Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDe Novo Drug Design with Joint Transformers
De novo drug design requires simultaneously generating novel molecules outside of training data and predicting their target properties, making it a hard task for generative models. To address this, we propose Joint Transformer that combines a Transformer decoder, Transformer encoder, and a predictor in a joint generative model with shared weights. We formulate a probabilistic black-box optimization algorithm that employs Joint Transformer to generate novel molecules with improved target properties and outperforms other SMILES-based optimization methods in de novo drug design.
SMILES Transformer: Pre-trained Molecular Fingerprint for Low Data Drug Discovery
In drug-discovery-related tasks such as virtual screening, machine learning is emerging as a promising way to predict molecular properties. Conventionally, molecular fingerprints (numerical representations of molecules) are calculated through rule-based algorithms that map molecules to a sparse discrete space. However, these algorithms perform poorly for shallow prediction models or small datasets. To address this issue, we present SMILES Transformer. Inspired by Transformer and pre-trained language models from natural language processing, SMILES Transformer learns molecular fingerprints through unsupervised pre-training of the sequence-to-sequence language model using a huge corpus of SMILES, a text representation system for molecules. We performed benchmarks on 10 datasets against existing fingerprints and graph-based methods and demonstrated the superiority of the proposed algorithms in small-data settings where pre-training facilitated good generalization. Moreover, we define a novel metric to concurrently measure model accuracy and data efficiency.
Infusing Linguistic Knowledge of SMILES into Chemical Language Models
The simplified molecular-input line-entry system (SMILES) is the most popular representation of chemical compounds. Therefore, many SMILES-based molecular property prediction models have been developed. In particular, transformer-based models show promising performance because the model utilizes a massive chemical dataset for self-supervised learning. However, there is no transformer-based model to overcome the inherent limitations of SMILES, which result from the generation process of SMILES. In this study, we grammatically parsed SMILES to obtain connectivity between substructures and their type, which is called the grammatical knowledge of SMILES. First, we pretrained the transformers with substructural tokens, which were parsed from SMILES. Then, we used the training strategy 'same compound model' to better understand SMILES grammar. In addition, we injected knowledge of connectivity and type into the transformer with knowledge adapters. As a result, our representation model outperformed previous compound representations for the prediction of molecular properties. Finally, we analyzed the attention of the transformer model and adapters, demonstrating that the proposed model understands the grammar of SMILES.
ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction
GNNs and chemical fingerprints are the predominant approaches to representing molecules for property prediction. However, in NLP, transformers have become the de-facto standard for representation learning thanks to their strong downstream task transfer. In parallel, the software ecosystem around transformers is maturing rapidly, with libraries like HuggingFace and BertViz enabling streamlined training and introspection. In this work, we make one of the first attempts to systematically evaluate transformers on molecular property prediction tasks via our ChemBERTa model. ChemBERTa scales well with pretraining dataset size, offering competitive downstream performance on MoleculeNet and useful attention-based visualization modalities. Our results suggest that transformers offer a promising avenue of future work for molecular representation learning and property prediction. To facilitate these efforts, we release a curated dataset of 77M SMILES from PubChem suitable for large-scale self-supervised pretraining.
Large-Scale Chemical Language Representations Capture Molecular Structure and Properties
Models based on machine learning can enable accurate and fast molecular property predictions, which is of interest in drug discovery and material design. Various supervised machine learning models have demonstrated promising performance, but the vast chemical space and the limited availability of property labels make supervised learning challenging. Recently, unsupervised transformer-based language models pretrained on a large unlabelled corpus have produced state-of-the-art results in many downstream natural language processing tasks. Inspired by this development, we present molecular embeddings obtained by training an efficient transformer encoder model, MoLFormer, which uses rotary positional embeddings. This model employs a linear attention mechanism, coupled with highly distributed training, on SMILES sequences of 1.1 billion unlabelled molecules from the PubChem and ZINC datasets. We show that the learned molecular representation outperforms existing baselines, including supervised and self-supervised graph neural networks and language models, on several downstream tasks from ten benchmark datasets. They perform competitively on two others. Further analyses, specifically through the lens of attention, demonstrate that MoLFormer trained on chemical SMILES indeed learns the spatial relationships between atoms within a molecule. These results provide encouraging evidence that large-scale molecular language models can capture sufficient chemical and structural information to predict various distinct molecular properties, including quantum-chemical properties.
Scaling Vision Transformers
Attention-based neural networks such as the Vision Transformer (ViT) have recently attained state-of-the-art results on many computer vision benchmarks. Scale is a primary ingredient in attaining excellent results, therefore, understanding a model's scaling properties is a key to designing future generations effectively. While the laws for scaling Transformer language models have been studied, it is unknown how Vision Transformers scale. To address this, we scale ViT models and data, both up and down, and characterize the relationships between error rate, data, and compute. Along the way, we refine the architecture and training of ViT, reducing memory consumption and increasing accuracy of the resulting models. As a result, we successfully train a ViT model with two billion parameters, which attains a new state-of-the-art on ImageNet of 90.45% top-1 accuracy. The model also performs well for few-shot transfer, for example, reaching 84.86% top-1 accuracy on ImageNet with only 10 examples per class.
LLamol: A Dynamic Multi-Conditional Generative Transformer for De Novo Molecular Design
Generative models have demonstrated substantial promise in Natural Language Processing (NLP) and have found application in designing molecules, as seen in General Pretrained Transformer (GPT) models. In our efforts to develop such a tool for exploring the organic chemical space in search of potentially electro-active compounds, we present "LLamol", a single novel generative transformer model based on the LLama 2 architecture, which was trained on a 13M superset of organic compounds drawn from diverse public sources. To allow for a maximum flexibility in usage and robustness in view of potentially incomplete data, we introduce "Stochastic Context Learning" as a new training procedure. We demonstrate that the resulting model adeptly handles single- and multi-conditional organic molecule generation with up to four conditions, yet more are possible. The model generates valid molecular structures in SMILES notation while flexibly incorporating three numerical and/or one token sequence into the generative process, just as requested. The generated compounds are very satisfactory in all scenarios tested. In detail, we showcase the model's capability to utilize token sequences for conditioning, either individually or in combination with numerical properties, making LLamol a potent tool for de novo molecule design, easily expandable with new properties.
JEAN: Joint Expression and Audio-guided NeRF-based Talking Face Generation
We introduce a novel method for joint expression and audio-guided talking face generation. Recent approaches either struggle to preserve the speaker identity or fail to produce faithful facial expressions. To address these challenges, we propose a NeRF-based network. Since we train our network on monocular videos without any ground truth, it is essential to learn disentangled representations for audio and expression. We first learn audio features in a self-supervised manner, given utterances from multiple subjects. By incorporating a contrastive learning technique, we ensure that the learned audio features are aligned to the lip motion and disentangled from the muscle motion of the rest of the face. We then devise a transformer-based architecture that learns expression features, capturing long-range facial expressions and disentangling them from the speech-specific mouth movements. Through quantitative and qualitative evaluation, we demonstrate that our method can synthesize high-fidelity talking face videos, achieving state-of-the-art facial expression transfer along with lip synchronization to unseen audio.
Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet
Transformers, which are popular for language modeling, have been explored for solving vision tasks recently, e.g., the Vision Transformer (ViT) for image classification. The ViT model splits each image into a sequence of tokens with fixed length and then applies multiple Transformer layers to model their global relation for classification. However, ViT achieves inferior performance to CNNs when trained from scratch on a midsize dataset like ImageNet. We find it is because: 1) the simple tokenization of input images fails to model the important local structure such as edges and lines among neighboring pixels, leading to low training sample efficiency; 2) the redundant attention backbone design of ViT leads to limited feature richness for fixed computation budgets and limited training samples. To overcome such limitations, we propose a new Tokens-To-Token Vision Transformer (T2T-ViT), which incorporates 1) a layer-wise Tokens-to-Token (T2T) transformation to progressively structurize the image to tokens by recursively aggregating neighboring Tokens into one Token (Tokens-to-Token), such that local structure represented by surrounding tokens can be modeled and tokens length can be reduced; 2) an efficient backbone with a deep-narrow structure for vision transformer motivated by CNN architecture design after empirical study. Notably, T2T-ViT reduces the parameter count and MACs of vanilla ViT by half, while achieving more than 3.0\% improvement when trained from scratch on ImageNet. It also outperforms ResNets and achieves comparable performance with MobileNets by directly training on ImageNet. For example, T2T-ViT with comparable size to ResNet50 (21.5M parameters) can achieve 83.3\% top1 accuracy in image resolution 384times384 on ImageNet. (Code: https://github.com/yitu-opensource/T2T-ViT)
Regression Transformer: Concurrent sequence regression and generation for molecular language modeling
Despite significant progress of generative models in the natural sciences, their controllability remains challenging. One fundamentally missing aspect of molecular or protein generative models is an inductive bias that can reflect continuous properties of interest. To that end, we propose the Regression Transformer (RT), a novel method that abstracts regression as a conditional sequence modeling problem. This introduces a new paradigm of multitask language models which seamlessly bridge sequence regression and conditional sequence generation. We thoroughly demonstrate that, despite using a nominal-scale training objective, the RT matches or surpasses the performance of conventional regression models in property prediction tasks of small molecules, proteins and chemical reactions. Critically, priming the same model with continuous properties yields a highly competitive conditional generative model that outperforms specialized approaches in a substructure-constrained, property-driven molecule generation benchmark. Our dichotomous approach is facilitated by a novel, alternating training scheme that enables the model to decorate seed sequences by desired properties, e.g., to optimize reaction yield. In sum, the RT is the first report of a multitask model that concurrently excels at predictive and generative tasks in biochemistry. This finds particular application in property-driven, local exploration of the chemical or protein space and could pave the road toward foundation models in material design. The code to reproduce all experiments of the paper is available at: https://github.com/IBM/regression-transformer
Foundation Transformers
A big convergence of model architectures across language, vision, speech, and multimodal is emerging. However, under the same name "Transformers", the above areas use different implementations for better performance, e.g., Post-LayerNorm for BERT, and Pre-LayerNorm for GPT and vision Transformers. We call for the development of Foundation Transformer for true general-purpose modeling, which serves as a go-to architecture for various tasks and modalities with guaranteed training stability. In this work, we introduce a Transformer variant, named Magneto, to fulfill the goal. Specifically, we propose Sub-LayerNorm for good expressivity, and the initialization strategy theoretically derived from DeepNet for stable scaling up. Extensive experiments demonstrate its superior performance and better stability than the de facto Transformer variants designed for various applications, including language modeling (i.e., BERT, and GPT), machine translation, vision pretraining (i.e., BEiT), speech recognition, and multimodal pretraining (i.e., BEiT-3).
Mitigating Transformer Overconfidence via Lipschitz Regularization
Though Transformers have achieved promising results in many computer vision tasks, they tend to be over-confident in predictions, as the standard Dot Product Self-Attention (DPSA) can barely preserve distance for the unbounded input domain. In this work, we fill this gap by proposing a novel Lipschitz Regularized Transformer (LRFormer). Specifically, we present a new similarity function with the distance within Banach Space to ensure the Lipschitzness and also regularize the term by a contractive Lipschitz Bound. The proposed method is analyzed with a theoretical guarantee, providing a rigorous basis for its effectiveness and reliability. Extensive experiments conducted on standard vision benchmarks demonstrate that our method outperforms the state-of-the-art single forward pass approaches in prediction, calibration, and uncertainty estimation.
A Survey of Techniques for Optimizing Transformer Inference
Recent years have seen a phenomenal rise in performance and applications of transformer neural networks. The family of transformer networks, including Bidirectional Encoder Representations from Transformer (BERT), Generative Pretrained Transformer (GPT) and Vision Transformer (ViT), have shown their effectiveness across Natural Language Processing (NLP) and Computer Vision (CV) domains. Transformer-based networks such as ChatGPT have impacted the lives of common men. However, the quest for high predictive performance has led to an exponential increase in transformers' memory and compute footprint. Researchers have proposed techniques to optimize transformer inference at all levels of abstraction. This paper presents a comprehensive survey of techniques for optimizing the inference phase of transformer networks. We survey techniques such as knowledge distillation, pruning, quantization, neural architecture search and lightweight network design at the algorithmic level. We further review hardware-level optimization techniques and the design of novel hardware accelerators for transformers. We summarize the quantitative results on the number of parameters/FLOPs and accuracy of several models/techniques to showcase the tradeoff exercised by them. We also outline future directions in this rapidly evolving field of research. We believe that this survey will educate both novice and seasoned researchers and also spark a plethora of research efforts in this field.
