new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 20

The Path Not Taken: RLVR Provably Learns Off the Principals

Reinforcement Learning with Verifiable Rewards (RLVR) reliably improves the reasoning performance of large language models, yet it appears to modify only a small fraction of parameters. We revisit this paradox and show that sparsity is a surface artifact of a model-conditioned optimization bias: for a fixed pretrained model, updates consistently localize to preferred parameter regions, highly consistent across runs and largely invariant to datasets and RL recipes. We mechanistically explain these dynamics with a Three-Gate Theory: Gate I (KL Anchor) imposes a KL-constrained update; Gate II (Model Geometry) steers the step off principal directions into low-curvature, spectrum-preserving subspaces; and Gate III (Precision) hides micro-updates in non-preferred regions, making the off-principal bias appear as sparsity. We then validate this theory and, for the first time, provide a parameter-level characterization of RLVR's learning dynamics: RLVR learns off principal directions in weight space, achieving gains via minimal spectral drift, reduced principal-subspace rotation, and off-principal update alignment. In contrast, SFT targets principal weights, distorts the spectrum, and even lags RLVR. Together, these results provide the first parameter-space account of RLVR's training dynamics, revealing clear regularities in how parameters evolve. Crucially, we show that RL operates in a distinct optimization regime from SFT, so directly adapting SFT-era parameter-efficient fine-tuning (PEFT) methods can be flawed, as evidenced by our case studies on advanced sparse fine-tuning and LoRA variants. We hope this work charts a path toward a white-box understanding of RLVR and the design of geometry-aware, RLVR-native learning algorithms, rather than repurposed SFT-era heuristics.

facebook AI at Meta
·
Nov 11 2

Efficient Online Reinforcement Learning Fine-Tuning Need Not Retain Offline Data

The modern paradigm in machine learning involves pre-training on diverse data, followed by task-specific fine-tuning. In reinforcement learning (RL), this translates to learning via offline RL on a diverse historical dataset, followed by rapid online RL fine-tuning using interaction data. Most RL fine-tuning methods require continued training on offline data for stability and performance. However, this is undesirable because training on diverse offline data is slow and expensive for large datasets, and in principle, also limit the performance improvement possible because of constraints or pessimism on offline data. In this paper, we show that retaining offline data is unnecessary as long as we use a properly-designed online RL approach for fine-tuning offline RL initializations. To build this approach, we start by analyzing the role of retaining offline data in online fine-tuning. We find that continued training on offline data is mostly useful for preventing a sudden divergence in the value function at the onset of fine-tuning, caused by a distribution mismatch between the offline data and online rollouts. This divergence typically results in unlearning and forgetting the benefits of offline pre-training. Our approach, Warm-start RL (WSRL), mitigates the catastrophic forgetting of pre-trained initializations using a very simple idea. WSRL employs a warmup phase that seeds the online RL run with a very small number of rollouts from the pre-trained policy to do fast online RL. The data collected during warmup helps ``recalibrate'' the offline Q-function to the online distribution, allowing us to completely discard offline data without destabilizing the online RL fine-tuning. We show that WSRL is able to fine-tune without retaining any offline data, and is able to learn faster and attains higher performance than existing algorithms irrespective of whether they retain offline data or not.

  • 5 authors
·
Dec 10, 2024

Inference-Time Alignment Control for Diffusion Models with Reinforcement Learning Guidance

Denoising-based generative models, particularly diffusion and flow matching algorithms, have achieved remarkable success. However, aligning their output distributions with complex downstream objectives, such as human preferences, compositional accuracy, or data compressibility, remains challenging. While reinforcement learning (RL) fine-tuning methods, inspired by advances in RL from human feedback (RLHF) for large language models, have been adapted to these generative frameworks, current RL approaches are suboptimal for diffusion models and offer limited flexibility in controlling alignment strength after fine-tuning. In this work, we reinterpret RL fine-tuning for diffusion models through the lens of stochastic differential equations and implicit reward conditioning. We introduce Reinforcement Learning Guidance (RLG), an inference-time method that adapts Classifier-Free Guidance (CFG) by combining the outputs of the base and RL fine-tuned models via a geometric average. Our theoretical analysis shows that RLG's guidance scale is mathematically equivalent to adjusting the KL-regularization coefficient in standard RL objectives, enabling dynamic control over the alignment-quality trade-off without further training. Extensive experiments demonstrate that RLG consistently improves the performance of RL fine-tuned models across various architectures, RL algorithms, and downstream tasks, including human preferences, compositional control, compressibility, and text rendering. Furthermore, RLG supports both interpolation and extrapolation, thereby offering unprecedented flexibility in controlling generative alignment. Our approach provides a practical and theoretically sound solution for enhancing and controlling diffusion model alignment at inference. The source code for RLG is publicly available at the Github: https://github.com/jinluo12345/Reinforcement-learning-guidance.

  • 8 authors
·
Aug 28

VERIRL: Boosting the LLM-based Verilog Code Generation via Reinforcement Learning

Recent advancements in code generation have shown remarkable success across software domains, yet hardware description languages (HDLs) such as Verilog remain underexplored due to their concurrency semantics, syntactic rigidity, and simulation complexity. In this work, we address these challenges by introducing a reinforcement learning (RL) framework tailored for Verilog code generation. We first construct Veribench-53K, a high-quality dataset curated from over 700K Verilog problems, enriched with structured prompts, complexity labels, and diverse testbenches. To tackle the problem of sparse and noisy reward signals, we propose a Trace-back based Rescore mechanism that leverages reasoning paths and iterative refinement to enhance feedback reliability and support reward model training. Furthermore, to mitigate catastrophic forgetting and overfitting during RL fine-tuning, we introduce a sample-balanced weighting strategy that adaptively balances learning dynamics based on reward-probability distributions. These innovations are integrated into an iterative RL pipeline that co-evolves the policy and reward models. In contrast to recent work such as CraftRTL, which relies on large-scale closed-source model distillation, and DeepSeek-style approaches that struggle with sparse feedback, our method demonstrates superior performance using a smaller but high-quality dataset combined with RL optimization. Experiments on Verilog generation tasks demonstrate state-of-the-art performance, with substantial gains in test pass rate, functional correctness, and compilation robustness. Our findings highlight the potential of RL-driven approaches for structured code generation in hardware-centric domains. VERIRL is publicly available at https://github.com/omniAI-Lab/VeriRL.

  • 9 authors
·
Aug 25

RTLRepoCoder: Repository-Level RTL Code Completion through the Combination of Fine-Tuning and Retrieval Augmentation

As an essential part of modern hardware design, manually writing Register Transfer Level (RTL) code such as Verilog is often labor-intensive. Following the tremendous success of large language models (LLMs), researchers have begun to explore utilizing LLMs for generating RTL code. However, current studies primarily focus on generating simple single modules, which can not meet the demands in real world. In fact, due to challenges in managing long-context RTL code and complex cross-file dependencies, existing solutions cannot handle large-scale Verilog repositories in practical hardware development. As the first endeavor to exclusively adapt LLMs for large-scale RTL development, we propose RTLRepoCoder, a groundbreaking solution that incorporates specific fine-tuning and Retrieval-Augmented Generation (RAG) for repository-level Verilog code completion. Open-source Verilog repositories from the real world, along with an extended context size, are used for domain-specific fine-tuning. The optimized RAG system improves the information density of the input context by retrieving relevant code snippets. Tailored optimizations for RAG are carried out, including the embedding model, the cross-file context splitting strategy, and the chunk size. Our solution achieves state-of-the-art performance on public benchmark, significantly surpassing GPT-4 and advanced domain-specific LLMs on Edit Similarity and Exact Match rate. Comprehensive experiments demonstrate the remarkable effectiveness of our approach and offer insights for future work.

