dataset, benchmark and source codes are openly accessible to the research community via https://github.com/tsinghua-fib-lab/CityBench

  • 9 authors
·
Jun 19, 2024

A Preliminary Study of o1 in Medicine: Are We Closer to an AI Doctor?

Large language models (LLMs) have exhibited remarkable capabilities across various domains and tasks, pushing the boundaries of our knowledge in learning and cognition. The latest model, OpenAI's o1, stands out as the first LLM with an internalized chain-of-thought technique using reinforcement learning strategies. While it has demonstrated surprisingly strong capabilities on various general language tasks, its performance in specialized fields such as medicine remains unknown. To this end, this report provides a comprehensive exploration of o1 on different medical scenarios, examining 3 key aspects: understanding, reasoning, and multilinguality. Specifically, our evaluation encompasses 6 tasks using data from 37 medical datasets, including two newly constructed and more challenging question-answering (QA) tasks based on professional medical quizzes from the New England Journal of Medicine (NEJM) and The Lancet. These datasets offer greater clinical relevance compared to standard medical QA benchmarks such as MedQA, translating more effectively into real-world clinical utility. Our analysis of o1 suggests that the enhanced reasoning ability of LLMs may (significantly) benefit their capability to understand various medical instructions and reason through complex clinical scenarios. Notably, o1 surpasses the previous GPT-4 in accuracy by an average of 6.2% and 6.6% across 19 datasets and two newly created complex QA scenarios. But meanwhile, we identify several weaknesses in both the model capability and the existing evaluation protocols, including hallucination, inconsistent multilingual ability, and discrepant metrics for evaluation. We release our raw data and model outputs at https://ucsc-vlaa.github.io/o1_medicine/ for future research.

  • 9 authors
·
Sep 23, 2024 2

MMTU: A Massive Multi-Task Table Understanding and Reasoning Benchmark

Tables and table-based use cases play a crucial role in many important real-world applications, such as spreadsheets, databases, and computational notebooks, which traditionally require expert-level users like data engineers, data analysts, and database administrators to operate. Although LLMs have shown remarkable progress in working with tables (e.g., in spreadsheet and database copilot scenarios), comprehensive benchmarking of such capabilities remains limited. In contrast to an extensive and growing list of NLP benchmarks, evaluations of table-related tasks are scarce, and narrowly focus on tasks like NL-to-SQL and Table-QA, overlooking the broader spectrum of real-world tasks that professional users face. This gap limits our understanding and model progress in this important area. In this work, we introduce MMTU, a large-scale benchmark with over 30K questions across 25 real-world table tasks, designed to comprehensively evaluate models ability to understand, reason, and manipulate real tables at the expert-level. These tasks are drawn from decades' worth of computer science research on tabular data, with a focus on complex table tasks faced by professional users. We show that MMTU require a combination of skills -- including table understanding, reasoning, and coding -- that remain challenging for today's frontier models, where even frontier reasoning models like OpenAI o4-mini and DeepSeek R1 score only around 60%, suggesting significant room for improvement. We highlight key findings in our evaluation using MMTU and hope that this benchmark drives further advances in understanding and developing foundation models for structured data processing and analysis. Our code and data are available at https://github.com/MMTU-Benchmark/MMTU and https://huggingface.co/datasets/MMTU-benchmark/MMTU.

  • 9 authors
·
Jun 5

DNA-Rendering: A Diverse Neural Actor Repository for High-Fidelity Human-centric Rendering

Realistic human-centric rendering plays a key role in both computer vision and computer graphics. Rapid progress has been made in the algorithm aspect over the years, yet existing human-centric rendering datasets and benchmarks are rather impoverished in terms of diversity, which are crucial for rendering effect. Researchers are usually constrained to explore and evaluate a small set of rendering problems on current datasets, while real-world applications require methods to be robust across different scenarios. In this work, we present DNA-Rendering, a large-scale, high-fidelity repository of human performance data for neural actor rendering. DNA-Rendering presents several alluring attributes. First, our dataset contains over 1500 human subjects, 5000 motion sequences, and 67.5M frames' data volume. Second, we provide rich assets for each subject -- 2D/3D human body keypoints, foreground masks, SMPLX models, cloth/accessory materials, multi-view images, and videos. These assets boost the current method's accuracy on downstream rendering tasks. Third, we construct a professional multi-view system to capture data, which contains 60 synchronous cameras with max 4096 x 3000 resolution, 15 fps speed, and stern camera calibration steps, ensuring high-quality resources for task training and evaluation. Along with the dataset, we provide a large-scale and quantitative benchmark in full-scale, with multiple tasks to evaluate the existing progress of novel view synthesis, novel pose animation synthesis, and novel identity rendering methods. In this manuscript, we describe our DNA-Rendering effort as a revealing of new observations, challenges, and future directions to human-centric rendering. The dataset, code, and benchmarks will be publicly available at https://dna-rendering.github.io/

  • 21 authors
·
Jul 19, 2023

FutureX: An Advanced Live Benchmark for LLM Agents in Future Prediction

Future prediction is a complex task for LLM agents, requiring a high level of analytical thinking, information gathering, contextual understanding, and decision-making under uncertainty. Agents must not only gather and interpret vast amounts of dynamic information but also integrate diverse data sources, weigh uncertainties, and adapt predictions based on emerging trends, just as human experts do in fields like politics, economics, and finance. Despite its importance, no large-scale benchmark exists for evaluating agents on future prediction, largely due to challenges in handling real-time updates and retrieving timely, accurate answers. To address this, we introduce FutureX, a dynamic and live evaluation benchmark specifically designed for LLM agents performing future prediction tasks. FutureX is the largest and most diverse live benchmark for future prediction, supporting real-time daily updates and eliminating data contamination through an automated pipeline for question gathering and answer collection. We evaluate 25 LLM/agent models, including those with reasoning, search capabilities, and integration of external tools such as the open-source Deep Research Agent and closed-source Deep Research models. This comprehensive evaluation assesses agents' adaptive reasoning and performance in dynamic environments. Additionally, we provide in-depth analyses of agents' failure modes and performance pitfalls in future-oriented tasks, including the vulnerability to fake web pages and the temporal validity. Our goal is to establish a dynamic, contamination-free evaluation standard that drives the development of LLM agents capable of performing at the level of professional human analysts in complex reasoning and predictive thinking.