Rethinking Spatial Dimensions of Vision Transformers
Vision Transformer (ViT) extends the application range of transformers from language processing to computer vision tasks as being an alternative architecture against the existing convolutional neural networks (CNN). Since the transformer-based architecture has been innovative for computer vision modeling, the design convention towards an effective architecture has been less studied yet. From the successful design principles of CNN, we investigate the role of spatial dimension conversion and its effectiveness on transformer-based architecture. We particularly attend to the dimension reduction principle of CNNs; as the depth increases, a conventional CNN increases channel dimension and decreases spatial dimensions. We empirically show that such a spatial dimension reduction is beneficial to a transformer architecture as well, and propose a novel Pooling-based Vision Transformer (PiT) upon the original ViT model. We show that PiT achieves the improved model capability and generalization performance against ViT. Throughout the extensive experiments, we further show PiT outperforms the baseline on several tasks such as image classification, object detection, and robustness evaluation. Source codes and ImageNet models are available at https://github.com/naver-ai/pit
TransFace: Calibrating Transformer Training for Face Recognition from a Data-Centric Perspective
Vision Transformers (ViTs) have demonstrated powerful representation ability in various visual tasks thanks to their intrinsic data-hungry nature. However, we unexpectedly find that ViTs perform vulnerably when applied to face recognition (FR) scenarios with extremely large datasets. We investigate the reasons for this phenomenon and discover that the existing data augmentation approach and hard sample mining strategy are incompatible with ViTs-based FR backbone due to the lack of tailored consideration on preserving face structural information and leveraging each local token information. To remedy these problems, this paper proposes a superior FR model called TransFace, which employs a patch-level data augmentation strategy named DPAP and a hard sample mining strategy named EHSM. Specially, DPAP randomly perturbs the amplitude information of dominant patches to expand sample diversity, which effectively alleviates the overfitting problem in ViTs. EHSM utilizes the information entropy in the local tokens to dynamically adjust the importance weight of easy and hard samples during training, leading to a more stable prediction. Experiments on several benchmarks demonstrate the superiority of our TransFace. Code and models are available at https://github.com/DanJun6737/TransFace.
Imitator: Personalized Speech-driven 3D Facial Animation
Speech-driven 3D facial animation has been widely explored, with applications in gaming, character animation, virtual reality, and telepresence systems. State-of-the-art methods deform the face topology of the target actor to sync the input audio without considering the identity-specific speaking style and facial idiosyncrasies of the target actor, thus, resulting in unrealistic and inaccurate lip movements. To address this, we present Imitator, a speech-driven facial expression synthesis method, which learns identity-specific details from a short input video and produces novel facial expressions matching the identity-specific speaking style and facial idiosyncrasies of the target actor. Specifically, we train a style-agnostic transformer on a large facial expression dataset which we use as a prior for audio-driven facial expressions. Based on this prior, we optimize for identity-specific speaking style based on a short reference video. To train the prior, we introduce a novel loss function based on detected bilabial consonants to ensure plausible lip closures and consequently improve the realism of the generated expressions. Through detailed experiments and a user study, we show that our approach produces temporally coherent facial expressions from input audio while preserving the speaking style of the target actors.
Scaling Vision Transformers to 22 Billion Parameters
The scaling of Transformers has driven breakthrough capabilities for language models. At present, the largest large language models (LLMs) contain upwards of 100B parameters. Vision Transformers (ViT) have introduced the same architecture to image and video modelling, but these have not yet been successfully scaled to nearly the same degree; the largest dense ViT contains 4B parameters (Chen et al., 2022). We present a recipe for highly efficient and stable training of a 22B-parameter ViT (ViT-22B) and perform a wide variety of experiments on the resulting model. When evaluated on downstream tasks (often with a lightweight linear model on frozen features), ViT-22B demonstrates increasing performance with scale. We further observe other interesting benefits of scale, including an improved tradeoff between fairness and performance, state-of-the-art alignment to human visual perception in terms of shape/texture bias, and improved robustness. ViT-22B demonstrates the potential for "LLM-like" scaling in vision, and provides key steps towards getting there.
Approximation and Estimation Ability of Transformers for Sequence-to-Sequence Functions with Infinite Dimensional Input
Despite the great success of Transformer networks in various applications such as natural language processing and computer vision, their theoretical aspects are not well understood. In this paper, we study the approximation and estimation ability of Transformers as sequence-to-sequence functions with infinite dimensional inputs. Although inputs and outputs are both infinite dimensional, we show that when the target function has anisotropic smoothness, Transformers can avoid the curse of dimensionality due to their feature extraction ability and parameter sharing property. In addition, we show that even if the smoothness changes depending on each input, Transformers can estimate the importance of features for each input and extract important features dynamically. Then, we proved that Transformers achieve similar convergence rate as in the case of the fixed smoothness. Our theoretical results support the practical success of Transformers for high dimensional data.
Identity-Preserving Talking Face Generation with Landmark and Appearance Priors
Generating talking face videos from audio attracts lots of research interest. A few person-specific methods can generate vivid videos but require the target speaker's videos for training or fine-tuning. Existing person-generic methods have difficulty in generating realistic and lip-synced videos while preserving identity information. To tackle this problem, we propose a two-stage framework consisting of audio-to-landmark generation and landmark-to-video rendering procedures. First, we devise a novel Transformer-based landmark generator to infer lip and jaw landmarks from the audio. Prior landmark characteristics of the speaker's face are employed to make the generated landmarks coincide with the facial outline of the speaker. Then, a video rendering model is built to translate the generated landmarks into face images. During this stage, prior appearance information is extracted from the lower-half occluded target face and static reference images, which helps generate realistic and identity-preserving visual content. For effectively exploring the prior information of static reference images, we align static reference images with the target face's pose and expression based on motion fields. Moreover, auditory features are reused to guarantee that the generated face images are well synchronized with the audio. Extensive experiments demonstrate that our method can produce more realistic, lip-synced, and identity-preserving videos than existing person-generic talking face generation methods.
Emotion-Aware Transformer Encoder for Empathetic Dialogue Generation
Modern day conversational agents are trained to emulate the manner in which humans communicate. To emotionally bond with the user, these virtual agents need to be aware of the affective state of the user. Transformers are the recent state of the art in sequence-to-sequence learning that involves training an encoder-decoder model with word embeddings from utterance-response pairs. We propose an emotion-aware transformer encoder for capturing the emotional quotient in the user utterance in order to generate human-like empathetic responses. The contributions of our paper are as follows: 1) An emotion detector module trained on the input utterances determines the affective state of the user in the initial phase 2) A novel transformer encoder is proposed that adds and normalizes the word embedding with emotion embedding thereby integrating the semantic and affective aspects of the input utterance 3) The encoder and decoder stacks belong to the Transformer-XL architecture which is the recent state of the art in language modeling. Experimentation on the benchmark Facebook AI empathetic dialogue dataset confirms the efficacy of our model from the higher BLEU-4 scores achieved for the generated responses as compared to existing methods. Emotionally intelligent virtual agents are now a reality and inclusion of affect as a modality in all human-machine interfaces is foreseen in the immediate future.
FMViT: A multiple-frequency mixing Vision Transformer
The transformer model has gained widespread adoption in computer vision tasks in recent times. However, due to the quadratic time and memory complexity of self-attention, which is proportional to the number of input tokens, most existing Vision Transformers (ViTs) encounter challenges in achieving efficient performance in practical industrial deployment scenarios, such as TensorRT and CoreML, where traditional CNNs excel. Although some recent attempts have been made to design CNN-Transformer hybrid architectures to tackle this problem, their overall performance has not met expectations. To tackle these challenges, we propose an efficient hybrid ViT architecture named FMViT. This approach enhances the model's expressive power by blending high-frequency features and low-frequency features with varying frequencies, enabling it to capture both local and global information effectively. Additionally, we introduce deploy-friendly mechanisms such as Convolutional Multigroup Reparameterization (gMLP), Lightweight Multi-head Self-Attention (RLMHSA), and Convolutional Fusion Block (CFB) to further improve the model's performance and reduce computational overhead. Our experiments demonstrate that FMViT surpasses existing CNNs, ViTs, and CNNTransformer hybrid architectures in terms of latency/accuracy trade-offs for various vision tasks. On the TensorRT platform, FMViT outperforms Resnet101 by 2.5% (83.3% vs. 80.8%) in top-1 accuracy on the ImageNet dataset while maintaining similar inference latency. Moreover, FMViT achieves comparable performance with EfficientNet-B5, but with a 43% improvement in inference speed. On CoreML, FMViT outperforms MobileOne by 2.6% in top-1 accuracy on the ImageNet dataset, with inference latency comparable to MobileOne (78.5% vs. 75.9%). Our code can be found at https://github.com/tany0699/FMViT.
A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks
Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data. Unlike conventional neural networks or updated versions of Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM), transformer models excel in handling long dependencies between input sequence elements and enable parallel processing. As a result, transformer-based models have attracted substantial interest among researchers in the field of artificial intelligence. This can be attributed to their immense potential and remarkable achievements, not only in Natural Language Processing (NLP) tasks but also in a wide range of domains, including computer vision, audio and speech processing, healthcare, and the Internet of Things (IoT). Although several survey papers have been published highlighting the transformer's contributions in specific fields, architectural differences, or performance evaluations, there is still a significant absence of a comprehensive survey paper encompassing its major applications across various domains. Therefore, we undertook the task of filling this gap by conducting an extensive survey of proposed transformer models from 2017 to 2022. Our survey encompasses the identification of the top five application domains for transformer-based models, namely: NLP, Computer Vision, Multi-Modality, Audio and Speech Processing, and Signal Processing. We analyze the impact of highly influential transformer-based models in these domains and subsequently classify them based on their respective tasks using a proposed taxonomy. Our aim is to shed light on the existing potential and future possibilities of transformers for enthusiastic researchers, thus contributing to the broader understanding of this groundbreaking technology.
VDT: General-purpose Video Diffusion Transformers via Mask Modeling
This work introduces Video Diffusion Transformer (VDT), which pioneers the use of transformers in diffusion-based video generation. It features transformer blocks with modularized temporal and spatial attention modules to leverage the rich spatial-temporal representation inherited in transformers. We also propose a unified spatial-temporal mask modeling mechanism, seamlessly integrated with the model, to cater to diverse video generation scenarios. VDT offers several appealing benefits. 1) It excels at capturing temporal dependencies to produce temporally consistent video frames and even simulate the physics and dynamics of 3D objects over time. 2) It facilitates flexible conditioning information, \eg, simple concatenation in the token space, effectively unifying different token lengths and modalities. 3) Pairing with our proposed spatial-temporal mask modeling mechanism, it becomes a general-purpose video diffuser for harnessing a range of tasks, including unconditional generation, video prediction, interpolation, animation, and completion, etc. Extensive experiments on these tasks spanning various scenarios, including autonomous driving, natural weather, human action, and physics-based simulation, demonstrate the effectiveness of VDT. Additionally, we present comprehensive studies on how \model handles conditioning information with the mask modeling mechanism, which we believe will benefit future research and advance the field. Project page: https:VDT-2023.github.io
Transformers for molecular property prediction: Domain adaptation efficiently improves performance
Most of the current transformer-based chemical language models are pre-trained on millions to billions of molecules. However, the improvement from such scaling in dataset size is not confidently linked to improved molecular property prediction. The aim of this study is to investigate and overcome some of the limitations of transformer models in predicting molecular properties. Specifically, we examine the impact of pre-training dataset size and diversity on the performance of transformer models and investigate the use of domain adaptation as a technique for improving model performance. First, our findings indicate that increasing pretraining dataset size beyond 400K molecules from the GuacaMol dataset does not result in a significant improvement on four ADME endpoints, namely, solubility, permeability, microsomal stability, and plasma protein binding. Second, our results demonstrate that using domain adaptation by further training the transformer model on a small set of domain-relevant molecules, i.e., a few hundred to a few thousand, using multi-task regression of physicochemical properties was sufficient to significantly improve performance for three out of the four investigated ADME endpoints (P-value < 0.001). Finally, we observe that a model pre-trained on 400K molecules and domain adopted on a few hundred/thousand molecules performs similarly (P-value > 0.05) to more complicated transformer models like MolBERT(pre-trained on 1.3M molecules) and MolFormer (pre-trained on 100M molecules). A comparison to a random forest model trained on basic physicochemical properties showed similar performance to the examined transformer models. We believe that current transformer models can be improved through further systematic analysis of pre-training and downstream data, pre-training objectives, and scaling laws, ultimately leading to better and more helpful models.