  • 5 authors
·
Apr 11

OpenBezoar: Small, Cost-Effective and Open Models Trained on Mixes of Instruction Data

Instruction fine-tuning pretrained LLMs for diverse downstream tasks has demonstrated remarkable success and has captured the interest of both academics and practitioners. To ensure such fine-tuned LLMs align with human preferences, techniques such as RLHF and DPO have emerged. At the same time, there is increasing interest in smaller parameter counts for models. In this work, using OpenLLaMA 3Bv2 as a base model, we describe the recipe used to fine-tune the OpenBezoar family of models. In this recipe: We first generate synthetic instruction fine-tuning data using an open and commercially non-restrictive instruction fine-tuned variant of the Falcon-40B model under three schemes based on: LaMini-LM, WizardLM/Evol-Instruct (with databricks-dolly-15k as a seed dataset) and Orca (with the Flan Collection as a seed dataset), then filter these generations using GPT-4 as a human proxy. We then perform cost-effective QLoRA-based supervised fine-tuning sequentially with each scheme. The resulting checkpoint is further fine-tuned with a subset of the HH-RLHF dataset to minimize distribution shift prior to using the DPO loss to obtain the final checkpoint. Evaluation is done with the LM Eval Harness tasks/metrics as well as on MT-Bench using the "LLM-as-a-judge" framework with Claude 2.1, with the finding that the final checkpoint, "OpenBezoar-HH-RLHF-DPO", demonstrates superior performance over many models at the 3B parameter scale, even outperforming the top model in one of the categories on the Huggingface Open LLM Leaderboard. We release "OpenBezoar-SFT", "OpenBezoar-HH-RLHF-SFT", "OpenBezoar-HH-RLHF-DPO" checkpoints, alongside our generated datasets on HuggingFace at https://huggingface.co/collections/SurgeGlobal/open-bezoar-6620a24923e12127e9e2b9cc and our codebase at https://bitbucket.org/paladinanalytics/workspace/projects/OP.

  • 4 authors
·
Apr 18, 2024 1

π_RL: Online RL Fine-tuning for Flow-based Vision-Language-Action Models

Vision-Language-Action (VLA) models enable robots to understand and perform complex tasks from multimodal input. Although recent work explores using reinforcement learning (RL) to automate the laborious data collection process in scaling supervised fine-tuning (SFT), applying large-scale RL to flow-based VLAs (e.g., pi_0, pi_{0.5}) remains challenging due to intractable action log-likelihoods from iterative denoising. We address this challenge with pi_{RL}, an open-source framework for training flow-based VLAs in parallel simulation. pi_{RL} implements two RL algorithms: (1) {Flow-Noise} models the denoising process as a discrete-time MDP with a learnable noise network for exact log-likelihood computation. (2) {Flow-SDE} integrates denoising with agent-environment interaction, formulating a two-layer MDP that employs ODE-to-SDE conversion for efficient RL exploration. We evaluate pi_{RL} on LIBERO and ManiSkill benchmarks. On LIBERO, pi_{RL} boosts few-shot SFT models pi_0 and pi_{0.5} from 57.6% to 97.6% and from 77.1% to 98.3%, respectively. In ManiSkill, we train pi_{RL} in 320 parallel environments, improving pi_0 from 41.6% to 85.7% and pi_{0.5} from 40.0% to 84.8% across 4352 pick-and-place tasks, demonstrating scalable multitask RL under heterogeneous simulation. Overall, pi_{RL} achieves significant performance gains and stronger generalization over SFT-models, validating the effectiveness of online RL for flow-based VLAs.

RLinf RLinf
·
Oct 29 3

VeriCoder: Enhancing LLM-Based RTL Code Generation through Functional Correctness Validation

Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,000 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4% respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation.

  • 8 authors
·
Apr 22

DRIVE: Data Curation Best Practices for Reinforcement Learning with Verifiable Reward in Competitive Code Generation

Recent reasoning-first models (e.g., OpenAI o1, DeepSeek R1) have spurred a resurgence of interest in RLVR. Nevertheless, advances are dominated by mathematics (e.g., AIME), with competitive-programming code generation underexplored and data curation receiving less attention than RL algorithm design. We investigate how to construct RLVR datasets (i.e., RL prompts) and present practical training techniques that yield strong performance on competitive-programming code generation. Our pipeline begins with supervised fine-tuning (SFT) distilled from strong open-source models, augmented with general-purpose and reasoning-intensive data. RL then follows a two-stage process with executable, testcase-driven rewards: first, training on a large, uniformly distributed set of competitive-programming problems using Group Relative Policy Optimization (GRPO) with 8 rollouts per prompt and a relatively short response-generation window (e.g., 32k during SFT and 24k in this stage) to expand entropy and mitigate repetition and truncation; second, we perform Pre-GRPO: updating on a small, high-quality set of challenging problems with a large rollout budget (64 rollouts per prompt) under a hard-focus curriculum that continuously retains the most difficult instances throughout training. We implement our method on Qwen2.5-32B and evaluate on LeetCode and Codeforces weekly contests to avoid data leakage. The resulting model achieves state-of-the-art performance among models of similar scale and is comparable to leading systems such as DeepSeek v3.1 and Doubao-1.5-Thinking. We also examine scaling trends and observe strong RL scaling on an internal large-scale MoE model. Our study distills concise best practices for data curation, entropy expansion, and curriculum design in RLVR for competitive-programming code generation.

tencent Tencent
·
Nov 9 5

SafeCOMM: What about Safety Alignment in Fine-Tuned Telecom Large Language Models?

Fine-tuning large language models (LLMs) for telecom tasks and datasets is a common practice to adapt general-purpose models to the telecom domain. However, little attention has been paid to how this process may compromise model safety. Recent research has shown that even benign fine-tuning can degrade the safety alignment of LLMs, causing them to respond to harmful or unethical user queries. In this paper, we investigate this issue for telecom-tuned LLMs using three representative datasets featured by the GenAINet initiative. We show that safety degradation persists even for structured and seemingly harmless datasets such as 3GPP standards and tabular records, indicating that telecom-specific data is not immune to safety erosion during fine-tuning. We further extend our analysis to publicly available Telecom LLMs trained via continual pre-training, revealing that safety alignment is often severely lacking, primarily due to the omission of safety-focused instruction tuning. To address these issues in both fine-tuned and pre-trained models, we conduct extensive experiments and evaluate three safety realignment defenses (SafeInstruct, SafeLoRA, and SafeMERGE) using established red-teaming benchmarks. The results show that, across all settings, the proposed defenses can effectively restore safety after harmful degradation without compromising downstream task performance, leading to Safe teleCOMMunication (SafeCOMM) models. In a nutshell, our work serves as a diagnostic study and practical guide for safety realignment in telecom-tuned LLMs, and emphasizes the importance of safety-aware instruction and fine-tuning for real-world deployments of Telecom LLMs.

  • 6 authors
·
May 29

CodeV-R1: Reasoning-Enhanced Verilog Generation

Large language models (LLMs) trained via reinforcement learning with verifiable reward (RLVR) have achieved breakthroughs on tasks with explicit, automatable verification, such as software programming and mathematical problems. Extending RLVR to electronic design automation (EDA), especially automatically generating hardware description languages (HDLs) like Verilog from natural-language (NL) specifications, however, poses three key challenges: the lack of automated and accurate verification environments, the scarcity of high-quality NL-code pairs, and the prohibitive computation cost of RLVR. To this end, we introduce CodeV-R1, an RLVR framework for training Verilog generation LLMs. First, we develop a rule-based testbench generator that performs robust equivalence checking against golden references. Second, we propose a round-trip data synthesis method that pairs open-source Verilog snippets with LLM-generated NL descriptions, verifies code-NL-code consistency via the generated testbench, and filters out inequivalent examples to yield a high-quality dataset. Third, we employ a two-stage "distill-then-RL" training pipeline: distillation for the cold start of reasoning abilities, followed by adaptive DAPO, our novel RLVR algorithm that can reduce training cost by adaptively adjusting sampling rate. The resulting model, CodeV-R1-7B, achieves 68.6% and 72.9% pass@1 on VerilogEval v2 and RTLLM v1.1, respectively, surpassing prior state-of-the-art by 12~20%, while matching or even exceeding the performance of 671B DeepSeek-R1. We will release our model, training pipeline, and dataset to facilitate research in EDA and LLM communities.

  • 19 authors
·
May 29 2

Hyperparameters in Reinforcement Learning and How To Tune Them

In order to improve reproducibility, deep reinforcement learning (RL) has been adopting better scientific practices such as standardized evaluation metrics and reporting. However, the process of hyperparameter optimization still varies widely across papers, which makes it challenging to compare RL algorithms fairly. In this paper, we show that hyperparameter choices in RL can significantly affect the agent's final performance and sample efficiency, and that the hyperparameter landscape can strongly depend on the tuning seed which may lead to overfitting. We therefore propose adopting established best practices from AutoML, such as the separation of tuning and testing seeds, as well as principled hyperparameter optimization (HPO) across a broad search space. We support this by comparing multiple state-of-the-art HPO tools on a range of RL algorithms and environments to their hand-tuned counterparts, demonstrating that HPO approaches often have higher performance and lower compute overhead. As a result of our findings, we recommend a set of best practices for the RL community, which should result in stronger empirical results with fewer computational costs, better reproducibility, and thus faster progress. In order to encourage the adoption of these practices, we provide plug-and-play implementations of the tuning algorithms used in this paper at https://github.com/facebookresearch/how-to-autorl.