mPLUG-PaperOwl: Scientific Diagram Analysis with the Multimodal Large Language Model

Recently, the strong text creation ability of Large Language Models(LLMs) has given rise to many tools for assisting paper reading or even writing. However, the weak diagram analysis abilities of LLMs or Multimodal LLMs greatly limit their application scenarios, especially for scientific academic paper writing. In this work, towards a more versatile copilot for academic paper writing, we mainly focus on strengthening the multi-modal diagram analysis ability of Multimodal LLMs. By parsing Latex source files of high-quality papers, we carefully build a multi-modal diagram understanding dataset M-Paper. By aligning diagrams in the paper with related paragraphs, we construct professional diagram analysis samples for training and evaluation. M-Paper is the first dataset to support joint comprehension of multiple scientific diagrams, including figures and tables in the format of images or Latex codes. Besides, to better align the copilot with the user's intention, we introduce the `outline' as the control signal, which could be directly given by the user or revised based on auto-generated ones. Comprehensive experiments with a state-of-the-art Mumtimodal LLM demonstrate that training on our dataset shows stronger scientific diagram understanding performance, including diagram captioning, diagram analysis, and outline recommendation. The dataset, code, and model are available at https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/PaperOwl.

  • 10 authors
·
Nov 29, 2023

EEE-Bench: A Comprehensive Multimodal Electrical And Electronics Engineering Benchmark

Recent studies on large language models (LLMs) and large multimodal models (LMMs) have demonstrated promising skills in various domains including science and mathematics. However, their capability in more challenging and real-world related scenarios like engineering has not been systematically studied. To bridge this gap, we propose EEE-Bench, a multimodal benchmark aimed at assessing LMMs' capabilities in solving practical engineering tasks, using electrical and electronics engineering (EEE) as the testbed. Our benchmark consists of 2860 carefully curated problems spanning 10 essential subdomains such as analog circuits, control systems, etc. Compared to benchmarks in other domains, engineering problems are intrinsically 1) more visually complex and versatile and 2) less deterministic in solutions. Successful solutions to these problems often demand more-than-usual rigorous integration of visual and textual information as models need to understand intricate images like abstract circuits and system diagrams while taking professional instructions, making them excellent candidates for LMM evaluations. Alongside EEE-Bench, we provide extensive quantitative evaluations and fine-grained analysis of 17 widely-used open and closed-sourced LLMs and LMMs. Our results demonstrate notable deficiencies of current foundation models in EEE, with an average performance ranging from 19.48% to 46.78%. Finally, we reveal and explore a critical shortcoming in LMMs which we term laziness: the tendency to take shortcuts by relying on the text while overlooking the visual context when reasoning for technical image problems. In summary, we believe EEE-Bench not only reveals some noteworthy limitations of LMMs but also provides a valuable resource for advancing research on their application in practical engineering tasks, driving future improvements in their capability to handle complex, real-world scenarios.

  • 5 authors
·
Nov 3, 2024

OccuQuest: Mitigating Occupational Bias for Inclusive Large Language Models

The emergence of large language models (LLMs) has revolutionized natural language processing tasks. However, existing instruction-tuning datasets suffer from occupational bias: the majority of data relates to only a few occupations, which hampers the instruction-tuned LLMs to generate helpful responses to professional queries from practitioners in specific fields. To mitigate this issue and promote occupation-inclusive LLMs, we create an instruction-tuning dataset named OccuQuest, which contains 110,000+ prompt-completion pairs and 30,000+ dialogues covering over 1,000 occupations in 26 occupational categories. We systematically request ChatGPT, organizing queries hierarchically based on Occupation, Responsibility, Topic, and Question, to ensure a comprehensive coverage of occupational specialty inquiries. By comparing with three commonly used datasets (Dolly, ShareGPT, and WizardLM), we observe that OccuQuest exhibits a more balanced distribution across occupations. Furthermore, we assemble three test sets for comprehensive evaluation, an occu-test set covering 25 occupational categories, an estate set focusing on real estate, and an occu-quora set containing real-world questions from Quora. We then fine-tune LLaMA on OccuQuest to obtain OccuLLaMA, which significantly outperforms state-of-the-art LLaMA variants (Vicuna, Tulu, and WizardLM) on professional questions in GPT-4 and human evaluations. Notably, on the occu-quora set, OccuLLaMA reaches a high win rate of 86.4\% against WizardLM.

  • 8 authors
·
Oct 25, 2023

Intern-S1: A Scientific Multimodal Foundation Model

In recent years, a plethora of open-source foundation models have emerged, achieving remarkable progress in some widely attended fields, with performance being quite close to that of closed-source models. However, in high-value but more challenging scientific professional fields, either the fields still rely on expert models, or the progress of general foundation models lags significantly compared to those in popular areas, far from sufficient for transforming scientific research and leaving substantial gap between open-source models and closed-source models in these scientific domains. To mitigate this gap and explore a step further toward Artificial General Intelligence (AGI), we introduce Intern-S1, a specialized generalist equipped with general understanding and reasoning capabilities with expertise to analyze multiple science modal data. Intern-S1 is a multimodal Mixture-of-Experts (MoE) model with 28 billion activated parameters and 241 billion total parameters, continually pre-trained on 5T tokens, including over 2.5T tokens from scientific domains. In the post-training stage, Intern-S1 undergoes offline and then online reinforcement learning (RL) in InternBootCamp, where we propose Mixture-of-Rewards (MoR) to synergize the RL training on more than 1000 tasks simultaneously. Through integrated innovations in algorithms, data, and training systems, Intern-S1 achieved top-tier performance in online RL training.On comprehensive evaluation benchmarks, Intern-S1 demonstrates competitive performance on general reasoning tasks among open-source models and significantly outperforms open-source models in scientific domains, surpassing closed-source state-of-the-art models in professional tasks, such as molecular synthesis planning, reaction condition prediction, predicting thermodynamic stabilities for crystals. Our models are available at https://huggingface.co/internlm/Intern-S1.