PeptideBERT: A Language Model based on Transformers for Peptide Property Prediction
Recent advances in Language Models have enabled the protein modeling community with a powerful tool since protein sequences can be represented as text. Specifically, by taking advantage of Transformers, sequence-to-property prediction will be amenable without the need for explicit structural data. In this work, inspired by recent progress in Large Language Models (LLMs), we introduce PeptideBERT, a protein language model for predicting three key properties of peptides (hemolysis, solubility, and non-fouling). The PeptideBert utilizes the ProtBERT pretrained transformer model with 12 attention heads and 12 hidden layers. We then finetuned the pretrained model for the three downstream tasks. Our model has achieved state of the art (SOTA) for predicting Hemolysis, which is a task for determining peptide's potential to induce red blood cell lysis. Our PeptideBert non-fouling model also achieved remarkable accuracy in predicting peptide's capacity to resist non-specific interactions. This model, trained predominantly on shorter sequences, benefits from the dataset where negative examples are largely associated with insoluble peptides. Codes, models, and data used in this study are freely available at: https://github.com/ChakradharG/PeptideBERT
Restormer: Efficient Transformer for High-Resolution Image Restoration
Since convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data, these models have been extensively applied to image restoration and related tasks. Recently, another class of neural architectures, Transformers, have shown significant performance gains on natural language and high-level vision tasks. While the Transformer model mitigates the shortcomings of CNNs (i.e., limited receptive field and inadaptability to input content), its computational complexity grows quadratically with the spatial resolution, therefore making it infeasible to apply to most image restoration tasks involving high-resolution images. In this work, we propose an efficient Transformer model by making several key designs in the building blocks (multi-head attention and feed-forward network) such that it can capture long-range pixel interactions, while still remaining applicable to large images. Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks, including image deraining, single-image motion deblurring, defocus deblurring (single-image and dual-pixel data), and image denoising (Gaussian grayscale/color denoising, and real image denoising). The source code and pre-trained models are available at https://github.com/swz30/Restormer.
eP-ALM: Efficient Perceptual Augmentation of Language Models
Large Language Models (LLMs) have so far impressed the world, with unprecedented capabilities that emerge in models at large scales. On the vision side, transformer models (i.e., ViT) are following the same trend, achieving the best performance on challenging benchmarks. With the abundance of such unimodal models, a natural question arises; do we need also to follow this trend to tackle multimodal tasks? In this work, we propose to rather direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception. Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency. In particular, they still train a large number of parameters, rely on large multimodal pretraining, use encoders (e.g., CLIP) trained on huge image-text datasets, and add significant inference overhead. In addition, most of these approaches have focused on Zero-Shot and In Context Learning, with little to no effort on direct finetuning. We investigate the minimal computational effort needed to adapt unimodal models for multimodal tasks and propose a new challenging setup, alongside different approaches, that efficiently adapts unimodal pretrained models. We show that by freezing more than 99\% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning across Image, Video, and Audio modalities, following the proposed setup. The code will be available here: https://github.com/mshukor/eP-ALM.
GSmoothFace: Generalized Smooth Talking Face Generation via Fine Grained 3D Face Guidance
Although existing speech-driven talking face generation methods achieve significant progress, they are far from real-world application due to the avatar-specific training demand and unstable lip movements. To address the above issues, we propose the GSmoothFace, a novel two-stage generalized talking face generation model guided by a fine-grained 3d face model, which can synthesize smooth lip dynamics while preserving the speaker's identity. Our proposed GSmoothFace model mainly consists of the Audio to Expression Prediction (A2EP) module and the Target Adaptive Face Translation (TAFT) module. Specifically, we first develop the A2EP module to predict expression parameters synchronized with the driven speech. It uses a transformer to capture the long-term audio context and learns the parameters from the fine-grained 3D facial vertices, resulting in accurate and smooth lip-synchronization performance. Afterward, the well-designed TAFT module, empowered by Morphology Augmented Face Blending (MAFB), takes the predicted expression parameters and target video as inputs to modify the facial region of the target video without distorting the background content. The TAFT effectively exploits the identity appearance and background context in the target video, which makes it possible to generalize to different speakers without retraining. Both quantitative and qualitative experiments confirm the superiority of our method in terms of realism, lip synchronization, and visual quality. See the project page for code, data, and request pre-trained models: https://zhanghm1995.github.io/GSmoothFace.
G3PT: Unleash the power of Autoregressive Modeling in 3D Generation via Cross-scale Querying Transformer
Autoregressive transformers have revolutionized generative models in language processing and shown substantial promise in image and video generation. However, these models face significant challenges when extended to 3D generation tasks due to their reliance on next-token prediction to learn token sequences, which is incompatible with the unordered nature of 3D data. Instead of imposing an artificial order on 3D data, in this paper, we introduce G3PT, a scalable coarse-to-fine 3D generative model utilizing a cross-scale querying transformer. The key is to map point-based 3D data into discrete tokens with different levels of detail, naturally establishing a sequential relationship between different levels suitable for autoregressive modeling. Additionally, the cross-scale querying transformer connects tokens globally across different levels of detail without requiring an ordered sequence. Benefiting from this approach, G3PT features a versatile 3D generation pipeline that effortlessly supports diverse conditional structures, enabling the generation of 3D shapes from various types of conditions. Extensive experiments demonstrate that G3PT achieves superior generation quality and generalization ability compared to previous 3D generation methods. Most importantly, for the first time in 3D generation, scaling up G3PT reveals distinct power-law scaling behaviors.
Transformers in Speech Processing: A Survey
The remarkable success of transformers in the field of natural language processing has sparked the interest of the speech-processing community, leading to an exploration of their potential for modeling long-range dependencies within speech sequences. Recently, transformers have gained prominence across various speech-related domains, including automatic speech recognition, speech synthesis, speech translation, speech para-linguistics, speech enhancement, spoken dialogue systems, and numerous multimodal applications. In this paper, we present a comprehensive survey that aims to bridge research studies from diverse subfields within speech technology. By consolidating findings from across the speech technology landscape, we provide a valuable resource for researchers interested in harnessing the power of transformers to advance the field. We identify the challenges encountered by transformers in speech processing while also offering insights into potential solutions to address these issues.
Searching for Efficient Multi-Stage Vision Transformers
Vision Transformer (ViT) demonstrates that Transformer for natural language processing can be applied to computer vision tasks and result in comparable performance to convolutional neural networks (CNN), which have been studied and adopted in computer vision for years. This naturally raises the question of how the performance of ViT can be advanced with design techniques of CNN. To this end, we propose to incorporate two techniques and present ViT-ResNAS, an efficient multi-stage ViT architecture designed with neural architecture search (NAS). First, we propose residual spatial reduction to decrease sequence lengths for deeper layers and utilize a multi-stage architecture. When reducing lengths, we add skip connections to improve performance and stabilize training deeper networks. Second, we propose weight-sharing NAS with multi-architectural sampling. We enlarge a network and utilize its sub-networks to define a search space. A super-network covering all sub-networks is then trained for fast evaluation of their performance. To efficiently train the super-network, we propose to sample and train multiple sub-networks with one forward-backward pass. After that, evolutionary search is performed to discover high-performance network architectures. Experiments on ImageNet demonstrate that ViT-ResNAS achieves better accuracy-MACs and accuracy-throughput trade-offs than the original DeiT and other strong baselines of ViT. Code is available at https://github.com/yilunliao/vit-search.
SkipViT: Speeding Up Vision Transformers with a Token-Level Skip Connection
Vision transformers are known to be more computationally and data-intensive than CNN models. These transformer models such as ViT, require all the input image tokens to learn the relationship among them. However, many of these tokens are not informative and may contain irrelevant information such as unrelated background or unimportant scenery. These tokens are overlooked by the multi-head self-attention (MHSA), resulting in many redundant and unnecessary computations in MHSA and the feed-forward network (FFN). In this work, we propose a method to optimize the amount of unnecessary interactions between unimportant tokens by separating and sending them through a different low-cost computational path. Our method does not add any parameters to the ViT model and aims to find the best trade-off between training throughput and achieving a 0% loss in the Top-1 accuracy of the final model. Our experimental results on training ViT-small from scratch show that SkipViT is capable of effectively dropping 55% of the tokens while gaining more than 13% training throughput and maintaining classification accuracy at the level of the baseline model on Huawei Ascend910A.
DeLighT: Deep and Light-weight Transformer
We introduce a deep and light-weight transformer, DeLighT, that delivers similar or better performance than standard transformer-based models with significantly fewer parameters. DeLighT more efficiently allocates parameters both (1) within each Transformer block using the DeLighT transformation, a deep and light-weight transformation, and (2) across blocks using block-wise scaling, which allows for shallower and narrower DeLighT blocks near the input and wider and deeper DeLighT blocks near the output. Overall, DeLighT networks are 2.5 to 4 times deeper than standard transformer models and yet have fewer parameters and operations. Experiments on benchmark machine translation and language modeling tasks show that DeLighT matches or improves the performance of baseline Transformers with 2 to 3 times fewer parameters on average. Our source code is available at: https://github.com/sacmehta/delight
Global Vision Transformer Pruning with Hessian-Aware Saliency
Transformers yield state-of-the-art results across many tasks. However, their heuristically designed architecture impose huge computational costs during inference. This work aims on challenging the common design philosophy of the Vision Transformer (ViT) model with uniform dimension across all the stacked blocks in a model stage, where we redistribute the parameters both across transformer blocks and between different structures within the block via the first systematic attempt on global structural pruning. Dealing with diverse ViT structural components, we derive a novel Hessian-based structural pruning criteria comparable across all layers and structures, with latency-aware regularization for direct latency reduction. Performing iterative pruning on the DeiT-Base model leads to a new architecture family called NViT (Novel ViT), with a novel parameter redistribution that utilizes parameters more efficiently. On ImageNet-1K, NViT-Base achieves a 2.6x FLOPs reduction, 5.1x parameter reduction, and 1.9x run-time speedup over the DeiT-Base model in a near lossless manner. Smaller NViT variants achieve more than 1% accuracy gain at the same throughput of the DeiT Small/Tiny variants, as well as a lossless 3.3x parameter reduction over the SWIN-Small model. These results outperform prior art by a large margin. Further analysis is provided on the parameter redistribution insight of NViT, where we show the high prunability of ViT models, distinct sensitivity within ViT block, and unique parameter distribution trend across stacked ViT blocks. Our insights provide viability for a simple yet effective parameter redistribution rule towards more efficient ViTs for off-the-shelf performance boost.
One-Step Diffusion Distillation through Score Implicit Matching
Despite their strong performances on many generative tasks, diffusion models require a large number of sampling steps in order to generate realistic samples. This has motivated the community to develop effective methods to distill pre-trained diffusion models into more efficient models, but these methods still typically require few-step inference or perform substantially worse than the underlying model. In this paper, we present Score Implicit Matching (SIM) a new approach to distilling pre-trained diffusion models into single-step generator models, while maintaining almost the same sample generation ability as the original model as well as being data-free with no need of training samples for distillation. The method rests upon the fact that, although the traditional score-based loss is intractable to minimize for generator models, under certain conditions we can efficiently compute the gradients for a wide class of score-based divergences between a diffusion model and a generator. SIM shows strong empirical performances for one-step generators: on the CIFAR10 dataset, it achieves an FID of 2.06 for unconditional generation and 1.96 for class-conditional generation. Moreover, by applying SIM to a leading transformer-based diffusion model, we distill a single-step generator for text-to-image (T2I) generation that attains an aesthetic score of 6.42 with no performance decline over the original multi-step counterpart, clearly outperforming the other one-step generators including SDXL-TURBO of 5.33, SDXL-LIGHTNING of 5.34 and HYPER-SDXL of 5.85. We will release this industry-ready one-step transformer-based T2I generator along with this paper.
Your Transformer May Not be as Powerful as You Expect
Relative Positional Encoding (RPE), which encodes the relative distance between any pair of tokens, is one of the most successful modifications to the original Transformer. As far as we know, theoretical understanding of the RPE-based Transformers is largely unexplored. In this work, we mathematically analyze the power of RPE-based Transformers regarding whether the model is capable of approximating any continuous sequence-to-sequence functions. One may naturally assume the answer is in the affirmative -- RPE-based Transformers are universal function approximators. However, we present a negative result by showing there exist continuous sequence-to-sequence functions that RPE-based Transformers cannot approximate no matter how deep and wide the neural network is. One key reason lies in that most RPEs are placed in the softmax attention that always generates a right stochastic matrix. This restricts the network from capturing positional information in the RPEs and limits its capacity. To overcome the problem and make the model more powerful, we first present sufficient conditions for RPE-based Transformers to achieve universal function approximation. With the theoretical guidance, we develop a novel attention module, called Universal RPE-based (URPE) Attention, which satisfies the conditions. Therefore, the corresponding URPE-based Transformers become universal function approximators. Extensive experiments covering typical architectures and tasks demonstrate that our model is parameter-efficient and can achieve superior performance to strong baselines in a wide range of applications. The code will be made publicly available at https://github.com/lsj2408/URPE.