  • 3 authors
·
Jun 2, 2023

PIKA: Expert-Level Synthetic Datasets for Post-Training Alignment from Scratch

Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone for aligning large language models (LLMs). However, its effectiveness depends on high-quality instruction data. Most existing alignment datasets are either private or require costly human annotation, which limits reproducibility and scalability. Even with Reinforcement Learning from AI Feedback (RLAIF), concerns about data quality remain. Moreover, it is unclear how much data is actually required to fine-tune a base model into a strong instruction-following model. Current approaches often rely on over 300k examples even at the supervised fine-tuning (SFT) stage, yet they still underperform compared to proprietary models, creating barriers for academic and resource-limited communities. To address this gap, we introduce PiKa, a data-efficient family of expert-level alignment datasets. In particular, the PiKa-SFT dataset uses only 30k SFT examples, far fewer than state-of-the-art datasets like Magpie. Through evaluations by fine-tuning Llama-3-8B-Base on PiKa and other public datasets, we show that PiKa-SFT outperforms models trained on much larger data. On AlpacaEval 2.0 and Arena-Hard benchmarks, PiKa-SFT fine-tuning even surpasses the official Llama-3-8B-Instruct model trained on over 10 million proprietary examples. We further extend our study by training the Qwen2.5 series (0.5B to 7B) on PiKa-SFT, achieving consistent gains. These findings demonstrate that high-quality alignment can be achieved with significantly less data, offering a scalable path for open-source LLM alignment. Code and data: https://github.com/SJY8460/PiKa.

  • 7 authors
·
Oct 8

SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores

The ever-growing complexity of reinforcement learning (RL) tasks demands a distributed RL system to efficiently generate and process a massive amount of data to train intelligent agents. However, existing open-source libraries suffer from various limitations, which impede their practical use in challenging scenarios where large-scale training is necessary. While industrial systems from OpenAI and DeepMind have achieved successful large-scale RL training, their system architecture and implementation details remain undisclosed to the community. In this paper, we present a novel abstraction on the dataflows of RL training, which unifies practical RL training across diverse applications into a general framework and enables fine-grained optimizations. Following this abstraction, we develop a scalable, efficient, and extensible distributed RL system called ReaLly Scalable RL (SRL). The system architecture of SRL separates major RL computation components and allows massively parallelized training. Moreover, SRL offers user-friendly and extensible interfaces for customized algorithms. Our evaluation shows that SRL outperforms existing academic libraries in both a single machine and a medium-sized cluster. In a large-scale cluster, the novel architecture of SRL leads to up to 3.7x speedup compared to the design choices adopted by the existing libraries. We also conduct a direct benchmark comparison to OpenAI's industrial system, Rapid, in the challenging hide-and-seek environment. SRL reproduces the same solution as reported by OpenAI with up to 5x speedup in wall-clock time. Furthermore, we also examine the performance of SRL in a much harder variant of the hide-and-seek environment and achieve substantial learning speedup by scaling SRL to over 15k CPU cores and 32 A100 GPUs. Notably, SRL is the first in the academic community to perform RL experiments at such a large scale.

  • 5 authors
·
Jun 29, 2023

Efficient Telecom Specific LLM: TSLAM-Mini with QLoRA and Digital Twin Data

General-purpose large language models (LLMs), despite their broad capabilities accrued from open-world data, frequently exhibit suboptimal performance when confronted with the nuanced and specialized demands inherent in real-time telecommunications applications. This investigation addresses this critical limitation through the meticulous fine-tuning of TSLAM-Mini developed by NetoAI, a compact (3.8-billion parameter) causal language model architecturally derived from Phi-4 Mini Instruct 4B. The fine-tuning regimen leverages a bespoke dataset comprising 100,000 samples, strategically engineered to address 20 pivotal telecommunications use-cases, encompassing domains such as Network Fundamentals, IP Routing, MPLS, Network Security, Automation, OSS/BSS, RAN, Mobile Core, Satellite Communications, and Ethical AI. This dataset was curated utilizing NetoAI's DigiTwin platform, enriched with granular insights from venerated network Subject Matter Experts (SMEs) and authoritative RFC documents, thereby capturing high-fidelity representations of real-world network dynamics through simulations inspired by digital twin paradigms. Employing Quantized Low-Rank Adaptation (QLoRA), a state-of-the-art Parameter Efficient Fine-Tuning (PEFT) technique, we achieved substantial training efficiency and enabled prospective deployment on resource-constrained hardware. A novel evaluation framework, predicated on a high-capacity LLM (Qwen3-235B-A22B) functioning as an automated adjudicator, was instituted to rigorously assess instruction-following fidelity and response quality across the specified telecom use-cases. Empirical results unequivocally demonstrate TSLAM-Mini's superior aptitude in telecom-centric applications, underscoring the profound efficacy of domain-specific datasets and PEFT methodologies for advancing intelligent network management.

  • 4 authors
·
May 10

SAGE-HLS: Syntax-Aware AST-Guided LLM for High-Level Synthesis Code Generation

In today's rapidly evolving field of electronic design automation (EDA), the complexity of hardware designs is increasing, necessitating more sophisticated automation solutions. High-level synthesis (HLS), as a pivotal solution, automates hardware designs from high-level abstractions (e.g., C/C++). However, it faces significant challenges, particularly in design space exploration and optimization. While large language models (LLMs) have shown notable capabilities in code generation, their application to HLS has been limited due to the scarcity of (publicly) available HLS code datasets. Hence, research in this domain has primarily focused on techniques such as prompt engineering and retrieval-augmented generation (RAG). To overcome this limitation, this paper introduces SAGE-HLS, the first-of-its-kind fine-tuned LLM specifically for HLS code generation. Our method includes three key advancements: (i) We implement Verilog-to-C/C++ porting, converting verified and synthesizable Verilog codes into corresponding C, creating a dataset of 16.7K HLS codes; (ii) We implement a fine-tuning strategy, which is based on instruction prompting to code generation guided by abstract syntax tree (AST); (iii) We develop a semi-automated evaluation framework using VerilogEval to assess the functionality of the generated HLS code. Our experiments show that SAGE-HLS, fined-tuned on the QwenCoder (2.5) 7B model, achieves a near 100% success rate in code synthesizability and a 75% success rate in functional correctness.

  • 5 authors
·
Aug 5

Step-wise Adaptive Integration of Supervised Fine-tuning and Reinforcement Learning for Task-Specific LLMs

Large language models (LLMs) excel at mathematical reasoning and logical problem-solving. The current popular training paradigms primarily use supervised fine-tuning (SFT) and reinforcement learning (RL) to enhance the models' reasoning abilities. However, when using SFT or RL alone, there are respective challenges: SFT may suffer from overfitting, while RL is prone to mode collapse. The state-of-the-art methods have proposed hybrid training schemes. However, static switching faces challenges such as poor generalization across different tasks and high dependence on data quality. In response to these challenges, inspired by the curriculum learning-quiz mechanism in human reasoning cultivation, We propose SASR, a step-wise adaptive hybrid training framework that theoretically unifies SFT and RL and dynamically balances the two throughout optimization. SASR uses SFT for initial warm-up to establish basic reasoning skills, and then uses an adaptive dynamic adjustment algorithm based on gradient norm and divergence relative to the original distribution to seamlessly integrate SFT with the online RL method GRPO. By monitoring the training status of LLMs and adjusting the training process in sequence, SASR ensures a smooth transition between training schemes, maintaining core reasoning abilities while exploring different paths. Experimental results demonstrate that SASR outperforms SFT, RL, and static hybrid training methods.

  • 10 authors
·
May 19

Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining

Reinforcement learning (RL)-based fine-tuning has become a crucial step in post-training language models for advanced mathematical reasoning and coding. Following the success of frontier reasoning models, recent work has demonstrated that RL fine-tuning consistently improves performance, even in smaller-scale models; however, the underlying mechanisms driving these improvements are not well-understood. Understanding the effects of RL fine-tuning requires disentangling its interaction with pretraining data composition, hyperparameters, and model scale, but such problems are exacerbated by the lack of transparency regarding the training data used in many existing models. In this work, we present a systematic end-to-end study of RL fine-tuning for mathematical reasoning by training models entirely from scratch on different mixtures of fully open datasets. We investigate the effects of various RL fine-tuning algorithms (PPO, GRPO, and Expert Iteration) across models of different scales. Our study reveals that RL algorithms consistently converge towards a dominant output distribution, amplifying patterns in the pretraining data. We also find that models of different scales trained on the same data mixture will converge to distinct output distributions, suggesting that there are scale-dependent biases in model generalization. Moreover, we find that RL post-training on simpler questions can lead to performance gains on harder ones, indicating that certain reasoning capabilities generalize across tasks. Our findings show that small-scale proxies in controlled settings can elicit interesting insights regarding the role of RL in shaping language model behavior.