  • 175 authors
·
Aug 21 5

HunyuanVideo: A Systematic Framework For Large Video Generative Models

Recent advancements in video generation have significantly impacted daily life for both individuals and industries. However, the leading video generation models remain closed-source, resulting in a notable performance gap between industry capabilities and those available to the public. In this report, we introduce HunyuanVideo, an innovative open-source video foundation model that demonstrates performance in video generation comparable to, or even surpassing, that of leading closed-source models. HunyuanVideo encompasses a comprehensive framework that integrates several key elements, including data curation, advanced architectural design, progressive model scaling and training, and an efficient infrastructure tailored for large-scale model training and inference. As a result, we successfully trained a video generative model with over 13 billion parameters, making it the largest among all open-source models. We conducted extensive experiments and implemented a series of targeted designs to ensure high visual quality, motion dynamics, text-video alignment, and advanced filming techniques. According to evaluations by professionals, HunyuanVideo outperforms previous state-of-the-art models, including Runway Gen-3, Luma 1.6, and three top-performing Chinese video generative models. By releasing the code for the foundation model and its applications, we aim to bridge the gap between closed-source and open-source communities. This initiative will empower individuals within the community to experiment with their ideas, fostering a more dynamic and vibrant video generation ecosystem. The code is publicly available at https://github.com/Tencent/HunyuanVideo.

  • 52 authors
·
Dec 3, 2024

Evaluating AI Vocational Skills Through Professional Testing

Using a novel professional certification survey, the study focuses on assessing the vocational skills of two highly cited AI models, GPT-3 and Turbo-GPT3.5. The approach emphasizes the importance of practical readiness over academic performance by examining the models' performances on a benchmark dataset consisting of 1149 professional certifications. This study also includes a comparison with human test scores, providing perspective on the potential of AI models to match or even surpass human performance in professional certifications. GPT-3, even without any fine-tuning or exam preparation, managed to achieve a passing score (over 70% correct) on 39% of the professional certifications. It showcased proficiency in computer-related fields, including cloud and virtualization, business analytics, cybersecurity, network setup and repair, and data analytics. Turbo-GPT3.5, on the other hand, scored a perfect 100% on the highly regarded Offensive Security Certified Professional (OSCP) exam. This model also demonstrated competency in diverse professional fields, such as nursing, licensed counseling, pharmacy, and aviation. Turbo-GPT3.5 exhibited strong performance on customer service tasks, indicating potential use cases in enhancing chatbots for call centers and routine advice services. Both models also scored well on sensory and experience-based tests outside a machine's traditional roles, including wine sommelier, beer tasting, emotional quotient, and body language reading. The study found that OpenAI's model improvement from Babbage to Turbo led to a 60% better performance on the grading scale within a few years. This progress indicates that addressing the current model's limitations could yield an AI capable of passing even the most rigorous professional certifications.

  • 2 authors
·
Dec 16, 2023

FinDeepResearch: Evaluating Deep Research Agents in Rigorous Financial Analysis

Deep Research (DR) agents, powered by advanced Large Language Models (LLMs), have recently garnered increasing attention for their capability in conducting complex research tasks. However, existing literature lacks a rigorous and systematic evaluation of DR Agent's capabilities in critical research analysis. To address this gap, we first propose HisRubric, a novel evaluation framework with a hierarchical analytical structure and a fine-grained grading rubric for rigorously assessing DR agents' capabilities in corporate financial analysis. This framework mirrors the professional analyst's workflow, progressing from data recognition to metric calculation, and finally to strategic summarization and interpretation. Built on this framework, we construct a FinDeepResearch benchmark that comprises 64 listed companies from 8 financial markets across 4 languages, encompassing a total of 15,808 grading items. We further conduct extensive experiments on the FinDeepResearch using 16 representative methods, including 6 DR agents, 5 LLMs equipped with both deep reasoning and search capabilities, and 5 LLMs with deep reasoning capabilities only. The results reveal the strengths and limitations of these approaches across diverse capabilities, financial markets, and languages, offering valuable insights for future research and development. The benchmark and evaluation code will be made publicly available.

  • 22 authors
·
Oct 15

Cybench: A Framework for Evaluating Cybersecurity Capabilities and Risk of Language Models

Language Model (LM) agents for cybersecurity that are capable of autonomously identifying vulnerabilities and executing exploits have the potential to cause real-world impact. Policymakers, model providers, and other researchers in the AI and cybersecurity communities are interested in quantifying the capabilities of such agents to help mitigate cyberrisk and investigate opportunities for penetration testing. Toward that end, we introduce Cybench, a framework for specifying cybersecurity tasks and evaluating agents on those tasks. We include 40 professional-level Capture the Flag (CTF) tasks from 4 distinct CTF competitions, chosen to be recent, meaningful, and spanning a wide range of difficulties. Each task includes its own description, starter files, and is initialized in an environment where an agent can execute bash commands and observe outputs. Since many tasks are beyond the capabilities of existing LM agents, we introduce subtasks, which break down a task into intermediary steps for more gradated evaluation; we add subtasks for 17 of the 40 tasks. To evaluate agent capabilities, we construct a cybersecurity agent and evaluate 7 models: GPT-4o, Claude 3 Opus, Claude 3.5 Sonnet, Mixtral 8x22b Instruct, Gemini 1.5 Pro, Llama 3 70B Chat, and Llama 3.1 405B Instruct. Without guidance, we find that agents are able to solve only the easiest complete tasks that took human teams up to 11 minutes to solve, with Claude 3.5 Sonnet and GPT-4o having the highest success rates. Finally, subtasks provide more signal for measuring performance compared to unguided runs, with models achieving a 3.2\% higher success rate on complete tasks with subtask-guidance than without subtask-guidance. All code and data are publicly available at https://cybench.github.io

  • 27 authors
·
Aug 15, 2024 2

CRMArena: Understanding the Capacity of LLM Agents to Perform Professional CRM Tasks in Realistic Environments

Customer Relationship Management (CRM) systems are vital for modern enterprises, providing a foundation for managing customer interactions and data. Integrating AI agents into CRM systems can automate routine processes and enhance personalized service. However, deploying and evaluating these agents is challenging due to the lack of realistic benchmarks that reflect the complexity of real-world CRM tasks. To address this issue, we introduce CRMArena, a novel benchmark designed to evaluate AI agents on realistic tasks grounded in professional work environments. Following guidance from CRM experts and industry best practices, we designed CRMArena with nine customer service tasks distributed across three personas: service agent, analyst, and manager. The benchmark includes 16 commonly used industrial objects (e.g., account, order, knowledge article, case) with high interconnectivity, along with latent variables (e.g., complaint habits, policy violations) to simulate realistic data distributions. Experimental results reveal that state-of-the-art LLM agents succeed in less than 40% of the tasks with ReAct prompting, and less than 55% even with function-calling abilities. Our findings highlight the need for enhanced agent capabilities in function-calling and rule-following to be deployed in real-world work environments. CRMArena is an open challenge to the community: systems that can reliably complete tasks showcase direct business value in a popular work environment.