An Introduction to Transformers
The transformer is a neural network component that can be used to learn useful representations of sequences or sets of data-points. The transformer has driven recent advances in natural language processing, computer vision, and spatio-temporal modelling. There are many introductions to transformers, but most do not contain precise mathematical descriptions of the architecture and the intuitions behind the design choices are often also missing. Moreover, as research takes a winding path, the explanations for the components of the transformer can be idiosyncratic. In this note we aim for a mathematically precise, intuitive, and clean description of the transformer architecture. We will not discuss training as this is rather standard. We assume that the reader is familiar with fundamental topics in machine learning including multi-layer perceptrons, linear transformations, softmax functions and basic probability.
AdaptFormer: Adapting Vision Transformers for Scalable Visual Recognition
Pretraining Vision Transformers (ViTs) has achieved great success in visual recognition. A following scenario is to adapt a ViT to various image and video recognition tasks. The adaptation is challenging because of heavy computation and memory storage. Each model needs an independent and complete finetuning process to adapt to different tasks, which limits its transferability to different visual domains. To address this challenge, we propose an effective adaptation approach for Transformer, namely AdaptFormer, which can adapt the pre-trained ViTs into many different image and video tasks efficiently. It possesses several benefits more appealing than prior arts. Firstly, AdaptFormer introduces lightweight modules that only add less than 2% extra parameters to a ViT, while it is able to increase the ViT's transferability without updating its original pre-trained parameters, significantly outperforming the existing 100\% fully fine-tuned models on action recognition benchmarks. Secondly, it can be plug-and-play in different Transformers and scalable to many visual tasks. Thirdly, extensive experiments on five image and video datasets show that AdaptFormer largely improves ViTs in the target domains. For example, when updating just 1.5% extra parameters, it achieves about 10% and 19% relative improvement compared to the fully fine-tuned models on Something-Something~v2 and HMDB51, respectively. Code is available at https://github.com/ShoufaChen/AdaptFormer.
RealTalk: Real-time and Realistic Audio-driven Face Generation with 3D Facial Prior-guided Identity Alignment Network
Person-generic audio-driven face generation is a challenging task in computer vision. Previous methods have achieved remarkable progress in audio-visual synchronization, but there is still a significant gap between current results and practical applications. The challenges are two-fold: 1) Preserving unique individual traits for achieving high-precision lip synchronization. 2) Generating high-quality facial renderings in real-time performance. In this paper, we propose a novel generalized audio-driven framework RealTalk, which consists of an audio-to-expression transformer and a high-fidelity expression-to-face renderer. In the first component, we consider both identity and intra-personal variation features related to speaking lip movements. By incorporating cross-modal attention on the enriched facial priors, we can effectively align lip movements with audio, thus attaining greater precision in expression prediction. In the second component, we design a lightweight facial identity alignment (FIA) module which includes a lip-shape control structure and a face texture reference structure. This novel design allows us to generate fine details in real-time, without depending on sophisticated and inefficient feature alignment modules. Our experimental results, both quantitative and qualitative, on public datasets demonstrate the clear advantages of our method in terms of lip-speech synchronization and generation quality. Furthermore, our method is efficient and requires fewer computational resources, making it well-suited to meet the needs of practical applications.
Length Extrapolation of Transformers: A Survey from the Perspective of Positional Encoding
Transformer has taken the field of natural language processing (NLP) by storm since its birth. Further, Large language models (LLMs) built upon it have captured worldwide attention due to its superior abilities. Nevertheless, all Transformer-based models including these powerful LLMs suffer from a preset length limit and can hardly generalize from short training sequences to longer inference ones, namely, they can not perform length extrapolation. Hence, a plethora of methods have been proposed to enhance length extrapolation of Transformer, in which the positional encoding (PE) is recognized as the major factor. In this survey, we present these advances towards length extrapolation in a unified notation from the perspective of PE. Specifically, we first introduce extrapolatable PEs, including absolute and relative PEs. Then, we dive into extrapolation methods based on them, covering position interpolation and randomized position methods. Finally, several challenges and future directions in this area are highlighted. Through this survey, We aim to enable the reader to gain a deep understanding of existing methods and provide stimuli for future research.
GaFET: Learning Geometry-aware Facial Expression Translation from In-The-Wild Images
While current face animation methods can manipulate expressions individually, they suffer from several limitations. The expressions manipulated by some motion-based facial reenactment models are crude. Other ideas modeled with facial action units cannot generalize to arbitrary expressions not covered by annotations. In this paper, we introduce a novel Geometry-aware Facial Expression Translation (GaFET) framework, which is based on parametric 3D facial representations and can stably decoupled expression. Among them, a Multi-level Feature Aligned Transformer is proposed to complement non-geometric facial detail features while addressing the alignment challenge of spatial features. Further, we design a De-expression model based on StyleGAN, in order to reduce the learning difficulty of GaFET in unpaired "in-the-wild" images. Extensive qualitative and quantitative experiments demonstrate that we achieve higher-quality and more accurate facial expression transfer results compared to state-of-the-art methods, and demonstrate applicability of various poses and complex textures. Besides, videos or annotated training data are omitted, making our method easier to use and generalize.
Augmented Shortcuts for Vision Transformers
Transformer models have achieved great progress on computer vision tasks recently. The rapid development of vision transformers is mainly contributed by their high representation ability for extracting informative features from input images. However, the mainstream transformer models are designed with deep architectures, and the feature diversity will be continuously reduced as the depth increases, i.e., feature collapse. In this paper, we theoretically analyze the feature collapse phenomenon and study the relationship between shortcuts and feature diversity in these transformer models. Then, we present an augmented shortcut scheme, which inserts additional paths with learnable parameters in parallel on the original shortcuts. To save the computational costs, we further explore an efficient approach that uses the block-circulant projection to implement augmented shortcuts. Extensive experiments conducted on benchmark datasets demonstrate the effectiveness of the proposed method, which brings about 1% accuracy increase of the state-of-the-art visual transformers without obviously increasing their parameters and FLOPs.
A Survey of Transformers
Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.
MOR-VIT: Efficient Vision Transformer with Mixture-of-Recursions
Vision Transformers (ViTs) have achieved remarkable success in image recognition, yet standard ViT architectures are hampered by substantial parameter redundancy and high computational cost, limiting their practical deployment. While recent efforts on efficient ViTs primarily focus on static model compression or token-level sparsification, they remain constrained by fixed computational depth for all tokens. In this work, we present MoR-ViT, a novel vision transformer framework that, for the first time, incorporates a token-level dynamic recursion mechanism inspired by the Mixture-of-Recursions (MoR) paradigm. This approach enables each token to adaptively determine its processing depth, yielding a flexible and input-dependent allocation of computational resources. Extensive experiments on ImageNet-1K and transfer benchmarks demonstrate that MoR-ViT not only achieves state-of-the-art accuracy with up to 70% parameter reduction and 2.5x inference acceleration, but also outperforms leading efficient ViT baselines such as DynamicViT and TinyViT under comparable conditions. These results establish dynamic recursion as an effective strategy for efficient vision transformers and open new avenues for scalable and deployable deep learning models in real-world scenarios.
Zero-Shot Text-to-Image Generation
Text-to-image generation has traditionally focused on finding better modeling assumptions for training on a fixed dataset. These assumptions might involve complex architectures, auxiliary losses, or side information such as object part labels or segmentation masks supplied during training. We describe a simple approach for this task based on a transformer that autoregressively models the text and image tokens as a single stream of data. With sufficient data and scale, our approach is competitive with previous domain-specific models when evaluated in a zero-shot fashion.
IO Transformer: Evaluating SwinV2-Based Reward Models for Computer Vision
Transformers and their derivatives have achieved state-of-the-art performance across text, vision, and speech recognition tasks. However, minimal effort has been made to train transformers capable of evaluating the output quality of other models. This paper examines SwinV2-based reward models, called the Input-Output Transformer (IO Transformer) and the Output Transformer. These reward models can be leveraged for tasks such as inference quality evaluation, data categorization, and policy optimization. Our experiments demonstrate highly accurate model output quality assessment across domains where the output is entirely dependent on the input, with the IO Transformer achieving perfect evaluation accuracy on the Change Dataset 25 (CD25). We also explore modified Swin V2 architectures. Ultimately Swin V2 remains on top with a score of 95.41 % on the IO Segmentation Dataset, outperforming the IO Transformer in scenarios where the output is not entirely dependent on the input. Our work expands the application of transformer architectures to reward modeling in computer vision and provides critical insights into optimizing these models for various tasks.
Vcc: Scaling Transformers to 128K Tokens or More by Prioritizing Important Tokens
Transformer models are foundational to natural language processing (NLP) and computer vision. Despite various recent works devoted to reducing the quadratic cost of such models (as a function of the sequence length n), dealing with ultra long sequences efficiently (e.g., with more than 16K tokens) remains challenging. Applications such as answering questions based on an entire book or summarizing a scientific article are inefficient or infeasible. In this paper, we propose to significantly reduce the dependency of a Transformer model's complexity on n, by compressing the input into a representation whose size r is independent of n at each layer. Specifically, by exploiting the fact that in many tasks, only a small subset of special tokens (we call VIP-tokens) are most relevant to the final prediction, we propose a VIP-token centric compression (Vcc) scheme which selectively compresses the input sequence based on their impact on approximating the representation of these VIP-tokens. Compared with competitive baselines, the proposed algorithm not only is efficient (achieving more than 3times efficiency improvement compared to baselines on 4K and 16K lengths), but also achieves competitive or better performance on a large number of tasks. Further, we show that our algorithm can be scaled to 128K tokens (or more) while consistently offering accuracy improvement.
Transformer in Transformer
Transformer is a new kind of neural architecture which encodes the input data as powerful features via the attention mechanism. Basically, the visual transformers first divide the input images into several local patches and then calculate both representations and their relationship. Since natural images are of high complexity with abundant detail and color information, the granularity of the patch dividing is not fine enough for excavating features of objects in different scales and locations. In this paper, we point out that the attention inside these local patches are also essential for building visual transformers with high performance and we explore a new architecture, namely, Transformer iN Transformer (TNT). Specifically, we regard the local patches (e.g., 16times16) as "visual sentences" and present to further divide them into smaller patches (e.g., 4times4) as "visual words". The attention of each word will be calculated with other words in the given visual sentence with negligible computational costs. Features of both words and sentences will be aggregated to enhance the representation ability. Experiments on several benchmarks demonstrate the effectiveness of the proposed TNT architecture, e.g., we achieve an 81.5% top-1 accuracy on the ImageNet, which is about 1.7% higher than that of the state-of-the-art visual transformer with similar computational cost. The PyTorch code is available at https://github.com/huawei-noah/CV-Backbones, and the MindSpore code is available at https://gitee.com/mindspore/models/tree/master/research/cv/TNT.
Exploring Transformer Extrapolation
Length extrapolation has attracted considerable attention recently since it allows transformers to be tested on longer sequences than those used in training. Previous research has shown that this property can be attained by using carefully designed Relative Positional Encodings (RPEs). While these methods perform well on a variety of corpora, the conditions for length extrapolation have yet to be investigated. This paper attempts to determine what types of RPEs allow for length extrapolation through a thorough mathematical and empirical analysis. We discover that a transformer is certain to possess this property as long as the series that corresponds to the RPE's exponential converges. Two practices are derived from the conditions and examined in language modeling tasks on a variety of corpora. As a bonus from the conditions, we derive a new Theoretical Receptive Field (TRF) to measure the receptive field of RPEs without taking any training steps. Extensive experiments are conducted on the Wikitext-103, Books, Github, and WikiBook datasets to demonstrate the viability of our discovered conditions. We also compare TRF to Empirical Receptive Field (ERF) across different models, showing consistently matched trends on the aforementioned datasets. The code is available at https://github.com/OpenNLPLab/Rpe.
Transformers in Healthcare: A Survey
With Artificial Intelligence (AI) increasingly permeating various aspects of society, including healthcare, the adoption of the Transformers neural network architecture is rapidly changing many applications. Transformer is a type of deep learning architecture initially developed to solve general-purpose Natural Language Processing (NLP) tasks and has subsequently been adapted in many fields, including healthcare. In this survey paper, we provide an overview of how this architecture has been adopted to analyze various forms of data, including medical imaging, structured and unstructured Electronic Health Records (EHR), social media, physiological signals, and biomolecular sequences. Those models could help in clinical diagnosis, report generation, data reconstruction, and drug/protein synthesis. We identified relevant studies using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We also discuss the benefits and limitations of using transformers in healthcare and examine issues such as computational cost, model interpretability, fairness, alignment with human values, ethical implications, and environmental impact.