  • 6 authors
·
Apr 10

SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open Software Evolution

The recent DeepSeek-R1 release has demonstrated the immense potential of reinforcement learning (RL) in enhancing the general reasoning capabilities of large language models (LLMs). While DeepSeek-R1 and other follow-up work primarily focus on applying RL to competitive coding and math problems, this paper introduces SWE-RL, the first approach to scale RL-based LLM reasoning for real-world software engineering. Leveraging a lightweight rule-based reward (e.g., the similarity score between ground-truth and LLM-generated solutions), SWE-RL enables LLMs to autonomously recover a developer's reasoning processes and solutions by learning from extensive open-source software evolution data -- the record of a software's entire lifecycle, including its code snapshots, code changes, and events such as issues and pull requests. Trained on top of Llama 3, our resulting reasoning model, Llama3-SWE-RL-70B, achieves a 41.0% solve rate on SWE-bench Verified -- a human-verified collection of real-world GitHub issues. To our knowledge, this is the best performance reported for medium-sized (<100B) LLMs to date, even comparable to leading proprietary LLMs like GPT-4o. Surprisingly, despite performing RL solely on software evolution data, Llama3-SWE-RL has even emerged with generalized reasoning skills. For example, it shows improved results on five out-of-domain tasks, namely, function coding, library use, code reasoning, mathematics, and general language understanding, whereas a supervised-finetuning baseline even leads to performance degradation on average. Overall, SWE-RL opens up a new direction to improve the reasoning capabilities of LLMs through reinforcement learning on massive software engineering data.

  • 9 authors
·
Feb 25 5

ChipSeek-R1: Generating Human-Surpassing RTL with LLM via Hierarchical Reward-Driven Reinforcement Learning

Large Language Models (LLMs) show significant potential for automating Register-Transfer Level (RTL) code generation. However, current approaches face a critical challenge: they can not simultaneously optimize for functional correctness and hardware quality (Power, Performance, Area - PPA). Methods based on supervised fine-tuning often generate functionally correct but PPA-suboptimal code, lacking mechanisms to learn optimization principles. In contrast, post-processing techniques that attempt to improve PPA metrics after generation are often inefficient because they operate externally without updating the LLM's parameters, thus failing to enhance the model's intrinsic design capabilities. To bridge this gap, we introduce ChipSeek-R1, a hierarchical reward-driven reinforcement learning framework to train LLMs to generate RTL code that achieves both functional correctness and optimized PPA metrics. ChipSeek-R1 employs a hierarchical reward system, which incorporates direct feedback on syntax, functional correctness (from simulators) and PPA metrics (from synthesis tools) during reinforcement learning. This enables the model to learn complex hardware design trade-offs via trial-and-error, generating RTL code that is both functionally correct and PPA-optimized. Evaluating ChipSeek-R1 on standard benchmarks (VerilogEval, RTLLM), we achieve state-of-the-art results in functional correctness. Notably, on the RTLLM benchmark, ChipSeek-R1 generated 27 RTL designs surpassing the PPA metrics of the original human-written code. Our findings demonstrate the effectiveness of integrating toolchain feedback into LLM training and highlight the potential for reinforcement learning to enable automated generation of human-surpassing RTL code. We open-source our code in anonymous github.

  • 10 authors
·
Jul 7

In defense of parameter sharing for model-compression

When considering a model architecture, there are several ways to reduce its memory footprint. Historically, popular approaches included selecting smaller architectures and creating sparse networks through pruning. More recently, randomized parameter-sharing (RPS) methods have gained traction for model compression at start of training. In this paper, we comprehensively assess the trade-off between memory and accuracy across RPS, pruning techniques, and building smaller models. Our findings demonstrate that RPS, which is both data and model-agnostic, consistently outperforms/matches smaller models and all moderately informed pruning strategies, such as MAG, SNIP, SYNFLOW, and GRASP, across the entire compression range. This advantage becomes particularly pronounced in higher compression scenarios. Notably, even when compared to highly informed pruning techniques like Lottery Ticket Rewinding (LTR), RPS exhibits superior performance in high compression settings. This points out inherent capacity advantage that RPS enjoys over sparse models. Theoretically, we establish RPS as a superior technique in terms of memory-efficient representation when compared to pruning for linear models. This paper argues in favor of paradigm shift towards RPS based models. During our rigorous evaluation of RPS, we identified issues in the state-of-the-art RPS technique ROAST, specifically regarding stability (ROAST's sensitivity to initialization hyperparameters, often leading to divergence) and Pareto-continuity (ROAST's inability to recover the accuracy of the original model at zero compression). We provably address both of these issues. We refer to the modified RPS, which incorporates our improvements, as STABLE-RPS.

  • 2 authors
·
Oct 17, 2023

Snapshot Reinforcement Learning: Leveraging Prior Trajectories for Efficiency

Deep reinforcement learning (DRL) algorithms require substantial samples and computational resources to achieve higher performance, which restricts their practical application and poses challenges for further development. Given the constraint of limited resources, it is essential to leverage existing computational work (e.g., learned policies, samples) to enhance sample efficiency and reduce the computational resource consumption of DRL algorithms. Previous works to leverage existing computational work require intrusive modifications to existing algorithms and models, designed specifically for specific algorithms, lacking flexibility and universality. In this paper, we present the Snapshot Reinforcement Learning (SnapshotRL) framework, which enhances sample efficiency by simply altering environments, without making any modifications to algorithms and models. By allowing student agents to choose states in teacher trajectories as the initial state to sample, SnapshotRL can effectively utilize teacher trajectories to assist student agents in training, allowing student agents to explore a larger state space at the early training phase. We propose a simple and effective SnapshotRL baseline algorithm, S3RL, which integrates well with existing DRL algorithms. Our experiments demonstrate that integrating S3RL with TD3, SAC, and PPO algorithms on the MuJoCo benchmark significantly improves sample efficiency and average return, without extra samples and additional computational resources.

  • 5 authors
·
Mar 1, 2024

DR-Tune: Improving Fine-tuning of Pretrained Visual Models by Distribution Regularization with Semantic Calibration

The visual models pretrained on large-scale benchmarks encode general knowledge and prove effective in building more powerful representations for downstream tasks. Most existing approaches follow the fine-tuning paradigm, either by initializing or regularizing the downstream model based on the pretrained one. The former fails to retain the knowledge in the successive fine-tuning phase, thereby prone to be over-fitting, and the latter imposes strong constraints to the weights or feature maps of the downstream model without considering semantic drift, often incurring insufficient optimization. To deal with these issues, we propose a novel fine-tuning framework, namely distribution regularization with semantic calibration (DR-Tune). It employs distribution regularization by enforcing the downstream task head to decrease its classification error on the pretrained feature distribution, which prevents it from over-fitting while enabling sufficient training of downstream encoders. Furthermore, to alleviate the interference by semantic drift, we develop the semantic calibration (SC) module to align the global shape and class centers of the pretrained and downstream feature distributions. Extensive experiments on widely used image classification datasets show that DR-Tune consistently improves the performance when combing with various backbones under different pretraining strategies. Code is available at: https://github.com/weeknan/DR-Tune.

  • 3 authors
·
Aug 23, 2023

A Comparative Study of DSL Code Generation: Fine-Tuning vs. Optimized Retrieval Augmentation

Natural Language to Code Generation has made significant progress in recent years with the advent of Large Language Models(LLMs). While generation for general-purpose languages like C, C++, and Python has improved significantly, LLMs struggle with custom function names in Domain Specific Languages or DSLs. This leads to higher hallucination rates and syntax errors, specially for DSLs having a high number of custom function names. Additionally, constant updates to function names add to the challenge as LLMs need to stay up-to-date. In this paper, we present optimizations for using Retrieval Augmented Generation (or RAG) with LLMs for DSL generation along with an ablation study comparing these strategies. We generated a train as well as test dataset with a DSL to represent automation tasks across roughly 700 APIs in public domain. We used the training dataset to fine-tune a Codex model for this DSL. Our results showed that the fine-tuned model scored the best on code similarity metric. With our RAG optimizations, we achieved parity for similarity metric. The compilation rate, however, showed that both the models still got the syntax wrong many times, with RAG-based method being 2 pts better. Conversely, hallucination rate for RAG model lagged by 1 pt for API names and by 2 pts for API parameter keys. We conclude that an optimized RAG model can match the quality of fine-tuned models and offer advantages for new, unseen APIs.