  • 9 authors
·
Nov 4, 2024

ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers' workflows. Recognizing the transformative potential of these agents, we introduce ScienceBoard, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, environment, and benchmark are at https://qiushisun.github.io/ScienceBoard-Home/.

  • 21 authors
·
May 26 3

EarthSE: A Benchmark for Evaluating Earth Scientific Exploration Capability of LLMs

Advancements in Large Language Models (LLMs) drive interest in scientific applications, necessitating specialized benchmarks such as Earth science. Existing benchmarks either present a general science focus devoid of Earth science specificity or cover isolated subdomains, lacking holistic evaluation. Furthermore, current benchmarks typically neglect the assessment of LLMs' capabilities in open-ended scientific exploration. In this paper, we present a comprehensive and professional benchmark for the Earth sciences, designed to evaluate the capabilities of LLMs in scientific exploration within this domain, spanning from fundamental to advanced levels. Leveraging a corpus of 100,000 research papers, we first construct two Question Answering (QA) datasets: Earth-Iron, which offers extensive question coverage for broad assessment, and Earth-Silver, which features a higher level of difficulty to evaluate professional depth. These datasets encompass five Earth spheres, 114 disciplines, and 11 task categories, assessing foundational knowledge crucial for scientific exploration. Most notably, we introduce Earth-Gold with new metrics, a dataset comprising open-ended multi-turn dialogues specifically designed to evaluate the advanced capabilities of LLMs in scientific exploration, including methodology induction, limitation analysis, and concept proposal. Extensive experiments reveal limitations in 11 leading LLMs across different domains and tasks, highlighting considerable room for improvement in their scientific exploration capabilities. The benchmark is available on https://huggingface.co/ai-earth .

  • 8 authors
·
May 22

Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy

Synthetic Data Generation (SDG) based on Artificial Intelligence (AI) can transform the way clinical medicine is delivered by overcoming privacy barriers that currently render clinical data sharing difficult. This is the key to accelerating the development of digital tools contributing to enhanced patient safety. Such tools include robust data-driven clinical decision support systems, and example-based digital training tools that will enable healthcare professionals to improve their diagnostic performance for enhanced patient safety. This study focuses on the clinical evaluation of medical SDG, with a proof-of-concept investigation on diagnosing Inflammatory Bowel Disease (IBD) using Wireless Capsule Endoscopy (WCE) images. Its scientific contributions include a) a novel protocol for the systematic Clinical Evaluation of Medical Image Synthesis (CEMIS); b) a novel variational autoencoder-based model for the generation of high-resolution synthetic WCE images; and c) a comprehensive evaluation of the synthetic images using the CEMIS protocol by 10 international WCE specialists, in terms of image quality, diversity, and realism, as well as their utility for clinical decision-making. The results show that TIDE-II generates clinically plausible, very realistic WCE images, of improved quality compared to relevant state-of-the-art generative models. Concludingly, CEMIS can serve as a reference for future research on medical image-generation techniques, while the adaptation/extension of the architecture of TIDE-II to other imaging domains can be promising.

  • 13 authors
·
Oct 31, 2024

DocReward: A Document Reward Model for Structuring and Stylizing

Recent advances in agentic workflows have enabled the automation of tasks such as professional document generation. However, they primarily focus on textual quality, neglecting visual structure and style, which are crucial for readability and engagement. This gap arises mainly from the absence of suitable reward models to guide agentic workflows toward producing documents with stronger structural and stylistic quality. To address this, we propose DocReward, a document reward model that evaluates documents based on their structure and style. We construct a multi-domain dataset DocPair of 117K paired documents, covering 32 domains and 267 document types, each including a high- and low-professionalism document with identical content but different structure and style. This enables the model to evaluate professionalism comprehensively, and in a textual-quality-agnostic way. DocReward is trained using the Bradley-Terry loss to score documents, penalizing predictions that contradict the annotated ranking. To assess the performance of reward models, we create a test dataset containing document bundles ranked by well-educated human evaluators. Notably, DocReward outperforms GPT-4o and GPT-5 in accuracy by 30.6 and 19.4 percentage points, respectively, demonstrating its superiority over baselines. In an extrinsic evaluation of document generation, DocReward achieves a significantly higher win rate of 60.8%, compared to GPT-5's 37.7% win rate, demonstrating its utility in guiding generation agents toward producing human-preferred documents.

HealthQA-BR: A System-Wide Benchmark Reveals Critical Knowledge Gaps in Large Language Models

The evaluation of Large Language Models (LLMs) in healthcare has been dominated by physician-centric, English-language benchmarks, creating a dangerous illusion of competence that ignores the interprofessional nature of patient care. To provide a more holistic and realistic assessment, we introduce HealthQA-BR, the first large-scale, system-wide benchmark for Portuguese-speaking healthcare. Comprising 5,632 questions from Brazil's national licensing and residency exams, it uniquely assesses knowledge not only in medicine and its specialties but also in nursing, dentistry, psychology, social work, and other allied health professions. We conducted a rigorous zero-shot evaluation of over 20 leading LLMs. Our results reveal that while state-of-the-art models like GPT 4.1 achieve high overall accuracy (86.6%), this top-line score masks alarming, previously unmeasured deficiencies. A granular analysis shows performance plummets from near-perfect in specialties like Ophthalmology (98.7%) to barely passing in Neurosurgery (60.0%) and, most notably, Social Work (68.4%). This "spiky" knowledge profile is a systemic issue observed across all models, demonstrating that high-level scores are insufficient for safety validation. By publicly releasing HealthQA-BR and our evaluation suite, we provide a crucial tool to move beyond single-score evaluations and toward a more honest, granular audit of AI readiness for the entire healthcare team.