Hierarchical Structure Enhances the Convergence and Generalizability of Linear Molecular Representation
Language models demonstrate fundamental abilities in syntax, semantics, and reasoning, though their performance often depends significantly on the inputs they process. This study introduces TSIS (Simplified TSID) and its variants:TSISD (TSIS with Depth-First Search), TSISO (TSIS in Order), and TSISR (TSIS in Random), as integral components of the t-SMILES framework. These additions complete the framework's design, providing diverse approaches to molecular representation. Through comprehensive analysis and experiments employing deep generative models, including GPT, diffusion models, and reinforcement learning, the findings reveal that the hierarchical structure of t-SMILES is more straightforward to parse than initially anticipated. Furthermore, t-SMILES consistently outperforms other linear representations such as SMILES, SELFIES, and SAFE, demonstrating superior convergence speed and enhanced generalization capabilities.
Affective social anthropomorphic intelligent system
Human conversational styles are measured by the sense of humor, personality, and tone of voice. These characteristics have become essential for conversational intelligent virtual assistants. However, most of the state-of-the-art intelligent virtual assistants (IVAs) are failed to interpret the affective semantics of human voices. This research proposes an anthropomorphic intelligent system that can hold a proper human-like conversation with emotion and personality. A voice style transfer method is also proposed to map the attributes of a specific emotion. Initially, the frequency domain data (Mel-Spectrogram) is created by converting the temporal audio wave data, which comprises discrete patterns for audio features such as notes, pitch, rhythm, and melody. A collateral CNN-Transformer-Encoder is used to predict seven different affective states from voice. The voice is also fed parallelly to the deep-speech, an RNN model that generates the text transcription from the spectrogram. Then the transcripted text is transferred to the multi-domain conversation agent using blended skill talk, transformer-based retrieve-and-generate generation strategy, and beam-search decoding, and an appropriate textual response is generated. The system learns an invertible mapping of data to a latent space that can be manipulated and generates a Mel-spectrogram frame based on previous Mel-spectrogram frames to voice synthesize and style transfer. Finally, the waveform is generated using WaveGlow from the spectrogram. The outcomes of the studies we conducted on individual models were auspicious. Furthermore, users who interacted with the system provided positive feedback, demonstrating the system's effectiveness.
Facial Expression Recognition with Visual Transformers and Attentional Selective Fusion
Facial Expression Recognition (FER) in the wild is extremely challenging due to occlusions, variant head poses, face deformation and motion blur under unconstrained conditions. Although substantial progresses have been made in automatic FER in the past few decades, previous studies were mainly designed for lab-controlled FER. Real-world occlusions, variant head poses and other issues definitely increase the difficulty of FER on account of these information-deficient regions and complex backgrounds. Different from previous pure CNNs based methods, we argue that it is feasible and practical to translate facial images into sequences of visual words and perform expression recognition from a global perspective. Therefore, we propose the Visual Transformers with Feature Fusion (VTFF) to tackle FER in the wild by two main steps. First, we propose the attentional selective fusion (ASF) for leveraging two kinds of feature maps generated by two-branch CNNs. The ASF captures discriminative information by fusing multiple features with the global-local attention. The fused feature maps are then flattened and projected into sequences of visual words. Second, inspired by the success of Transformers in natural language processing, we propose to model relationships between these visual words with the global self-attention. The proposed method is evaluated on three public in-the-wild facial expression datasets (RAF-DB, FERPlus and AffectNet). Under the same settings, extensive experiments demonstrate that our method shows superior performance over other methods, setting new state of the art on RAF-DB with 88.14%, FERPlus with 88.81% and AffectNet with 61.85%. The cross-dataset evaluation on CK+ shows the promising generalization capability of the proposed method.
Scaling Autoregressive Models for Content-Rich Text-to-Image Generation
We present the Pathways Autoregressive Text-to-Image (Parti) model, which generates high-fidelity photorealistic images and supports content-rich synthesis involving complex compositions and world knowledge. Parti treats text-to-image generation as a sequence-to-sequence modeling problem, akin to machine translation, with sequences of image tokens as the target outputs rather than text tokens in another language. This strategy can naturally tap into the rich body of prior work on large language models, which have seen continued advances in capabilities and performance through scaling data and model sizes. Our approach is simple: First, Parti uses a Transformer-based image tokenizer, ViT-VQGAN, to encode images as sequences of discrete tokens. Second, we achieve consistent quality improvements by scaling the encoder-decoder Transformer model up to 20B parameters, with a new state-of-the-art zero-shot FID score of 7.23 and finetuned FID score of 3.22 on MS-COCO. Our detailed analysis on Localized Narratives as well as PartiPrompts (P2), a new holistic benchmark of over 1600 English prompts, demonstrate the effectiveness of Parti across a wide variety of categories and difficulty aspects. We also explore and highlight limitations of our models in order to define and exemplify key areas of focus for further improvements. See https://parti.research.google/ for high-resolution images.
Hallo3: Highly Dynamic and Realistic Portrait Image Animation with Diffusion Transformer Networks
Existing methodologies for animating portrait images face significant challenges, particularly in handling non-frontal perspectives, rendering dynamic objects around the portrait, and generating immersive, realistic backgrounds. In this paper, we introduce the first application of a pretrained transformer-based video generative model that demonstrates strong generalization capabilities and generates highly dynamic, realistic videos for portrait animation, effectively addressing these challenges. The adoption of a new video backbone model makes previous U-Net-based methods for identity maintenance, audio conditioning, and video extrapolation inapplicable. To address this limitation, we design an identity reference network consisting of a causal 3D VAE combined with a stacked series of transformer layers, ensuring consistent facial identity across video sequences. Additionally, we investigate various speech audio conditioning and motion frame mechanisms to enable the generation of continuous video driven by speech audio. Our method is validated through experiments on benchmark and newly proposed wild datasets, demonstrating substantial improvements over prior methods in generating realistic portraits characterized by diverse orientations within dynamic and immersive scenes. Further visualizations and the source code are available at: https://fudan-generative-vision.github.io/hallo3/.
JoyVASA: Portrait and Animal Image Animation with Diffusion-Based Audio-Driven Facial Dynamics and Head Motion Generation
Audio-driven portrait animation has made significant advances with diffusion-based models, improving video quality and lipsync accuracy. However, the increasing complexity of these models has led to inefficiencies in training and inference, as well as constraints on video length and inter-frame continuity. In this paper, we propose JoyVASA, a diffusion-based method for generating facial dynamics and head motion in audio-driven facial animation. Specifically, in the first stage, we introduce a decoupled facial representation framework that separates dynamic facial expressions from static 3D facial representations. This decoupling allows the system to generate longer videos by combining any static 3D facial representation with dynamic motion sequences. Then, in the second stage, a diffusion transformer is trained to generate motion sequences directly from audio cues, independent of character identity. Finally, a generator trained in the first stage uses the 3D facial representation and the generated motion sequences as inputs to render high-quality animations. With the decoupled facial representation and the identity-independent motion generation process, JoyVASA extends beyond human portraits to animate animal faces seamlessly. The model is trained on a hybrid dataset of private Chinese and public English data, enabling multilingual support. Experimental results validate the effectiveness of our approach. Future work will focus on improving real-time performance and refining expression control, further expanding the applications in portrait animation. The code is available at: https://github.com/jdh-algo/JoyVASA.
Multi-Scale And Token Mergence: Make Your ViT More Efficient
Since its inception, Vision Transformer (ViT) has emerged as a prevalent model in the computer vision domain. Nonetheless, the multi-head self-attention (MHSA) mechanism in ViT is computationally expensive due to its calculation of relationships among all tokens. Although some techniques mitigate computational overhead by discarding tokens, this also results in the loss of potential information from those tokens. To tackle these issues, we propose a novel token pruning method that retains information from non-crucial tokens by merging them with more crucial tokens, thereby mitigating the impact of pruning on model performance. Crucial and non-crucial tokens are identified by their importance scores and merged based on similarity scores. Furthermore, multi-scale features are exploited to represent images, which are fused prior to token pruning to produce richer feature representations. Importantly, our method can be seamlessly integrated with various ViTs, enhancing their adaptability. Experimental evidence substantiates the efficacy of our approach in reducing the influence of token pruning on model performance. For instance, on the ImageNet dataset, it achieves a remarkable 33% reduction in computational costs while only incurring a 0.1% decrease in accuracy on DeiT-S.
Efficiency 360: Efficient Vision Transformers
Transformers are widely used for solving tasks in natural language processing, computer vision, speech, and music domains. In this paper, we talk about the efficiency of transformers in terms of memory (the number of parameters), computation cost (number of floating points operations), and performance of models, including accuracy, the robustness of the model, and fair \& bias-free features. We mainly discuss the vision transformer for the image classification task. Our contribution is to introduce an efficient 360 framework, which includes various aspects of the vision transformer, to make it more efficient for industrial applications. By considering those applications, we categorize them into multiple dimensions such as privacy, robustness, transparency, fairness, inclusiveness, continual learning, probabilistic models, approximation, computational complexity, and spectral complexity. We compare various vision transformer models based on their performance, the number of parameters, and the number of floating point operations (FLOPs) on multiple datasets.
Revisiting Vision Transformer from the View of Path Ensemble
Vision Transformers (ViTs) are normally regarded as a stack of transformer layers. In this work, we propose a novel view of ViTs showing that they can be seen as ensemble networks containing multiple parallel paths with different lengths. Specifically, we equivalently transform the traditional cascade of multi-head self-attention (MSA) and feed-forward network (FFN) into three parallel paths in each transformer layer. Then, we utilize the identity connection in our new transformer form and further transform the ViT into an explicit multi-path ensemble network. From the new perspective, these paths perform two functions: the first is to provide the feature for the classifier directly, and the second is to provide the lower-level feature representation for subsequent longer paths. We investigate the influence of each path for the final prediction and discover that some paths even pull down the performance. Therefore, we propose the path pruning and EnsembleScale skills for improvement, which cut out the underperforming paths and re-weight the ensemble components, respectively, to optimize the path combination and make the short paths focus on providing high-quality representation for subsequent paths. We also demonstrate that our path combination strategies can help ViTs go deeper and act as high-pass filters to filter out partial low-frequency signals. To further enhance the representation of paths served for subsequent paths, self-distillation is applied to transfer knowledge from the long paths to the short paths. This work calls for more future research to explain and design ViTs from new perspectives.
Combiner: Full Attention Transformer with Sparse Computation Cost
Transformers provide a class of expressive architectures that are extremely effective for sequence modeling. However, the key limitation of transformers is their quadratic memory and time complexity O(L^2) with respect to the sequence length in attention layers, which restricts application in extremely long sequences. Most existing approaches leverage sparsity or low-rank assumptions in the attention matrix to reduce cost, but sacrifice expressiveness. Instead, we propose Combiner, which provides full attention capability in each attention head while maintaining low computation and memory complexity. The key idea is to treat the self-attention mechanism as a conditional expectation over embeddings at each location, and approximate the conditional distribution with a structured factorization. Each location can attend to all other locations, either via direct attention, or through indirect attention to abstractions, which are again conditional expectations of embeddings from corresponding local regions. We show that most sparse attention patterns used in existing sparse transformers are able to inspire the design of such factorization for full attention, resulting in the same sub-quadratic cost (O(Llog(L)) or O(LL)). Combiner is a drop-in replacement for attention layers in existing transformers and can be easily implemented in common frameworks. An experimental evaluation on both autoregressive and bidirectional sequence tasks demonstrates the effectiveness of this approach, yielding state-of-the-art results on several image and text modeling tasks.
Transformers Get Stable: An End-to-End Signal Propagation Theory for Language Models
In spite of their huge success, transformer models remain difficult to scale in depth. In this work, we develop a unified signal propagation theory and provide formulae that govern the moments of the forward and backward signal through the transformer model. Our framework can be used to understand and mitigate vanishing/exploding gradients, rank collapse, and instability associated with high attention scores. We also propose DeepScaleLM, an initialization and scaling scheme that conserves unit output/gradient moments throughout the model, enabling the training of very deep models with 100s of layers. We find that transformer models could be much deeper - our deep models with fewer parameters outperform shallow models in Language Modeling, Speech Translation, and Image Classification, across Encoder-only, Decoder-only and Encoder-Decoder variants, for both Pre-LN and Post-LN transformers, for multiple datasets and model sizes. These improvements also translate into improved performance on downstream Question Answering tasks and improved robustness for image classification.