  • 2 authors
·
Jul 2, 2024

HybridFlow: A Flexible and Efficient RLHF Framework

Reinforcement Learning from Human Feedback (RLHF) is widely used in Large Language Model (LLM) alignment. Traditional RL can be modeled as a dataflow, where each node represents computation of a neural network (NN) and each edge denotes data dependencies between the NNs. RLHF complicates the dataflow by expanding each node into a distributed LLM training or generation program, and each edge into a many-to-many multicast. Traditional RL frameworks execute the dataflow using a single controller to instruct both intra-node computation and inter-node communication, which can be inefficient in RLHF due to large control dispatch overhead for distributed intra-node computation. Existing RLHF systems adopt a multi-controller paradigm, which can be inflexible due to nesting distributed computation and data communication. We propose HybridFlow, which combines single-controller and multi-controller paradigms in a hybrid manner to enable flexible representation and efficient execution of the RLHF dataflow. We carefully design a set of hierarchical APIs that decouple and encapsulate computation and data dependencies in the complex RLHF dataflow, allowing efficient operation orchestration to implement RLHF algorithms and flexible mapping of the computation onto various devices. We further design a 3D-HybridEngine for efficient actor model resharding between training and generation phases, with zero memory redundancy and significantly reduced communication overhead. Our experimental results demonstrate 1.53times~20.57times throughput improvement when running various RLHF algorithms using HybridFlow, as compared with state-of-the-art baselines. HybridFlow source code will be available at https://github.com/volcengine/verl.

  • 9 authors
·
Sep 28, 2024 1

Compacter: Efficient Low-Rank Hypercomplex Adapter Layers

Adapting large-scale pretrained language models to downstream tasks via fine-tuning is the standard method for achieving state-of-the-art performance on NLP benchmarks. However, fine-tuning all weights of models with millions or billions of parameters is sample-inefficient, unstable in low-resource settings, and wasteful as it requires storing a separate copy of the model for each task. Recent work has developed parameter-efficient fine-tuning methods, but these approaches either still require a relatively large number of parameters or underperform standard fine-tuning. In this work, we propose Compacter, a method for fine-tuning large-scale language models with a better trade-off between task performance and the number of trainable parameters than prior work. Compacter accomplishes this by building on top of ideas from adapters, low-rank optimization, and parameterized hypercomplex multiplication layers. Specifically, Compacter inserts task-specific weight matrices into a pretrained model's weights, which are computed efficiently as a sum of Kronecker products between shared "slow" weights and "fast" rank-one matrices defined per Compacter layer. By only training 0.047% of a pretrained model's parameters, Compacter performs on par with standard fine-tuning on GLUE and outperforms standard fine-tuning on SuperGLUE and low-resource settings. Our code is publicly available at~https://github.com/rabeehk/compacter.

  • 3 authors
·
Jun 8, 2021

UloRL:An Ultra-Long Output Reinforcement Learning Approach for Advancing Large Language Models' Reasoning Abilities

Recent advances in large language models (LLMs) have highlighted the potential of reinforcement learning with verifiable rewards (RLVR) to enhance reasoning capabilities through extended output sequences. However, traditional RL frameworks face inefficiencies when handling ultra-long outputs due to long-tail sequence distributions and entropy collapse during training. To address these challenges, we propose an Ultra-Long Output Reinforcement Learning (UloRL) approach for advancing large language models' reasoning abilities. Specifically, we divide ultra long output decoding into short segments, enabling efficient training by mitigating delays caused by long-tail samples. Additionally, we introduce dynamic masking of well-Mastered Positive Tokens (MPTs) to prevent entropy collapse. Experimental results demonstrate the effectiveness of our approach. On the Qwen3-30B-A3B model, RL with segment rollout achieved 2.06x increase in training speed, while RL training with 128k-token outputs improves the model's performance on AIME2025 from 70.9\% to 85.1\% and on BeyondAIME from 50.7\% to 61.9\%, even surpassing Qwen3-235B-A22B with remarkable gains. These findings underscore the potential of our methods to advance the reasoning capabilities of LLMs with ultra-long sequence generation. We will release our code and model for further use by the community.

  • 5 authors
·
Jul 25 2

Triple Preference Optimization: Achieving Better Alignment with Less Data in a Single Step Optimization

Large Language Models (LLMs) perform well across diverse tasks, but aligning them with human demonstrations is challenging. Recently, Reinforcement Learning (RL)-free methods like Direct Preference Optimization (DPO) have emerged, offering improved stability and scalability while retaining competitive performance relative to RL-based methods. However, while RL-free methods deliver satisfactory performance, they require significant data to develop a robust Supervised Fine-Tuned (SFT) model and an additional step to fine-tune this model on a preference dataset, which constrains their utility and scalability. In this paper, we introduce Triple Preference Optimization (TPO), a new preference learning method designed to align an LLM with three preferences without requiring a separate SFT step and using considerably less data. Through a combination of practical experiments and theoretical analysis, we show the efficacy of TPO as a single-step alignment strategy. Specifically, we fine-tuned the Phi-2 (2.7B) and Mistral (7B) models using TPO directly on the UltraFeedback dataset, achieving superior results compared to models aligned through other methods such as SFT, DPO, KTO, IPO, CPO, and ORPO. Moreover, the performance of TPO without the SFT component led to notable improvements in the MT-Bench score, with increases of +1.27 and +0.63 over SFT and DPO, respectively. Additionally, TPO showed higher average accuracy, surpassing DPO and SFT by 4.2% and 4.97% on the Open LLM Leaderboard benchmarks. Our code is publicly available at https://github.com/sahsaeedi/triple-preference-optimization .

  • 4 authors
·
May 26, 2024

Sharing is Caring: Efficient LM Post-Training with Collective RL Experience Sharing

Post-training language models (LMs) with reinforcement learning (RL) can enhance their complex reasoning capabilities without supervised fine-tuning, as demonstrated by DeepSeek-R1-Zero. However, effectively utilizing RL for LMs requires significant parallelization to scale-up inference, which introduces non-trivial technical challenges (e.g. latency, memory, and reliability) alongside ever-growing financial costs. We present Swarm sAmpling Policy Optimization (SAPO), a fully decentralized and asynchronous RL post-training algorithm. SAPO is designed for decentralized networks of heterogenous compute nodes, where each node manages its own policy model(s) while "sharing" rollouts with others in the network; no explicit assumptions about latency, model homogeneity, or hardware are required and nodes can operate in silo if desired. As a result, the algorithm avoids common bottlenecks in scaling RL post-training while also allowing (and even encouraging) new possibilities. By sampling rollouts "shared" across the network, it enables "Aha moments" to propagate, thereby bootstrapping the learning process. In this paper we show SAPO achieved cumulative reward gains of up to 94% in controlled experiments. We also share insights from tests on a network with thousands of nodes contributed by Gensyn community members running the algorithm on diverse hardware and models during an open-source demo.

Gensyn Gensyn
·
Sep 10 53

Fed-SB: A Silver Bullet for Extreme Communication Efficiency and Performance in (Private) Federated LoRA Fine-Tuning

Low-Rank Adaptation (LoRA) has become ubiquitous for efficiently fine-tuning foundation models. However, federated fine-tuning using LoRA is challenging due to suboptimal updates arising from traditional federated averaging of individual adapters. Existing solutions either incur prohibitively high communication cost that scales linearly with the number of clients or suffer from performance degradation due to limited expressivity. We introduce Federated Silver Bullet (Fed-SB), a novel approach for federated fine-tuning of LLMs using LoRA-SB, a recently proposed low-rank adaptation method. LoRA-SB optimally aligns the optimization trajectory with the ideal low-rank full fine-tuning projection by learning a small square matrix (R) between adapters B and A, keeping other components fixed. Direct averaging of R guarantees exact updates, substantially reducing communication cost, which remains independent of the number of clients, and enables scalability. Fed-SB achieves state-of-the-art performance across commonsense reasoning, arithmetic reasoning, and language inference tasks while reducing communication costs by up to 230x. In private settings, Fed-SB further improves performance by (1) reducing trainable parameters, thereby lowering the noise required for differential privacy and (2) avoiding noise amplification introduced by other methods. Overall, Fed-SB establishes a new Pareto frontier in the tradeoff between communication and performance, offering an efficient and scalable solution for both private and non-private federated fine-tuning. Our code is publicly available at https://github.com/CERT-Lab/fed-sb.