  • 1 authors
·
Jun 16

Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases

Recent advancements in reasoning-enhanced large language models (LLMs), such as DeepSeek-R1 and OpenAI-o3, have demonstrated significant progress. However, their application in professional medical contexts remains underexplored, particularly in evaluating the quality of their reasoning processes alongside final outputs. Here, we introduce MedR-Bench, a benchmarking dataset of 1,453 structured patient cases, annotated with reasoning references derived from clinical case reports. Spanning 13 body systems and 10 specialties, it includes both common and rare diseases. To comprehensively evaluate LLM performance, we propose a framework encompassing three critical examination recommendation, diagnostic decision-making, and treatment planning, simulating the entire patient care journey. To assess reasoning quality, we present the Reasoning Evaluator, a novel automated system that objectively scores free-text reasoning responses based on efficiency, actuality, and completeness using dynamic cross-referencing and evidence checks. Using this benchmark, we evaluate five state-of-the-art reasoning LLMs, including DeepSeek-R1, OpenAI-o3-mini, and Gemini-2.0-Flash Thinking, etc. Our results show that current LLMs achieve over 85% accuracy in relatively simple diagnostic tasks when provided with sufficient examination results. However, performance declines in more complex tasks, such as examination recommendation and treatment planning. While reasoning outputs are generally reliable, with factuality scores exceeding 90%, critical reasoning steps are frequently missed. These findings underscore both the progress and limitations of clinical LLMs. Notably, open-source models like DeepSeek-R1 are narrowing the gap with proprietary systems, highlighting their potential to drive accessible and equitable advancements in healthcare.

  • 10 authors
·
Mar 6

MMSci: A Multimodal Multi-Discipline Dataset for PhD-Level Scientific Comprehension

The rapid advancement of Large Language Models (LLMs) and Large Multimodal Models (LMMs) has heightened the demand for AI-based scientific assistants capable of understanding scientific articles and figures. Despite progress, there remains a significant gap in evaluating models' comprehension of professional, graduate-level, and even PhD-level scientific content. Current datasets and benchmarks primarily focus on relatively simple scientific tasks and figures, lacking comprehensive assessments across diverse advanced scientific disciplines. To bridge this gap, we collected a multimodal, multidisciplinary dataset from open-access scientific articles published in Nature Communications journals. This dataset spans 72 scientific disciplines, ensuring both diversity and quality. We created benchmarks with various tasks and settings to comprehensively evaluate LMMs' capabilities in understanding scientific figures and content. Our evaluation revealed that these tasks are highly challenging: many open-source models struggled significantly, and even GPT-4V and GPT-4o faced difficulties. We also explored using our dataset as training resources by constructing visual instruction-following data, enabling the 7B LLaVA model to achieve performance comparable to GPT-4V/o on our benchmark. Additionally, we investigated the use of our interleaved article texts and figure images for pre-training LMMs, resulting in improvements on the material generation task. The source dataset, including articles, figures, constructed benchmarks, and visual instruction-following data, is open-sourced.

  • 14 authors
·
Jul 5, 2024

Preference Learning Unlocks LLMs' Psycho-Counseling Skills

Applying large language models (LLMs) to assist in psycho-counseling is an emerging and meaningful approach, driven by the significant gap between patient needs and the availability of mental health support. However, current LLMs struggle to consistently provide effective responses to client speeches, largely due to the lack of supervision from high-quality real psycho-counseling data, whose content is typically inaccessible due to client privacy concerns. Furthermore, the quality of therapists' responses in available sessions can vary significantly based on their professional training and experience. Assessing the quality of therapists' responses remains an open challenge. In this work, we address these challenges by first proposing a set of professional and comprehensive principles to evaluate therapists' responses to client speeches. Using these principles, we create a preference dataset, PsychoCounsel-Preference, which contains 36k high-quality preference comparison pairs. This dataset aligns with the preferences of professional psychotherapists, providing a robust foundation for evaluating and improving LLMs in psycho-counseling. Experiments on reward modeling and preference learning demonstrate that PsychoCounsel-Preference is an excellent resource for LLMs to acquire essential skills for responding to clients in a counseling session. Our best-aligned model, PsychoCounsel-Llama3-8B, achieves an impressive win rate of 87% against GPT-4o. We release PsychoCounsel-Preference, PsychoCounsel-Llama3-8B and the reward model PsychoCounsel Llama3-8B-Reward to facilitate the research of psycho-counseling with LLMs at: https://hf.co/Psychotherapy-LLM.

  • 3 authors
·
Feb 26 2

UHGEval: Benchmarking the Hallucination of Chinese Large Language Models via Unconstrained Generation

Large language models (LLMs) have emerged as pivotal contributors in contemporary natural language processing and are increasingly being applied across a diverse range of industries. However, these large-scale probabilistic statistical models cannot currently ensure the requisite quality in professional content generation. These models often produce hallucinated text, compromising their practical utility in professional contexts. To assess the authentic reliability of LLMs in text generation, numerous initiatives have developed benchmark evaluations for hallucination phenomena. Nevertheless, these benchmarks frequently utilize constrained generation techniques due to cost and temporal constraints. These techniques encompass the use of directed hallucination induction and strategies that deliberately alter authentic text to produce hallucinations. These approaches are not congruent with the unrestricted text generation demanded by real-world applications. Furthermore, a well-established Chinese-language dataset dedicated to the evaluation of hallucinations in text generation is presently lacking. Consequently, we have developed an Unconstrained Hallucination Generation Evaluation (UHGEval) benchmark, designed to compile outputs produced with minimal restrictions by LLMs. Concurrently, we have established a comprehensive benchmark evaluation framework to aid subsequent researchers in undertaking scalable and reproducible experiments. We have also executed extensive experiments, evaluating prominent Chinese language models and the GPT series models to derive professional performance insights regarding hallucination challenges.