Quantum Embedding with Transformer for High-dimensional Data
Quantum embedding with transformers is a novel and promising architecture for quantum machine learning to deliver exceptional capability on near-term devices or simulators. The research incorporated a vision transformer (ViT) to advance quantum significantly embedding ability and results for a single qubit classifier with around 3 percent in the median F1 score on the BirdCLEF-2021, a challenging high-dimensional dataset. The study showcases and analyzes empirical evidence that our transformer-based architecture is a highly versatile and practical approach to modern quantum machine learning problems.
Comprehensive Survey of Model Compression and Speed up for Vision Transformers
Vision Transformers (ViT) have marked a paradigm shift in computer vision, outperforming state-of-the-art models across diverse tasks. However, their practical deployment is hampered by high computational and memory demands. This study addresses the challenge by evaluating four primary model compression techniques: quantization, low-rank approximation, knowledge distillation, and pruning. We methodically analyze and compare the efficacy of these techniques and their combinations in optimizing ViTs for resource-constrained environments. Our comprehensive experimental evaluation demonstrates that these methods facilitate a balanced compromise between model accuracy and computational efficiency, paving the way for wider application in edge computing devices.
JoyGen: Audio-Driven 3D Depth-Aware Talking-Face Video Editing
Significant progress has been made in talking-face video generation research; however, precise lip-audio synchronization and high visual quality remain challenging in editing lip shapes based on input audio. This paper introduces JoyGen, a novel two-stage framework for talking-face generation, comprising audio-driven lip motion generation and visual appearance synthesis. In the first stage, a 3D reconstruction model and an audio2motion model predict identity and expression coefficients respectively. Next, by integrating audio features with a facial depth map, we provide comprehensive supervision for precise lip-audio synchronization in facial generation. Additionally, we constructed a Chinese talking-face dataset containing 130 hours of high-quality video. JoyGen is trained on the open-source HDTF dataset and our curated dataset. Experimental results demonstrate superior lip-audio synchronization and visual quality achieved by our method.
Emotion Classification In Software Engineering Texts: A Comparative Analysis of Pre-trained Transformers Language Models
Emotion recognition in software engineering texts is critical for understanding developer expressions and improving collaboration. This paper presents a comparative analysis of state-of-the-art Pre-trained Language Models (PTMs) for fine-grained emotion classification on two benchmark datasets from GitHub and Stack Overflow. We evaluate six transformer models - BERT, RoBERTa, ALBERT, DeBERTa, CodeBERT and GraphCodeBERT against the current best-performing tool SEntiMoji. Our analysis reveals consistent improvements ranging from 1.17\% to 16.79\% in terms of macro-averaged and micro-averaged F1 scores, with general domain models outperforming specialized ones. To further enhance PTMs, we incorporate polarity features in attention layer during training, demonstrating additional average gains of 1.0\% to 10.23\% over baseline PTMs approaches. Our work provides strong evidence for the advancements afforded by PTMs in recognizing nuanced emotions like Anger, Love, Fear, Joy, Sadness, and Surprise in software engineering contexts. Through comprehensive benchmarking and error analysis, we also outline scope for improvements to address contextual gaps.
Universal Approximation Theorem for a Single-Layer Transformer
Deep learning employs multi-layer neural networks trained via the backpropagation algorithm. This approach has achieved success across many domains and relies on adaptive gradient methods such as the Adam optimizer. Sequence modeling evolved from recurrent neural networks to attention-based models, culminating in the Transformer architecture. Transformers have achieved state-of-the-art performance in natural language processing (for example, BERT and GPT-3) and have been applied in computer vision and computational biology. However, theoretical understanding of these models remains limited. In this paper, we examine the mathematical foundations of deep learning and Transformers and present a novel theoretical result. We review key concepts from linear algebra, probability, and optimization that underpin deep learning, and we analyze the multi-head self-attention mechanism and the backpropagation algorithm in detail. Our main contribution is a universal approximation theorem for Transformers: we prove that a single-layer Transformer, comprising one self-attention layer followed by a position-wise feed-forward network with ReLU activation, can approximate any continuous sequence-to-sequence mapping on a compact domain to arbitrary precision. We provide a formal statement and a complete proof. Finally, we present case studies that demonstrate the practical implications of this result. Our findings advance the theoretical understanding of Transformer models and help bridge the gap between theory and practice.
EfficientFormer: Vision Transformers at MobileNet Speed
Vision Transformers (ViT) have shown rapid progress in computer vision tasks, achieving promising results on various benchmarks. However, due to the massive number of parameters and model design, e.g., attention mechanism, ViT-based models are generally times slower than lightweight convolutional networks. Therefore, the deployment of ViT for real-time applications is particularly challenging, especially on resource-constrained hardware such as mobile devices. Recent efforts try to reduce the computation complexity of ViT through network architecture search or hybrid design with MobileNet block, yet the inference speed is still unsatisfactory. This leads to an important question: can transformers run as fast as MobileNet while obtaining high performance? To answer this, we first revisit the network architecture and operators used in ViT-based models and identify inefficient designs. Then we introduce a dimension-consistent pure transformer (without MobileNet blocks) as a design paradigm. Finally, we perform latency-driven slimming to get a series of final models dubbed EfficientFormer. Extensive experiments show the superiority of EfficientFormer in performance and speed on mobile devices. Our fastest model, EfficientFormer-L1, achieves 79.2% top-1 accuracy on ImageNet-1K with only 1.6 ms inference latency on iPhone 12 (compiled with CoreML), which runs as fast as MobileNetV2times 1.4 (1.6 ms, 74.7% top-1), and our largest model, EfficientFormer-L7, obtains 83.3% accuracy with only 7.0 ms latency. Our work proves that properly designed transformers can reach extremely low latency on mobile devices while maintaining high performance.
GP-MoLFormer: A Foundation Model For Molecular Generation
Transformer-based models trained on large and general purpose datasets consisting of molecular strings have recently emerged as a powerful tool for successfully modeling various structure-property relations. Inspired by this success, we extend the paradigm of training chemical language transformers on large-scale chemical datasets to generative tasks in this work. Specifically, we propose GP-MoLFormer, an autoregressive molecular string generator that is trained on more than 1.1B (billion) chemical SMILES. GP-MoLFormer uses a 46.8M parameter transformer decoder model with linear attention and rotary positional encodings as the base architecture. GP-MoLFormer's utility is evaluated and compared with that of existing baselines on three different tasks: de novo generation, scaffold-constrained molecular decoration, and unconstrained property-guided optimization. While the first two are handled with no additional training, we propose a parameter-efficient fine-tuning method for the last task, which uses property-ordered molecular pairs as input. We call this new approach pair-tuning. Our results show GP-MoLFormer performs better or comparable with baselines across all three tasks, demonstrating its general utility for a variety of molecular generation tasks. We further report strong memorization of training data in GP-MoLFormer generations, which has so far remained unexplored for chemical language models. Our analyses reveal that training data memorization and novelty in generations are impacted by the quality and scale of the training data; duplication bias in training data can enhance memorization at the cost of lowering novelty. We further establish a scaling law relating inference compute and novelty in generations.
Generative Discovery of Novel Chemical Designs using Diffusion Modeling and Transformer Deep Neural Networks with Application to Deep Eutectic Solvents
We report a series of deep learning models to solve complex forward and inverse design problems in molecular modeling and design. Using both diffusion models inspired by nonequilibrium thermodynamics and attention-based transformer architectures, we demonstrate a flexible framework to capture complex chemical structures. First trained on the QM9 dataset and a series of quantum mechanical properties (e.g. homo, lumo, free energy, heat capacity, etc.), we then generalize the model to study and design key properties of deep eutectic solvents. In addition to separate forward and inverse models, we also report an integrated fully prompt-based multi-task generative pretrained transformer model that solves multiple forward, inverse design, and prediction tasks, flexibly and within one model. We show that the multi-task generative model has the overall best performance and allows for flexible integration of multiple objectives, within one model, and for distinct chemistries, suggesting that synergies emerge during training of this large language model. Trained jointly in tasks related to the QM9 dataset and deep eutectic solvents (DESs), the model can predict various quantum mechanical properties and critical properties to achieve deep eutectic solvent behavior. Several novel combinations of DESs are proposed based on this framework.
Transformer as Linear Expansion of Learngene
We propose expanding the shared Transformer module to produce and initialize Transformers of varying depths, enabling adaptation to diverse resource constraints. Drawing an analogy to genetic expansibility, we term such module as learngene. To identify the expansion mechanism, we delve into the relationship between the layer's position and its corresponding weight value, and find that linear function appropriately approximates this relationship. Building on this insight, we present Transformer as Linear Expansion of learnGene (TLEG), a novel approach for flexibly producing and initializing Transformers of diverse depths. Specifically, to learn learngene, we firstly construct an auxiliary Transformer linearly expanded from learngene, after which we train it through employing soft distillation. Subsequently, we can produce and initialize Transformers of varying depths via linearly expanding the well-trained learngene, thereby supporting diverse downstream scenarios. Extensive experiments on ImageNet-1K demonstrate that TLEG achieves comparable or better performance in contrast to many individual models trained from scratch, while reducing around 2x training cost. When transferring to several downstream classification datasets, TLEG surpasses existing initialization methods by a large margin (e.g., +6.87% on iNat 2019 and +7.66% on CIFAR-100). Under the situation where we need to produce models of varying depths adapting for different resource constraints, TLEG achieves comparable results while reducing around 19x parameters stored to initialize these models and around 5x pre-training costs, in contrast to the pre-training and fine-tuning approach. When transferring a fixed set of parameters to initialize different models, TLEG presents better flexibility and competitive performance while reducing around 2.9x parameters stored to initialize, compared to the pre-training approach.
Meta 3D AssetGen: Text-to-Mesh Generation with High-Quality Geometry, Texture, and PBR Materials
We present Meta 3D AssetGen (AssetGen), a significant advancement in text-to-3D generation which produces faithful, high-quality meshes with texture and material control. Compared to works that bake shading in the 3D object's appearance, AssetGen outputs physically-based rendering (PBR) materials, supporting realistic relighting. AssetGen generates first several views of the object with factored shaded and albedo appearance channels, and then reconstructs colours, metalness and roughness in 3D, using a deferred shading loss for efficient supervision. It also uses a sign-distance function to represent 3D shape more reliably and introduces a corresponding loss for direct shape supervision. This is implemented using fused kernels for high memory efficiency. After mesh extraction, a texture refinement transformer operating in UV space significantly improves sharpness and details. AssetGen achieves 17% improvement in Chamfer Distance and 40% in LPIPS over the best concurrent work for few-view reconstruction, and a human preference of 72% over the best industry competitors of comparable speed, including those that support PBR. Project page with generated assets: https://assetgen.github.io
ViR: Vision Retention Networks
Vision Transformers (ViTs) have attracted a lot of popularity in recent years, due to their exceptional capabilities in modeling long-range spatial dependencies and scalability for large scale training. Although the training parallelism of self-attention mechanism plays an important role in retaining great performance, its quadratic complexity baffles the application of ViTs in many scenarios which demand fast inference. This effect is even more pronounced in applications in which autoregressive modeling of input features is required. In Natural Language Processing (NLP), a new stream of efforts have proposed parallelizable models with recurrent formulation that allows for efficient inference in generative applications. Inspired by this trend, we propose a new class of computer vision models, dubbed Vision Retention Networks (ViR), with dual parallel and recurrent formulations, which strike an optimal balance between fast inference and parallel training with competitive performance. In particular, ViR scales favorably for image throughput and memory consumption in tasks that require higher-resolution images due to its flexible formulation in processing large sequence lengths. The ViR is the first attempt to realize dual parallel and recurrent equivalency in a general vision backbone for recognition tasks. We have validated the effectiveness of ViR through extensive experiments with different dataset sizes and various image resolutions and achieved competitive performance. Our code and pretrained models will be made publicly available.
A ConvNet for the 2020s
The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually "modernize" a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets.