  • 5 authors
·
Feb 21

Learning to Reason as Action Abstractions with Scalable Mid-Training RL

Large language models excel with reinforcement learning (RL), but fully unlocking this potential requires a mid-training stage. An effective mid-training phase should identify a compact set of useful actions and enable fast selection among them through online RL. We formalize this intuition by presenting the first theoretical result on how mid-training shapes post-training: it characterizes an action subspace that minimizes both the value approximation error from pruning and the RL error during subsequent planning. Our analysis reveals two key determinants of mid-training effectiveness: pruning efficiency, which shapes the prior of the initial RL policy, and its impact on RL convergence, which governs the extent to which that policy can be improved via online interactions. These results suggest that mid-training is most effective when the decision space is compact and the effective horizon is short, highlighting the importance of operating in the space of action abstractions rather than primitive actions. Building on these insights, we propose Reasoning as Action Abstractions (RA3), a scalable mid-training algorithm. Specifically, we derive a sequential variational lower bound and optimize it by iteratively discovering temporally-consistent latent structures via RL, followed by fine-tuning on the bootstrapped data. Experiments on code generation tasks demonstrate the effectiveness of our approach. Across multiple base models, RA3 improves the average performance on HumanEval and MBPP by 8 and 4 points over the base model and the next-token prediction baseline. Furthermore, RA3 achieves faster convergence and higher asymptotic performance in RLVR on HumanEval+, MBPP+, LiveCodeBench, and Codeforces.

apple Apple
·
Sep 30 2

Using Human Feedback to Fine-tune Diffusion Models without Any Reward Model

Using reinforcement learning with human feedback (RLHF) has shown significant promise in fine-tuning diffusion models. Previous methods start by training a reward model that aligns with human preferences, then leverage RL techniques to fine-tune the underlying models. However, crafting an efficient reward model demands extensive datasets, optimal architecture, and manual hyperparameter tuning, making the process both time and cost-intensive. The direct preference optimization (DPO) method, effective in fine-tuning large language models, eliminates the necessity for a reward model. However, the extensive GPU memory requirement of the diffusion model's denoising process hinders the direct application of the DPO method. To address this issue, we introduce the Direct Preference for Denoising Diffusion Policy Optimization (D3PO) method to directly fine-tune diffusion models. The theoretical analysis demonstrates that although D3PO omits training a reward model, it effectively functions as the optimal reward model trained using human feedback data to guide the learning process. This approach requires no training of a reward model, proving to be more direct, cost-effective, and minimizing computational overhead. In experiments, our method uses the relative scale of objectives as a proxy for human preference, delivering comparable results to methods using ground-truth rewards. Moreover, D3PO demonstrates the ability to reduce image distortion rates and generate safer images, overcoming challenges lacking robust reward models.

  • 9 authors
·
Nov 22, 2023 5

VeriReason: Reinforcement Learning with Testbench Feedback for Reasoning-Enhanced Verilog Generation

Automating Register Transfer Level (RTL) code generation using Large Language Models (LLMs) offers substantial promise for streamlining digital circuit design and reducing human effort. However, current LLM-based approaches face significant challenges with training data scarcity, poor specification-code alignment, lack of verification mechanisms, and balancing generalization with specialization. Inspired by DeepSeek-R1, we introduce VeriReason, a framework integrating supervised fine-tuning with Guided Reward Proximal Optimization (GRPO) reinforcement learning for RTL generation. Using curated training examples and a feedback-driven reward model, VeriReason combines testbench evaluations with structural heuristics while embedding self-checking capabilities for autonomous error correction. On the VerilogEval Benchmark, VeriReason delivers significant improvements: achieving 83.1% functional correctness on the VerilogEval Machine benchmark, substantially outperforming both comparable-sized models and much larger commercial systems like GPT-4 Turbo. Additionally, our approach demonstrates up to a 2.8X increase in first-attempt functional correctness compared to baseline methods and exhibits robust generalization to unseen designs. To our knowledge, VeriReason represents the first system to successfully integrate explicit reasoning capabilities with reinforcement learning for Verilog generation, establishing a new state-of-the-art for automated RTL synthesis. The models and datasets are available at: https://huggingface.co/collections/AI4EDA-CASE Code is Available at: https://github.com/NellyW8/VeriReason

  • 5 authors
·
May 17

Rainbow Padding: Mitigating Early Termination in Instruction-Tuned Diffusion LLMs

Diffusion large language models (dLLMs) have emerged as a promising alternative to autoregressive models, offering flexible generation orders and strong performance on complex reasoning tasks. However, instruction-tuned dLLMs exhibit a critical vulnerability we term <eos> overflow: as allocated sequence length increases, responses paradoxically become shorter, collapsing into early termination or degenerating into streams of <eos> tokens. Although noticed in practice, this issue has not been systematically analyzed. We trace its root cause to the dual role of <eos> as both termination and padding, which concentrates probability mass on <eos> at later positions and propagates backward to trigger early termination. To address this, we introduce Rainbow Padding, a simple remedy that replaces repeated <eos> placeholders with a repeating cycle of distinct padding tokens, distributing probability mass and breaking <eos> dominance. Experiments show that Rainbow Padding substantially improves length robustness and output quality, with as few as seven padding tokens sufficient to prevent early termination. Moreover, the method integrates efficiently into existing instruction-tuned models: LoRA fine-tuning for a single epoch on minimal data yields significant improvements, making this solution highly practical. The code is publicly available at https://github.com/quasar529/rainbow-padding.

  • 5 authors
·
Oct 4

Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback

A key technology for the development of large language models (LLMs) involves instruction tuning that helps align the models' responses with human expectations to realize impressive learning abilities. Two major approaches for instruction tuning characterize supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), which are currently applied to produce the best commercial LLMs (e.g., ChatGPT). To improve the accessibility of LLMs for research and development efforts, various instruction-tuned open-source LLMs have also been introduced recently, e.g., Alpaca, Vicuna, to name a few. However, existing open-source LLMs have only been instruction-tuned for English and a few popular languages, thus hindering their impacts and accessibility to many other languages in the world. Among a few very recent work to explore instruction tuning for LLMs in multiple languages, SFT has been used as the only approach to instruction-tune LLMs for multiple languages. This has left a significant gap for fine-tuned LLMs based on RLHF in diverse languages and raised important questions on how RLHF can boost the performance of multilingual instruction tuning. To overcome this issue, we present Okapi, the first system with instruction-tuned LLMs based on RLHF for multiple languages. Okapi introduces instruction and response-ranked data in 26 diverse languages to facilitate the experiments and development of future multilingual LLM research. We also present benchmark datasets to enable the evaluation of generative LLMs in multiple languages. Our experiments demonstrate the advantages of RLHF for multilingual instruction over SFT for different base models and datasets. Our framework and resources are released at https://github.com/nlp-uoregon/Okapi.

  • 7 authors
·
Jul 29, 2023

AceReason-Nemotron 1.1: Advancing Math and Code Reasoning through SFT and RL Synergy

In this work, we investigate the synergy between supervised fine-tuning (SFT) and reinforcement learning (RL) in developing strong reasoning models. We begin by curating the SFT training data through two scaling strategies: increasing the number of collected prompts and the number of generated responses per prompt. Both approaches yield notable improvements in reasoning performance, with scaling the number of prompts resulting in more substantial gains. We then explore the following questions regarding the synergy between SFT and RL: (i) Does a stronger SFT model consistently lead to better final performance after large-scale RL training? (ii) How can we determine an appropriate sampling temperature during RL training to effectively balance exploration and exploitation for a given SFT initialization? Our findings suggest that (i) holds true, provided effective RL training is conducted, particularly when the sampling temperature is carefully chosen to maintain the temperature-adjusted entropy around 0.3, a setting that strikes a good balance between exploration and exploitation. Notably, the performance gap between initial SFT models narrows significantly throughout the RL process. Leveraging a strong SFT foundation and insights into the synergistic interplay between SFT and RL, our AceReason-Nemotron-1.1 7B model significantly outperforms AceReason-Nemotron-1.0 and achieves new state-of-the-art performance among Qwen2.5-7B-based reasoning models on challenging math and code benchmarks, thereby demonstrating the effectiveness of our post-training recipe. We release the model and data at: https://huggingface.co/nvidia/AceReason-Nemotron-1.1-7B

  • 7 authors
·
Jun 16 4

Rendering-Aware Reinforcement Learning for Vector Graphics Generation

Scalable Vector Graphics (SVG) offer a powerful format for representing visual designs as interpretable code. Recent advances in vision-language models (VLMs) have enabled high-quality SVG generation by framing the problem as a code generation task and leveraging large-scale pretraining. VLMs are particularly suitable for this task as they capture both global semantics and fine-grained visual patterns, while transferring knowledge across vision, natural language, and code domains. However, existing VLM approaches often struggle to produce faithful and efficient SVGs because they never observe the rendered images during training. Although differentiable rendering for autoregressive SVG code generation remains unavailable, rendered outputs can still be compared to original inputs, enabling evaluative feedback suitable for reinforcement learning (RL). We introduce RLRF(Reinforcement Learning from Rendering Feedback), an RL method that enhances SVG generation in autoregressive VLMs by leveraging feedback from rendered SVG outputs. Given an input image, the model generates SVG roll-outs that are rendered and compared to the original image to compute a reward. This visual fidelity feedback guides the model toward producing more accurate, efficient, and semantically coherent SVGs. RLRF significantly outperforms supervised fine-tuning, addressing common failure modes and enabling precise, high-quality SVG generation with strong structural understanding and generalization.