  • 11 authors
·
Nov 26, 2023

TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations

Machine Learning (ML) models are increasingly used to make critical decisions in real-world applications, yet they have become more complex, making them harder to understand. To this end, researchers have proposed several techniques to explain model predictions. However, practitioners struggle to use these explainability techniques because they often do not know which one to choose and how to interpret the results of the explanations. In this work, we address these challenges by introducing TalkToModel: an interactive dialogue system for explaining machine learning models through conversations. Specifically, TalkToModel comprises of three key components: 1) a natural language interface for engaging in conversations, making ML model explainability highly accessible, 2) a dialogue engine that adapts to any tabular model and dataset, interprets natural language, maps it to appropriate explanations, and generates text responses, and 3) an execution component that constructs the explanations. We carried out extensive quantitative and human subject evaluations of TalkToModel. Overall, we found the conversational system understands user inputs on novel datasets and models with high accuracy, demonstrating the system's capacity to generalize to new situations. In real-world evaluations with humans, 73% of healthcare workers (e.g., doctors and nurses) agreed they would use TalkToModel over baseline point-and-click systems for explainability in a disease prediction task, and 85% of ML professionals agreed TalkToModel was easier to use for computing explanations. Our findings demonstrate that TalkToModel is more effective for model explainability than existing systems, introducing a new category of explainability tools for practitioners. Code & demo released here: https://github.com/dylan-slack/TalkToModel.

  • 4 authors
·
Jul 8, 2022

DiagnosisArena: Benchmarking Diagnostic Reasoning for Large Language Models

The emergence of groundbreaking large language models capable of performing complex reasoning tasks holds significant promise for addressing various scientific challenges, including those arising in complex clinical scenarios. To enable their safe and effective deployment in real-world healthcare settings, it is urgently necessary to benchmark the diagnostic capabilities of current models systematically. Given the limitations of existing medical benchmarks in evaluating advanced diagnostic reasoning, we present DiagnosisArena, a comprehensive and challenging benchmark designed to rigorously assess professional-level diagnostic competence. DiagnosisArena consists of 1,113 pairs of segmented patient cases and corresponding diagnoses, spanning 28 medical specialties, deriving from clinical case reports published in 10 top-tier medical journals. The benchmark is developed through a meticulous construction pipeline, involving multiple rounds of screening and review by both AI systems and human experts, with thorough checks conducted to prevent data leakage. Our study reveals that even the most advanced reasoning models, o3-mini, o1, and DeepSeek-R1, achieve only 45.82%, 31.09%, and 17.79% accuracy, respectively. This finding highlights a significant generalization bottleneck in current large language models when faced with clinical diagnostic reasoning challenges. Through DiagnosisArena, we aim to drive further advancements in AIs diagnostic reasoning capabilities, enabling more effective solutions for real-world clinical diagnostic challenges. We provide the benchmark and evaluation tools for further research and development https://github.com/SPIRAL-MED/DiagnosisArena.

  • 8 authors
·
May 20

TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks

We interact with computers on an everyday basis, be it in everyday life or work, and many aspects of work can be done entirely with access to a computer and the Internet. At the same time, thanks to improvements in large language models (LLMs), there has also been a rapid development in AI agents that interact with and affect change in their surrounding environments. But how performant are AI agents at helping to accelerate or even autonomously perform work-related tasks? The answer to this question has important implications for both industry looking to adopt AI into their workflows, and for economic policy to understand the effects that adoption of AI may have on the labor market. To measure the progress of these LLM agents' performance on performing real-world professional tasks, in this paper, we introduce TheAgentCompany, an extensible benchmark for evaluating AI agents that interact with the world in similar ways to those of a digital worker: by browsing the Web, writing code, running programs, and communicating with other coworkers. We build a self-contained environment with internal web sites and data that mimics a small software company environment, and create a variety of tasks that may be performed by workers in such a company. We test baseline agents powered by both closed API-based and open-weights language models (LMs), and find that with the most competitive agent, 24% of the tasks can be completed autonomously. This paints a nuanced picture on task automation with LM agents -- in a setting simulating a real workplace, a good portion of simpler tasks could be solved autonomously, but more difficult long-horizon tasks are still beyond the reach of current systems.

  • 21 authors
·
Dec 18, 2024 2

MEFLUT: Unsupervised 1D Lookup Tables for Multi-exposure Image Fusion

In this paper, we introduce a new approach for high-quality multi-exposure image fusion (MEF). We show that the fusion weights of an exposure can be encoded into a 1D lookup table (LUT), which takes pixel intensity value as input and produces fusion weight as output. We learn one 1D LUT for each exposure, then all the pixels from different exposures can query 1D LUT of that exposure independently for high-quality and efficient fusion. Specifically, to learn these 1D LUTs, we involve attention mechanism in various dimensions including frame, channel and spatial ones into the MEF task so as to bring us significant quality improvement over the state-of-the-art (SOTA). In addition, we collect a new MEF dataset consisting of 960 samples, 155 of which are manually tuned by professionals as ground-truth for evaluation. Our network is trained by this dataset in an unsupervised manner. Extensive experiments are conducted to demonstrate the effectiveness of all the newly proposed components, and results show that our approach outperforms the SOTA in our and another representative dataset SICE, both qualitatively and quantitatively. Moreover, our 1D LUT approach takes less than 4ms to run a 4K image on a PC GPU. Given its high quality, efficiency and robustness, our method has been shipped into millions of Android mobiles across multiple brands world-wide. Code is available at: https://github.com/Hedlen/MEFLUT.