Denoising Vision Transformers
We delve into a nuanced but significant challenge inherent to Vision Transformers (ViTs): feature maps of these models exhibit grid-like artifacts, which detrimentally hurt the performance of ViTs in downstream tasks. Our investigations trace this fundamental issue down to the positional embeddings at the input stage. To address this, we propose a novel noise model, which is universally applicable to all ViTs. Specifically, the noise model dissects ViT outputs into three components: a semantics term free from noise artifacts and two artifact-related terms that are conditioned on pixel locations. Such a decomposition is achieved by enforcing cross-view feature consistency with neural fields in a per-image basis. This per-image optimization process extracts artifact-free features from raw ViT outputs, providing clean features for offline applications. Expanding the scope of our solution to support online functionality, we introduce a learnable denoiser to predict artifact-free features directly from unprocessed ViT outputs, which shows remarkable generalization capabilities to novel data without the need for per-image optimization. Our two-stage approach, termed Denoising Vision Transformers (DVT), does not require re-training existing pre-trained ViTs and is immediately applicable to any Transformer-based architecture. We evaluate our method on a variety of representative ViTs (DINO, MAE, DeiT-III, EVA02, CLIP, DINOv2, DINOv2-reg). Extensive evaluations demonstrate that our DVT consistently and significantly improves existing state-of-the-art general-purpose models in semantic and geometric tasks across multiple datasets (e.g., +3.84 mIoU). We hope our study will encourage a re-evaluation of ViT design, especially regarding the naive use of positional embeddings.
What Language Model to Train if You Have One Million GPU Hours?
The crystallization of modeling methods around the Transformer architecture has been a boon for practitioners. Simple, well-motivated architectural variations can transfer across tasks and scale, increasing the impact of modeling research. However, with the emergence of state-of-the-art 100B+ parameters models, large language models are increasingly expensive to accurately design and train. Notably, it can be difficult to evaluate how modeling decisions may impact emergent capabilities, given that these capabilities arise mainly from sheer scale alone. In the process of building BLOOM--the Big Science Large Open-science Open-access Multilingual language model--our goal is to identify an architecture and training setup that makes the best use of our 1,000,000 A100-GPU-hours budget. Specifically, we perform an ablation study at the billion-parameter scale comparing different modeling practices and their impact on zero-shot generalization. In addition, we study the impact of various popular pre-training corpora on zero-shot generalization. We also study the performance of a multilingual model and how it compares to the English-only one. Finally, we consider the scaling behaviour of Transformers to choose the target model size, shape, and training setup. All our models and code are open-sourced at https://huggingface.co/bigscience .
Towards Localized Fine-Grained Control for Facial Expression Generation
Generative models have surged in popularity recently due to their ability to produce high-quality images and video. However, steering these models to produce images with specific attributes and precise control remains challenging. Humans, particularly their faces, are central to content generation due to their ability to convey rich expressions and intent. Current generative models mostly generate flat neutral expressions and characterless smiles without authenticity. Other basic expressions like anger are possible, but are limited to the stereotypical expression, while other unconventional facial expressions like doubtful are difficult to reliably generate. In this work, we propose the use of AUs (action units) for facial expression control in face generation. AUs describe individual facial muscle movements based on facial anatomy, allowing precise and localized control over the intensity of facial movements. By combining different action units, we unlock the ability to create unconventional facial expressions that go beyond typical emotional models, enabling nuanced and authentic reactions reflective of real-world expressions. The proposed method can be seamlessly integrated with both text and image prompts using adapters, offering precise and intuitive control of the generated results. Code and dataset are available in {https://github.com/tvaranka/fineface}.
DiffSpectra: Molecular Structure Elucidation from Spectra using Diffusion Models
Molecular structure elucidation from spectra is a foundational problem in chemistry, with profound implications for compound identification, synthesis, and drug development. Traditional methods rely heavily on expert interpretation and lack scalability. Pioneering machine learning methods have introduced retrieval-based strategies, but their reliance on finite libraries limits generalization to novel molecules. Generative models offer a promising alternative, yet most adopt autoregressive SMILES-based architectures that overlook 3D geometry and struggle to integrate diverse spectral modalities. In this work, we present DiffSpectra, a generative framework that directly infers both 2D and 3D molecular structures from multi-modal spectral data using diffusion models. DiffSpectra formulates structure elucidation as a conditional generation process. Its denoising network is parameterized by Diffusion Molecule Transformer, an SE(3)-equivariant architecture that integrates topological and geometric information. Conditioning is provided by SpecFormer, a transformer-based spectral encoder that captures intra- and inter-spectral dependencies from multi-modal spectra. Extensive experiments demonstrate that DiffSpectra achieves high accuracy in structure elucidation, recovering exact structures with 16.01% top-1 accuracy and 96.86% top-20 accuracy through sampling. The model benefits significantly from 3D geometric modeling, SpecFormer pre-training, and multi-modal conditioning. These results highlight the effectiveness of spectrum-conditioned diffusion modeling in addressing the challenge of molecular structure elucidation. To our knowledge, DiffSpectra is the first framework to unify multi-modal spectral reasoning and joint 2D/3D generative modeling for de novo molecular structure elucidation.
SkyReels-A1: Expressive Portrait Animation in Video Diffusion Transformers
We present SkyReels-A1, a simple yet effective framework built upon video diffusion Transformer to facilitate portrait image animation. Existing methodologies still encounter issues, including identity distortion, background instability, and unrealistic facial dynamics, particularly in head-only animation scenarios. Besides, extending to accommodate diverse body proportions usually leads to visual inconsistencies or unnatural articulations. To address these challenges, SkyReels-A1 capitalizes on the strong generative capabilities of video DiT, enhancing facial motion transfer precision, identity retention, and temporal coherence. The system incorporates an expression-aware conditioning module that enables seamless video synthesis driven by expression-guided landmark inputs. Integrating the facial image-text alignment module strengthens the fusion of facial attributes with motion trajectories, reinforcing identity preservation. Additionally, SkyReels-A1 incorporates a multi-stage training paradigm to incrementally refine the correlation between expressions and motion while ensuring stable identity reproduction. Extensive empirical evaluations highlight the model's ability to produce visually coherent and compositionally diverse results, making it highly applicable to domains such as virtual avatars, remote communication, and digital media generation.
Hiformer: Heterogeneous Feature Interactions Learning with Transformers for Recommender Systems
Learning feature interaction is the critical backbone to building recommender systems. In web-scale applications, learning feature interaction is extremely challenging due to the sparse and large input feature space; meanwhile, manually crafting effective feature interactions is infeasible because of the exponential solution space. We propose to leverage a Transformer-based architecture with attention layers to automatically capture feature interactions. Transformer architectures have witnessed great success in many domains, such as natural language processing and computer vision. However, there has not been much adoption of Transformer architecture for feature interaction modeling in industry. We aim at closing the gap. We identify two key challenges for applying the vanilla Transformer architecture to web-scale recommender systems: (1) Transformer architecture fails to capture the heterogeneous feature interactions in the self-attention layer; (2) The serving latency of Transformer architecture might be too high to be deployed in web-scale recommender systems. We first propose a heterogeneous self-attention layer, which is a simple yet effective modification to the self-attention layer in Transformer, to take into account the heterogeneity of feature interactions. We then introduce Hiformer (Heterogeneous Interaction Transformer) to further improve the model expressiveness. With low-rank approximation and model pruning, \hiformer enjoys fast inference for online deployment. Extensive offline experiment results corroborates the effectiveness and efficiency of the Hiformer model. We have successfully deployed the Hiformer model to a real world large scale App ranking model at Google Play, with significant improvement in key engagement metrics (up to +2.66\%).
SynchroRaMa : Lip-Synchronized and Emotion-Aware Talking Face Generation via Multi-Modal Emotion Embedding
Audio-driven talking face generation has received growing interest, particularly for applications requiring expressive and natural human-avatar interaction. However, most existing emotion-aware methods rely on a single modality (either audio or image) for emotion embedding, limiting their ability to capture nuanced affective cues. Additionally, most methods condition on a single reference image, restricting the model's ability to represent dynamic changes in actions or attributes across time. To address these issues, we introduce SynchroRaMa, a novel framework that integrates a multi-modal emotion embedding by combining emotional signals from text (via sentiment analysis) and audio (via speech-based emotion recognition and audio-derived valence-arousal features), enabling the generation of talking face videos with richer and more authentic emotional expressiveness and fidelity. To ensure natural head motion and accurate lip synchronization, SynchroRaMa includes an audio-to-motion (A2M) module that generates motion frames aligned with the input audio. Finally, SynchroRaMa incorporates scene descriptions generated by Large Language Model (LLM) as additional textual input, enabling it to capture dynamic actions and high-level semantic attributes. Conditioning the model on both visual and textual cues enhances temporal consistency and visual realism. Quantitative and qualitative experiments on benchmark datasets demonstrate that SynchroRaMa outperforms the state-of-the-art, achieving improvements in image quality, expression preservation, and motion realism. A user study further confirms that SynchroRaMa achieves higher subjective ratings than competing methods in overall naturalness, motion diversity, and video smoothness. Our project page is available at <https://novicemm.github.io/synchrorama>.
Taming Transformers for High-Resolution Image Synthesis
Designed to learn long-range interactions on sequential data, transformers continue to show state-of-the-art results on a wide variety of tasks. In contrast to CNNs, they contain no inductive bias that prioritizes local interactions. This makes them expressive, but also computationally infeasible for long sequences, such as high-resolution images. We demonstrate how combining the effectiveness of the inductive bias of CNNs with the expressivity of transformers enables them to model and thereby synthesize high-resolution images. We show how to (i) use CNNs to learn a context-rich vocabulary of image constituents, and in turn (ii) utilize transformers to efficiently model their composition within high-resolution images. Our approach is readily applied to conditional synthesis tasks, where both non-spatial information, such as object classes, and spatial information, such as segmentations, can control the generated image. In particular, we present the first results on semantically-guided synthesis of megapixel images with transformers and obtain the state of the art among autoregressive models on class-conditional ImageNet. Code and pretrained models can be found at https://github.com/CompVis/taming-transformers .
Facial Expression Recognition using Squeeze and Excitation-powered Swin Transformers
The ability to recognize and interpret facial emotions is a critical component of human communication, as it allows individuals to understand and respond to emotions conveyed through facial expressions and vocal tones. The recognition of facial emotions is a complex cognitive process that involves the integration of visual and auditory information, as well as prior knowledge and social cues. It plays a crucial role in social interaction, affective processing, and empathy, and is an important aspect of many real-world applications, including human-computer interaction, virtual assistants, and mental health diagnosis and treatment. The development of accurate and efficient models for facial emotion recognition is therefore of great importance and has the potential to have a significant impact on various fields of study.The field of Facial Emotion Recognition (FER) is of great significance in the areas of computer vision and artificial intelligence, with vast commercial and academic potential in fields such as security, advertising, and entertainment. We propose a FER framework that employs Swin Vision Transformers (SwinT) and squeeze and excitation block (SE) to address vision tasks. The approach uses a transformer model with an attention mechanism, SE, and SAM to improve the efficiency of the model, as transformers often require a large amount of data. Our focus was to create an efficient FER model based on SwinT architecture that can recognize facial emotions using minimal data. We trained our model on a hybrid dataset and evaluated its performance on the AffectNet dataset, achieving an F1-score of 0.5420, which surpassed the winner of the Affective Behavior Analysis in the Wild (ABAW) Competition held at the European Conference on Computer Vision (ECCV) 2022~Kollias.
GenTron: Delving Deep into Diffusion Transformers for Image and Video Generation
In this study, we explore Transformer-based diffusion models for image and video generation. Despite the dominance of Transformer architectures in various fields due to their flexibility and scalability, the visual generative domain primarily utilizes CNN-based U-Net architectures, particularly in diffusion-based models. We introduce GenTron, a family of Generative models employing Transformer-based diffusion, to address this gap. Our initial step was to adapt Diffusion Transformers (DiTs) from class to text conditioning, a process involving thorough empirical exploration of the conditioning mechanism. We then scale GenTron from approximately 900M to over 3B parameters, observing significant improvements in visual quality. Furthermore, we extend GenTron to text-to-video generation, incorporating novel motion-free guidance to enhance video quality. In human evaluations against SDXL, GenTron achieves a 51.1% win rate in visual quality (with a 19.8% draw rate), and a 42.3% win rate in text alignment (with a 42.9% draw rate). GenTron also excels in the T2I-CompBench, underscoring its strengths in compositional generation. We believe this work will provide meaningful insights and serve as a valuable reference for future research.
WavSpA: Wavelet Space Attention for Boosting Transformers' Long Sequence Learning Ability
Transformer and its variants are fundamental neural architectures in deep learning. Recent works show that learning attention in the Fourier space can improve the long sequence learning capability of Transformers. We argue that wavelet transform shall be a better choice because it captures both position and frequency information with linear time complexity. Therefore, in this paper, we systematically study the synergy between wavelet transform and Transformers. We propose Wavelet Space Attention (WavSpA) that facilitates attention learning in a learnable wavelet coefficient space which replaces the attention in Transformers by (1) applying forward wavelet transform to project the input sequences to multi-resolution bases, (2) conducting attention learning in the wavelet coefficient space, and (3) reconstructing the representation in input space via backward wavelet transform. Extensive experiments on the Long Range Arena demonstrate that learning attention in the wavelet space using either fixed or adaptive wavelets can consistently improve Transformer's performance and also significantly outperform learning in Fourier space. We further show our method can enhance Transformer's reasoning extrapolation capability over distance on the LEGO chain-of-reasoning task.