  • 15 authors
·
May 27 3

SADA: Stability-guided Adaptive Diffusion Acceleration

Diffusion models have achieved remarkable success in generative tasks but suffer from high computational costs due to their iterative sampling process and quadratic attention costs. Existing training-free acceleration strategies that reduce per-step computation cost, while effectively reducing sampling time, demonstrate low faithfulness compared to the original baseline. We hypothesize that this fidelity gap arises because (a) different prompts correspond to varying denoising trajectory, and (b) such methods do not consider the underlying ODE formulation and its numerical solution. In this paper, we propose Stability-guided Adaptive Diffusion Acceleration (SADA), a novel paradigm that unifies step-wise and token-wise sparsity decisions via a single stability criterion to accelerate sampling of ODE-based generative models (Diffusion and Flow-matching). For (a), SADA adaptively allocates sparsity based on the sampling trajectory. For (b), SADA introduces principled approximation schemes that leverage the precise gradient information from the numerical ODE solver. Comprehensive evaluations on SD-2, SDXL, and Flux using both EDM and DPM++ solvers reveal consistent ge 1.8times speedups with minimal fidelity degradation (LPIPS leq 0.10 and FID leq 4.5) compared to unmodified baselines, significantly outperforming prior methods. Moreover, SADA adapts seamlessly to other pipelines and modalities: It accelerates ControlNet without any modifications and speeds up MusicLDM by 1.8times with sim 0.01 spectrogram LPIPS.

  • 10 authors
·
Jul 22

Scaling & Shifting Your Features: A New Baseline for Efficient Model Tuning

Existing fine-tuning methods either tune all parameters of the pre-trained model (full fine-tuning), which is not efficient, or only tune the last linear layer (linear probing), which suffers a significant accuracy drop compared to the full fine-tuning. In this paper, we propose a new parameter-efficient fine-tuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance of full fine-tuning. In this way, SSF also surprisingly outperforms other parameter-efficient fine-tuning approaches even with a smaller number of tunable parameters. Furthermore, different from some existing parameter-efficient fine-tuning methods (e.g., Adapter or VPT) that introduce the extra parameters and computational cost in the training and inference stages, SSF only adds learnable parameters during the training stage, and these additional parameters can be merged into the original pre-trained model weights via re-parameterization in the inference phase. With the proposed SSF, our model obtains 2.46% (90.72% vs. 88.54%) and 11.48% (73.10% vs. 65.57%) performance improvement on FGVC and VTAB-1k in terms of Top-1 accuracy compared to the full fine-tuning but only fine-tuning about 0.3M parameters. We also conduct amounts of experiments in various model families (CNNs, Transformers, and MLPs) and datasets. Results on 26 image classification datasets in total and 3 robustness & out-of-distribution datasets show the effectiveness of SSF. Code is available at https://github.com/dongzelian/SSF.

  • 4 authors
·
Oct 17, 2022

RLHF Workflow: From Reward Modeling to Online RLHF

We present the workflow of Online Iterative Reinforcement Learning from Human Feedback (RLHF) in this technical report, which is widely reported to outperform its offline counterpart by a large margin in the recent large language model (LLM) literature. However, existing open-source RLHF projects are still largely confined to the offline learning setting. In this technical report, we aim to fill in this gap and provide a detailed recipe that is easy to reproduce for online iterative RLHF. In particular, since online human feedback is usually infeasible for open-source communities with limited resources, we start by constructing preference models using a diverse set of open-source datasets and use the constructed proxy preference model to approximate human feedback. Then, we discuss the theoretical insights and algorithmic principles behind online iterative RLHF, followed by a detailed practical implementation. Our trained LLM, SFR-Iterative-DPO-LLaMA-3-8B-R, achieves impressive performance on LLM chatbot benchmarks, including AlpacaEval-2, Arena-Hard, and MT-Bench, as well as other academic benchmarks such as HumanEval and TruthfulQA. We have shown that supervised fine-tuning (SFT) and iterative RLHF can obtain state-of-the-art performance with fully open-source datasets. Further, we have made our models, curated datasets, and comprehensive step-by-step code guidebooks publicly available. Please refer to https://github.com/RLHFlow/RLHF-Reward-Modeling and https://github.com/RLHFlow/Online-RLHF for more detailed information.

  • 10 authors
·
May 13, 2024 5

SpeedUpNet: A Plug-and-Play Hyper-Network for Accelerating Text-to-Image Diffusion Models

Text-to-image diffusion models (SD) exhibit significant advancements while requiring extensive computational resources. Though many acceleration methods have been proposed, they suffer from generation quality degradation or extra training cost generalizing to new fine-tuned models. To address these limitations, we propose a novel and universal Stable-Diffusion (SD) acceleration module called SpeedUpNet(SUN). SUN can be directly plugged into various fine-tuned SD models without extra training. This technique utilizes cross-attention layers to learn the relative offsets in the generated image results between negative and positive prompts achieving classifier-free guidance distillation with negative prompts controllable, and introduces a Multi-Step Consistency (MSC) loss to ensure a harmonious balance between reducing inference steps and maintaining consistency in the generated output. Consequently, SUN significantly reduces the number of inference steps to just 4 steps and eliminates the need for classifier-free guidance. It leads to an overall speedup of more than 10 times for SD models compared to the state-of-the-art 25-step DPM-solver++, and offers two extra advantages: (1) classifier-free guidance distillation with controllable negative prompts and (2) seamless integration into various fine-tuned Stable-Diffusion models without training. The effectiveness of the SUN has been verified through extensive experimentation. Project Page: https://williechai.github.io/speedup-plugin-for-stable-diffusions.github.io

  • 6 authors
·
Dec 13, 2023

Improving Language Models with Advantage-based Offline Policy Gradients

Abstract Language Models (LMs) achieve substantial language capabilities when finetuned using Reinforcement Learning with Human Feedback (RLHF). However, RLHF is an unstable and data-hungry process that continually requires new high-quality LM-generated data for finetuning. We introduce Advantage-Leftover Lunch RL (A-LoL), a new class of offline policy gradient algorithms that enable RL training on any pre-existing data. By assuming the entire LM output sequence as a single action, A-LoL allows incorporating sequence-level classifiers or human-designed scoring functions as rewards. Subsequently, by using LM's internal sequence-level value estimate, A-LoL filters negative advantage (low-quality) data points during training, making it resilient to noise. Overall, A-LoL is an easy-to-implement LM training recipe that is sample-efficient and stable. We demonstrate the effectiveness of A-LoL and its variants with a set of four different language generation tasks. We compare against both online RL (PPO) and recent preference-based (DPO, PRO) and reward-based (GOLD) offline RL baselines. On the commonly-used RLHF benchmark, Helpful and Harmless Assistant (HHA), LMs trained with A-LoL methods achieve the highest diversity while also being rated more safe and helpful than baselines according to humans. Additionally, in the remaining three tasks, A-LoL could optimize multiple distinct reward functions even when using noisy or suboptimal training data. We also release our experimental code. https://github.com/abaheti95/LoL-RL

  • 6 authors
·
May 24, 2023 2

SWE-Dev: Evaluating and Training Autonomous Feature-Driven Software Development

Large Language Models (LLMs) have shown strong capability in diverse software engineering tasks, e.g. code completion, bug fixing, and document generation. However, feature-driven development (FDD), a highly prevalent real-world task that involves developing new functionalities for large, existing codebases, remains underexplored. We therefore introduce SWE-Dev, the first large-scale dataset (with 14,000 training and 500 test samples) designed to evaluate and train autonomous coding systems on real-world feature development tasks. To ensure verifiable and diverse training, SWE-Dev uniquely provides all instances with a runnable environment and its developer-authored executable unit tests. This collection not only provides high-quality data for Supervised Fine-Tuning (SFT), but also enables Reinforcement Learning (RL) by delivering accurate reward signals from executable unit tests. Our extensive evaluations on SWE-Dev, covering 17 chatbot LLMs, 10 reasoning models, and 10 Multi-Agent Systems (MAS), reveal that FDD is a profoundly challenging frontier for current AI (e.g., Claude-3.7-Sonnet achieves only 22.45\% Pass@3 on the hard test split). Crucially, we demonstrate that SWE-Dev serves as an effective platform for model improvement: fine-tuning on training set enabled a 7B model comparable to GPT-4o on hard split, underscoring the value of its high-quality training data. Code is available here https://github.com/justLittleWhite/SWE-Dev{https://github.com/justLittleWhite/SWE-Dev}.