  • 6 authors
·
Sep 21, 2023

Automatic Personalized Impression Generation for PET Reports Using Large Language Models

In this study, we aimed to determine if fine-tuned large language models (LLMs) can generate accurate, personalized impressions for whole-body PET reports. Twelve language models were trained on a corpus of PET reports using the teacher-forcing algorithm, with the report findings as input and the clinical impressions as reference. An extra input token encodes the reading physician's identity, allowing models to learn physician-specific reporting styles. Our corpus comprised 37,370 retrospective PET reports collected from our institution between 2010 and 2022. To identify the best LLM, 30 evaluation metrics were benchmarked against quality scores from two nuclear medicine (NM) physicians, with the most aligned metrics selecting the model for expert evaluation. In a subset of data, model-generated impressions and original clinical impressions were assessed by three NM physicians according to 6 quality dimensions (3-point scale) and an overall utility score (5-point scale). Each physician reviewed 12 of their own reports and 12 reports from other physicians. Bootstrap resampling was used for statistical analysis. Of all evaluation metrics, domain-adapted BARTScore and PEGASUSScore showed the highest Spearman's rank correlations (0.568 and 0.563) with physician preferences. Based on these metrics, the fine-tuned PEGASUS model was selected as the top LLM. When physicians reviewed PEGASUS-generated impressions in their own style, 89% were considered clinically acceptable, with a mean utility score of 4.08 out of 5. Physicians rated these personalized impressions as comparable in overall utility to the impressions dictated by other physicians (4.03, P=0.41). In conclusion, personalized impressions generated by PEGASUS were clinically useful, highlighting its potential to expedite PET reporting.

  • 11 authors
·
Sep 18, 2023

A Survey on Evaluation of Large Language Models

Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: https://github.com/MLGroupJLU/LLM-eval-survey.

  • 16 authors
·
Jul 6, 2023 1

PRE: A Peer Review Based Large Language Model Evaluator

The impressive performance of large language models (LLMs) has attracted considerable attention from the academic and industrial communities. Besides how to construct and train LLMs, how to effectively evaluate and compare the capacity of LLMs has also been well recognized as an important yet difficult problem. Existing paradigms rely on either human annotators or model-based evaluators to evaluate the performance of LLMs on different tasks. However, these paradigms often suffer from high cost, low generalizability, and inherited biases in practice, which make them incapable of supporting the sustainable development of LLMs in long term. In order to address these issues, inspired by the peer review systems widely used in academic publication process, we propose a novel framework that can automatically evaluate LLMs through a peer-review process. Specifically, for the evaluation of a specific task, we first construct a small qualification exam to select "reviewers" from a couple of powerful LLMs. Then, to actually evaluate the "submissions" written by different candidate LLMs, i.e., the evaluatees, we use the reviewer LLMs to rate or compare the submissions. The final ranking of evaluatee LLMs is generated based on the results provided by all reviewers. We conducted extensive experiments on text summarization tasks with eleven LLMs including GPT-4. The results demonstrate the existence of biasness when evaluating using a single LLM. Also, our PRE model outperforms all the baselines, illustrating the effectiveness of the peer review mechanism.

  • 5 authors
·
Jan 28, 2024

Style Over Substance: Evaluation Biases for Large Language Models

As large language models (LLMs) continue to advance, accurately and comprehensively evaluating their performance becomes increasingly challenging. Human evaluations are conventionally considered the gold standard in natural language generation, but recent advancements incorporate state-of-the-art LLMs as proxies for human judges in evaluation processes. However, the extent to which humans and LLMs are capable evaluators remains uncertain. This study investigates the behavior of crowd-sourced and expert annotators, as well as LLMs, when comparing outputs from different models. To achieve this, we curate a dataset of intentionally flawed machine-generated answers. Our findings reveal a concerning bias in the evaluation process, as answers with factual errors are rated more favorably than answers that are too short or contained grammatical errors. To address this issue, we propose independently evaluating machine-generated text across multiple dimensions, rather than merging all the evaluation aspects into a single score. We instantiate this idea with the Elo rating system, resulting in the Multi-Elo Rating System. Empirical results from our study reveal that this proposed approach significantly enhances the quality of LLM-based evaluations, particularly in terms of factual accuracy. However, there is no significant improvement in crowd-sourced-based evaluations, indicating the need for further investigation and refinement.

  • 2 authors
·
Jul 6, 2023

Does Context Matter? ContextualJudgeBench for Evaluating LLM-based Judges in Contextual Settings

The large language model (LLM)-as-judge paradigm has been used to meet the demand for a cheap, reliable, and fast evaluation of model outputs during AI system development and post-deployment monitoring. While judge models -- LLMs finetuned to specialize in assessing and critiquing model outputs -- have been touted as general purpose evaluators, they are typically evaluated only on non-contextual scenarios, such as instruction following. The omission of contextual settings -- those where external information is used as context to generate an output -- is surprising given the increasing prevalence of retrieval-augmented generation (RAG) and summarization use cases. Contextual assessment is uniquely challenging, as evaluation often depends on practitioner priorities, leading to conditional evaluation criteria (e.g., comparing responses based on factuality and then considering completeness if they are equally factual). To address the gap, we propose ContextualJudgeBench, a judge benchmark with 2,000 challenging response pairs across eight splits inspired by real-world contextual evaluation scenarios. We build our benchmark with a multi-pronged data construction pipeline that leverages both existing human annotations and model-based perturbations. Our comprehensive study across 11 judge models and 9 general purpose models, reveals that the contextual information and its assessment criteria present a significant challenge to even state-of-the-art models. For example, OpenAI's o1, the best-performing model, barely reaches 55% consistent accuracy.

  • 5 authors
·
Mar 19

Expert-level validation of AI-generated medical text with scalable language models

With the growing use of language models (LMs) in clinical environments, there is an immediate need to evaluate the accuracy and safety of LM-generated medical text. Currently, such evaluation relies solely on manual physician review. However, detecting errors in LM-generated text is challenging because 1) manual review is costly and 2) expert-composed reference outputs are often unavailable in real-world settings. While the "LM-as-judge" paradigm (a LM evaluating another LM) offers scalable evaluation, even frontier LMs can miss subtle but clinically significant errors. To address these challenges, we propose MedVAL, a self-supervised framework that leverages synthetic data to train evaluator LMs to assess whether LM-generated medical outputs are factually consistent with inputs, without requiring physician labels or reference outputs. To evaluate LM performance, we introduce MedVAL-Bench, a dataset containing 840 outputs annotated by physicians, following a physician-defined taxonomy of risk levels and error categories. Across 6 diverse medical tasks and 10 state-of-the-art LMs spanning open-source, proprietary, and medically adapted models, MedVAL fine-tuning significantly improves (p < 0.001) alignment with physicians on both seen and unseen tasks, increasing average F1 scores from 66% to 83%, with per-sample safety classification scores up to 86%. MedVAL improves the performance of even the best-performing proprietary LM (GPT-4o) by 8%. To support a scalable, risk-aware pathway towards clinical integration, we open-source the 1) codebase ( https://github.com/StanfordMIMI/MedVAL ), 2) MedVAL-Bench ( https://huggingface.co/datasets/stanfordmimi/MedVAL-Bench ), and 3) MedVAL-4B ( https://huggingface.co/stanfordmimi/MedVAL-4B ), the best-performing open-source LM. Our research provides the first evidence of LMs approaching expert-level validation ability for medical text.

  • 27 authors
·
Jul 3

ProJudge: A Multi-Modal Multi-Discipline Benchmark and Instruction-Tuning Dataset for MLLM-based Process Judges

As multi-modal large language models (MLLMs) frequently exhibit errors when solving scientific problems, evaluating the validity of their reasoning processes is critical for ensuring reliability and uncovering fine-grained model weaknesses. Since human evaluation is laborious and costly, prompting MLLMs as automated process judges has become a common practice. However, the reliability of these model-based judges remains uncertain. To address this, we introduce ProJudgeBench, the first comprehensive benchmark specifically designed for evaluating abilities of MLLM-based process judges. ProJudgeBench comprises 2,400 test cases and 50,118 step-level labels, spanning four scientific disciplines with diverse difficulty levels and multi-modal content. In ProJudgeBench, each step is meticulously annotated by human experts for correctness, error type, and explanation, enabling a systematic evaluation of judges' capabilities to detect, classify and diagnose errors. Evaluation on ProJudgeBench reveals a significant performance gap between open-source and proprietary models. To bridge this gap, we further propose ProJudge-173k, a large-scale instruction-tuning dataset, and a Dynamic Dual-Phase fine-tuning strategy that encourages models to explicitly reason through problem-solving before assessing solutions. Both contributions significantly enhance the process evaluation capabilities of open-source models. All the resources will be released to foster future research of reliable multi-modal process evaluation.

Finding Blind Spots in Evaluator LLMs with Interpretable Checklists

Large Language Models (LLMs) are increasingly relied upon to evaluate text outputs of other LLMs, thereby influencing leaderboards and development decisions. However, concerns persist over the accuracy of these assessments and the potential for misleading conclusions. In this work, we investigate the effectiveness of LLMs as evaluators for text generation tasks. We propose FBI, a novel framework designed to examine the proficiency of Evaluator LLMs in assessing four critical abilities in other LLMs: factual accuracy, instruction following, coherence in long-form writing, and reasoning proficiency. By introducing targeted perturbations in answers generated by LLMs, that clearly impact one of these key capabilities, we test whether an Evaluator LLM can detect these quality drops. By creating a total of 2400 perturbed answers covering 22 perturbation categories, we conduct a comprehensive study using different evaluation strategies on five prominent LLMs commonly used as evaluators in the literature. Our findings reveal significant shortcomings in current Evaluator LLMs, which failed to identify quality drops in over 50\% of cases on average. Single-answer and pairwise evaluations demonstrated notable limitations, whereas reference-based evaluations showed comparatively better performance. These results underscore the unreliable nature of current Evaluator LLMs and advocate for cautious implementation in practical applications. Code and data are available at https://github.com/AI4Bharat/FBI.

  • 4 authors
·
Jun 19, 2024

Value of the Teaching Career and Factors in Its Path in Peru

The teaching career shares common global characteristics, such as internal promotion, performance evaluation, recruitment of top candidates, continuous training, specialization, and peer learning. This study aims to describe the factors associated with the value placed on the teaching career in Peru. A total of 28217 public school teachers were analyzed using data from the 2020 National Teacher Survey. A variable measuring the "value of the teaching career" was constructed using eight indicators and categorized as low, medium, or high. Another variable, vision of the future, was classified as pessimistic, conformist, or optimistic. This observational, cross-sectional, and analytical study included variables related to in-service training, working conditions, professional recognition, and sociodemographic characteristics. Among the teachers surveyed, 45.8 % expressed an optimistic outlook on the future of the profession, 48 % held a conformist view, and only 6.2 % reported a pessimistic perspective. A generalized linear model revealed that the value placed on the teaching career was significantly associated with male gender (p = 0.002), a professional career (p < 0.001), an optimistic outlook (p = 0.033), and working at the primary level (p < 0.001). It was concluded that Peruvian teachers predominantly hold conformist or optimistic views of their profession. This highlights the need to reinforce merit-based advancement, competency-based training, intrinsic motivation, and ongoing professional development

  • 5 authors
·
Aug 1

Are Large Language Models True Healthcare Jacks-of-All-Trades? Benchmarking Across Health Professions Beyond Physician Exams

Recent advancements in Large Language Models (LLMs) have demonstrated their potential in delivering accurate answers to questions about world knowledge. Despite this, existing benchmarks for evaluating LLMs in healthcare predominantly focus on medical doctors, leaving other critical healthcare professions underrepresented. To fill this research gap, we introduce the Examinations for Medical Personnel in Chinese (EMPEC), a pioneering large-scale healthcare knowledge benchmark in traditional Chinese. EMPEC consists of 157,803 exam questions across 124 subjects and 20 healthcare professions, including underrepresented occupations like Optometrists and Audiologists. Each question is tagged with its release time and source, ensuring relevance and authenticity. We conducted extensive experiments on 17 LLMs, including proprietary, open-source models, general domain models and medical specific models, evaluating their performance under various settings. Our findings reveal that while leading models like GPT-4 achieve over 75\% accuracy, they still struggle with specialized fields and alternative medicine. Surprisingly, general-purpose LLMs outperformed medical-specific models, and incorporating EMPEC's training data significantly enhanced performance. Additionally, the results on questions released after the models' training cutoff date were consistent with overall performance trends, suggesting that the models' performance on the test set can predict their effectiveness in addressing unseen healthcare-related queries. The transition from traditional to simplified Chinese characters had a negligible impact on model performance, indicating robust linguistic versatility. Our study underscores the importance of expanding benchmarks to cover a broader range of healthcare professions to better assess the applicability of LLMs in real-world healthcare scenarios.

  • 4 authors
·
Jun 17, 2024