  • 9 authors
·
May 22 1

The Art of Scaling Reinforcement Learning Compute for LLMs

Reinforcement learning (RL) has become central to training large language models (LLMs), yet the field lacks predictive scaling methodologies comparable to those established for pre-training. Despite rapidly rising compute budgets, there is no principled understanding of how to evaluate algorithmic improvements for scaling RL compute. We present the first large-scale systematic study, amounting to more than 400,000 GPU-hours, that defines a principled framework for analyzing and predicting RL scaling in LLMs. We fit sigmoidal compute-performance curves for RL training and ablate a wide range of common design choices to analyze their effects on asymptotic performance and compute efficiency. We observe: (1) Not all recipes yield similar asymptotic performance, (2) Details such as loss aggregation, normalization, curriculum, and off-policy algorithm primarily modulate compute efficiency without materially shifting the asymptote, and (3) Stable, scalable recipes follow predictable scaling trajectories, enabling extrapolation from smaller-scale runs. Combining these insights, we propose a best-practice recipe, ScaleRL, and demonstrate its effectiveness by successfully scaling and predicting validation performance on a single RL run scaled up to 100,000 GPU-hours. Our work provides both a scientific framework for analyzing scaling in RL and a practical recipe that brings RL training closer to the predictability long achieved in pre-training.

facebook AI at Meta
·
Oct 15 2

NoiseShift: Resolution-Aware Noise Recalibration for Better Low-Resolution Image Generation

Text-to-image diffusion models trained on a fixed set of resolutions often fail to generalize, even when asked to generate images at lower resolutions than those seen during training. High-resolution text-to-image generators are currently unable to easily offer an out-of-the-box budget-efficient alternative to their users who might not need high-resolution images. We identify a key technical insight in diffusion models that when addressed can help tackle this limitation: Noise schedulers have unequal perceptual effects across resolutions. The same level of noise removes disproportionately more signal from lower-resolution images than from high-resolution images, leading to a train-test mismatch. We propose NoiseShift, a training-free method that recalibrates the noise level of the denoiser conditioned on resolution size. NoiseShift requires no changes to model architecture or sampling schedule and is compatible with existing models. When applied to Stable Diffusion 3, Stable Diffusion 3.5, and Flux-Dev, quality at low resolutions is significantly improved. On LAION-COCO, NoiseShift improves SD3.5 by 15.89%, SD3 by 8.56%, and Flux-Dev by 2.44% in FID on average. On CelebA, NoiseShift improves SD3.5 by 10.36%, SD3 by 5.19%, and Flux-Dev by 3.02% in FID on average. These results demonstrate the effectiveness of NoiseShift in mitigating resolution-dependent artifacts and enhancing the quality of low-resolution image generation.

  • 4 authors
·
Oct 2

Efficient Avoidance of Vulnerabilities in Auto-completed Smart Contract Code Using Vulnerability-constrained Decoding

Auto-completing code enables developers to speed up coding significantly. Recent advances in transformer-based large language model (LLM) technologies have been applied to code synthesis. However, studies show that many of such synthesized codes contain vulnerabilities. We propose a novel vulnerability-constrained decoding approach to reduce the amount of vulnerable code generated by such models. Using a small dataset of labeled vulnerable lines of code, we fine-tune an LLM to include vulnerability labels when generating code, acting as an embedded classifier. Then, during decoding, we deny the model to generate these labels to avoid generating vulnerable code. To evaluate the method, we chose to automatically complete Ethereum Blockchain smart contracts (SCs) as the case study due to the strict requirements of SC security. We first fine-tuned the 6-billion-parameter GPT-J model using 186,397 Ethereum SCs after removing the duplication from 2,217,692 SCs. The fine-tuning took more than one week using ten GPUs. The results showed that our fine-tuned model could synthesize SCs with an average BLEU (BiLingual Evaluation Understudy) score of 0.557. However, many codes in the auto-completed SCs were vulnerable. Using the code before the vulnerable line of 176 SCs containing different types of vulnerabilities to auto-complete the code, we found that more than 70% of the auto-completed codes were insecure. Thus, we further fine-tuned the model on other 941 vulnerable SCs containing the same types of vulnerabilities and applied vulnerability-constrained decoding. The fine-tuning took only one hour with four GPUs. We then auto-completed the 176 SCs again and found that our approach could identify 62% of the code to be generated as vulnerable and avoid generating 67% of them, indicating the approach could efficiently and effectively avoid vulnerabilities in the auto-completed code.

  • 3 authors
·
Sep 18, 2023

SymRTLO: Enhancing RTL Code Optimization with LLMs and Neuron-Inspired Symbolic Reasoning

Optimizing Register Transfer Level (RTL) code is crucial for improving the power, performance, and area (PPA) of digital circuits in the early stages of synthesis. Manual rewriting, guided by synthesis feedback, can yield high-quality results but is time-consuming and error-prone. Most existing compiler-based approaches have difficulty handling complex design constraints. Large Language Model (LLM)-based methods have emerged as a promising alternative to address these challenges. However, LLM-based approaches often face difficulties in ensuring alignment between the generated code and the provided prompts. This paper presents SymRTLO, a novel neuron-symbolic RTL optimization framework that seamlessly integrates LLM-based code rewriting with symbolic reasoning techniques. Our method incorporates a retrieval-augmented generation (RAG) system of optimization rules and Abstract Syntax Tree (AST)-based templates, enabling LLM-based rewriting that maintains syntactic correctness while minimizing undesired circuit behaviors. A symbolic module is proposed for analyzing and optimizing finite state machine (FSM) logic, allowing fine-grained state merging and partial specification handling beyond the scope of pattern-based compilers. Furthermore, a fast verification pipeline, combining formal equivalence checks with test-driven validation, further reduces the complexity of verification. Experiments on the RTL-Rewriter benchmark with Synopsys Design Compiler and Yosys show that SymRTLO improves power, performance, and area (PPA) by up to 43.9%, 62.5%, and 51.1%, respectively, compared to the state-of-the-art methods.

  • 15 authors
·
Apr 14

SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation

In recent years, the development of diffusion models has led to significant progress in image and video generation tasks, with pre-trained models like the Stable Diffusion series playing a crucial role. Inspired by model pruning which lightens large pre-trained models by removing unimportant parameters, we propose a novel model fine-tuning method to make full use of these ineffective parameters and enable the pre-trained model with new task-specified capabilities. In this work, we first investigate the importance of parameters in pre-trained diffusion models, and discover that the smallest 10% to 20% of parameters by absolute values do not contribute to the generation process. Based on this observation, we propose a method termed SaRA that re-utilizes these temporarily ineffective parameters, equating to optimizing a sparse weight matrix to learn the task-specific knowledge. To mitigate overfitting, we propose a nuclear-norm-based low-rank sparse training scheme for efficient fine-tuning. Furthermore, we design a new progressive parameter adjustment strategy to make full use of the re-trained/finetuned parameters. Finally, we propose a novel unstructural backpropagation strategy, which significantly reduces memory costs during fine-tuning. Our method enhances the generative capabilities of pre-trained models in downstream applications and outperforms traditional fine-tuning methods like LoRA in maintaining model's generalization ability. We validate our approach through fine-tuning experiments on SD models, demonstrating significant improvements. SaRA also offers a practical advantage that requires only a single line of code modification for efficient implementation and is seamlessly compatible with existing methods.

  • 6 authors
·
Sep 10, 2024 2