DeiT III: Revenge of the ViT
A Vision Transformer (ViT) is a simple neural architecture amenable to serve several computer vision tasks. It has limited built-in architectural priors, in contrast to more recent architectures that incorporate priors either about the input data or of specific tasks. Recent works show that ViTs benefit from self-supervised pre-training, in particular BerT-like pre-training like BeiT. In this paper, we revisit the supervised training of ViTs. Our procedure builds upon and simplifies a recipe introduced for training ResNet-50. It includes a new simple data-augmentation procedure with only 3 augmentations, closer to the practice in self-supervised learning. Our evaluations on Image classification (ImageNet-1k with and without pre-training on ImageNet-21k), transfer learning and semantic segmentation show that our procedure outperforms by a large margin previous fully supervised training recipes for ViT. It also reveals that the performance of our ViT trained with supervision is comparable to that of more recent architectures. Our results could serve as better baselines for recent self-supervised approaches demonstrated on ViT.
Instant Facial Gaussians Translator for Relightable and Interactable Facial Rendering
We propose GauFace, a novel Gaussian Splatting representation, tailored for efficient animation and rendering of physically-based facial assets. Leveraging strong geometric priors and constrained optimization, GauFace ensures a neat and structured Gaussian representation, delivering high fidelity and real-time facial interaction of 30fps@1440p on a Snapdragon 8 Gen 2 mobile platform. Then, we introduce TransGS, a diffusion transformer that instantly translates physically-based facial assets into the corresponding GauFace representations. Specifically, we adopt a patch-based pipeline to handle the vast number of Gaussians effectively. We also introduce a novel pixel-aligned sampling scheme with UV positional encoding to ensure the throughput and rendering quality of GauFace assets generated by our TransGS. Once trained, TransGS can instantly translate facial assets with lighting conditions to GauFace representation, With the rich conditioning modalities, it also enables editing and animation capabilities reminiscent of traditional CG pipelines. We conduct extensive evaluations and user studies, compared to traditional offline and online renderers, as well as recent neural rendering methods, which demonstrate the superior performance of our approach for facial asset rendering. We also showcase diverse immersive applications of facial assets using our TransGS approach and GauFace representation, across various platforms like PCs, phones and even VR headsets.
Polynomial Composition Activations: Unleashing the Dynamics of Large Language Models
Transformers have found extensive applications across various domains due to the powerful fitting capabilities. This success can be partially attributed to their inherent nonlinearity. Thus, in addition to the ReLU function employed in the original transformer architecture, researchers have explored alternative modules such as GeLU and SwishGLU to enhance nonlinearity and thereby augment representational capacity. In this paper, we propose a novel category of polynomial composition activations (PolyCom), designed to optimize the dynamics of transformers. Theoretically, we provide a comprehensive mathematical analysis of PolyCom, highlighting its enhanced expressivity and efficacy relative to other activation functions. Notably, we demonstrate that networks incorporating PolyCom achieve the optimal approximation rate, indicating that PolyCom networks require minimal parameters to approximate general smooth functions in Sobolev spaces. We conduct empirical experiments on the pre-training configurations of large language models (LLMs), including both dense and sparse architectures. By substituting conventional activation functions with PolyCom, we enable LLMs to capture higher-order interactions within the data, thus improving performance metrics in terms of accuracy and convergence rates. Extensive experimental results demonstrate the effectiveness of our method, showing substantial improvements over other activation functions. Code is available at https://github.com/BryceZhuo/PolyCom.
ByteTransformer: A High-Performance Transformer Boosted for Variable-Length Inputs
Transformers have become keystone models in natural language processing over the past decade. They have achieved great popularity in deep learning applications, but the increasing sizes of the parameter spaces required by transformer models generate a commensurate need to accelerate performance. Natural language processing problems are also routinely faced with variable-length sequences, as word counts commonly vary among sentences. Existing deep learning frameworks pad variable-length sequences to a maximal length, which adds significant memory and computational overhead. In this paper, we present ByteTransformer, a high-performance transformer boosted for variable-length inputs. We propose a padding-free algorithm that liberates the entire transformer from redundant computations on zero padded tokens. In addition to algorithmic-level optimization, we provide architecture-aware optimizations for transformer functional modules, especially the performance-critical algorithm Multi-Head Attention (MHA). Experimental results on an NVIDIA A100 GPU with variable-length sequence inputs validate that our fused MHA outperforms PyTorch by 6.13x. The end-to-end performance of ByteTransformer for a forward BERT transformer surpasses state-of-the-art transformer frameworks, such as PyTorch JIT, TensorFlow XLA, Tencent TurboTransformer, Microsoft DeepSpeed-Inference and NVIDIA FasterTransformer, by 87\%, 131\%, 138\%, 74\% and 55\%, respectively. We also demonstrate the general applicability of our optimization methods to other BERT-like models, including ALBERT, DistilBERT, and DeBERTa.
ReverBERT: A State Space Model for Efficient Text-Driven Speech Style Transfer
Text-driven speech style transfer aims to mold the intonation, pace, and timbre of a spoken utterance to match stylistic cues from text descriptions. While existing methods leverage large-scale neural architectures or pre-trained language models, the computational costs often remain high. In this paper, we present ReverBERT, an efficient framework for text-driven speech style transfer that draws inspiration from a state space model (SSM) paradigm, loosely motivated by the image-based method of Wang and Liu~wang2024stylemamba. Unlike image domain techniques, our method operates in the speech space and integrates a discrete Fourier transform of latent speech features to enable smooth and continuous style modulation. We also propose a novel Transformer-based SSM layer for bridging textual style descriptors with acoustic attributes, dramatically reducing inference time while preserving high-quality speech characteristics. Extensive experiments on benchmark speech corpora demonstrate that ReverBERT significantly outperforms baselines in terms of naturalness, expressiveness, and computational efficiency. We release our model and code publicly to foster further research in text-driven speech style transfer.
SceneFormer: Indoor Scene Generation with Transformers
We address the task of indoor scene generation by generating a sequence of objects, along with their locations and orientations conditioned on a room layout. Large-scale indoor scene datasets allow us to extract patterns from user-designed indoor scenes, and generate new scenes based on these patterns. Existing methods rely on the 2D or 3D appearance of these scenes in addition to object positions, and make assumptions about the possible relations between objects. In contrast, we do not use any appearance information, and implicitly learn object relations using the self-attention mechanism of transformers. We show that our model design leads to faster scene generation with similar or improved levels of realism compared to previous methods. Our method is also flexible, as it can be conditioned not only on the room layout but also on text descriptions of the room, using only the cross-attention mechanism of transformers. Our user study shows that our generated scenes are preferred to the state-of-the-art FastSynth scenes 53.9% and 56.7% of the time for bedroom and living room scenes, respectively. At the same time, we generate a scene in 1.48 seconds on average, 20% faster than FastSynth.
MiniViT: Compressing Vision Transformers with Weight Multiplexing
Vision Transformer (ViT) models have recently drawn much attention in computer vision due to their high model capability. However, ViT models suffer from huge number of parameters, restricting their applicability on devices with limited memory. To alleviate this problem, we propose MiniViT, a new compression framework, which achieves parameter reduction in vision transformers while retaining the same performance. The central idea of MiniViT is to multiplex the weights of consecutive transformer blocks. More specifically, we make the weights shared across layers, while imposing a transformation on the weights to increase diversity. Weight distillation over self-attention is also applied to transfer knowledge from large-scale ViT models to weight-multiplexed compact models. Comprehensive experiments demonstrate the efficacy of MiniViT, showing that it can reduce the size of the pre-trained Swin-B transformer by 48\%, while achieving an increase of 1.0\% in Top-1 accuracy on ImageNet. Moreover, using a single-layer of parameters, MiniViT is able to compress DeiT-B by 9.7 times from 86M to 9M parameters, without seriously compromising the performance. Finally, we verify the transferability of MiniViT by reporting its performance on downstream benchmarks. Code and models are available at here.
Efficient Transformers: A Survey
Transformer model architectures have garnered immense interest lately due to their effectiveness across a range of domains like language, vision and reinforcement learning. In the field of natural language processing for example, Transformers have become an indispensable staple in the modern deep learning stack. Recently, a dizzying number of "X-former" models have been proposed - Reformer, Linformer, Performer, Longformer, to name a few - which improve upon the original Transformer architecture, many of which make improvements around computational and memory efficiency. With the aim of helping the avid researcher navigate this flurry, this paper characterizes a large and thoughtful selection of recent efficiency-flavored "X-former" models, providing an organized and comprehensive overview of existing work and models across multiple domains.
TPTT: Transforming Pretrained Transformer into Titans
Recent advances in large language models (LLMs) have led to remarkable progress in natural language processing, but their computational and memory demands remain a significant challenge, particularly for long-context inference. We introduce TPTT (Transforming Pretrained Transformer into Titans), a novel framework for enhancing pretrained Transformer models with efficient linearized attention mechanisms and advanced memory management. TPTT employs techniques such as Memory as Gate (MaG) and mixed linearized attention (LiZA). It is fully compatible with the Hugging Face Transformers library, enabling seamless adaptation of any causal LLM through parameter-efficient fine-tuning (LoRA) without full retraining. We show the effectiveness of TPTT on the MMLU benchmark with models of approximately 1 billion parameters, observing substantial improvements in both efficiency and accuracy. For instance, Titans-Llama-3.2-1B achieves a 20% increase in Exact Match (EM) over its baseline. Statistical analyses and comparisons with recent state-of-the-art methods confirm the practical scalability and robustness of TPTT. Code is available at https://github.com/fabienfrfr/tptt . Python package at https://pypi.org/project/tptt/ .
Learning A Sparse Transformer Network for Effective Image Deraining
Transformers-based methods have achieved significant performance in image deraining as they can model the non-local information which is vital for high-quality image reconstruction. In this paper, we find that most existing Transformers usually use all similarities of the tokens from the query-key pairs for the feature aggregation. However, if the tokens from the query are different from those of the key, the self-attention values estimated from these tokens also involve in feature aggregation, which accordingly interferes with the clear image restoration. To overcome this problem, we propose an effective DeRaining network, Sparse Transformer (DRSformer) that can adaptively keep the most useful self-attention values for feature aggregation so that the aggregated features better facilitate high-quality image reconstruction. Specifically, we develop a learnable top-k selection operator to adaptively retain the most crucial attention scores from the keys for each query for better feature aggregation. Simultaneously, as the naive feed-forward network in Transformers does not model the multi-scale information that is important for latent clear image restoration, we develop an effective mixed-scale feed-forward network to generate better features for image deraining. To learn an enriched set of hybrid features, which combines local context from CNN operators, we equip our model with mixture of experts feature compensator to present a cooperation refinement deraining scheme. Extensive experimental results on the commonly used benchmarks demonstrate that the proposed method achieves favorable performance against state-of-the-art approaches. The source code and trained models are available at https://github.com/cschenxiang/DRSformer.
Heterogeneous Encoders Scaling In The Transformer For Neural Machine Translation
Although the Transformer is currently the best-performing architecture in the homogeneous configuration (self-attention only) in Neural Machine Translation, many State-of-the-Art models in Natural Language Processing are made of a combination of different Deep Learning approaches. However, these models often focus on combining a couple of techniques only and it is unclear why some methods are chosen over others. In this work, we investigate the effectiveness of integrating an increasing number of heterogeneous methods. Based on a simple combination strategy and performance-driven synergy criteria, we designed the Multi-Encoder Transformer, which consists of up to five diverse encoders. Results showcased that our approach can improve the quality of the translation across a variety of languages and dataset sizes and it is particularly effective in low-resource languages where we observed a maximum increase of 7.16 BLEU compared to the single-encoder model.
RepQuant: Towards Accurate Post-Training Quantization of Large Transformer Models via Scale Reparameterization
Large transformer models have demonstrated remarkable success. Post-training quantization (PTQ), which requires only a small dataset for calibration and avoids end-to-end retraining, is a promising solution for compressing these large models. Regrettably, existing PTQ methods typically exhibit non-trivial performance loss. We find that the performance bottleneck stems from over-consideration of hardware compatibility in the quantization process, compelling them to reluctantly employ simple quantizers, albeit at the expense of accuracy. With the above insights, we propose RepQuant, a novel PTQ framework with quantization-inference decoupling paradigm to address the above issues. RepQuant employs complex quantizers in the quantization process and simplified quantizers in the inference process, and performs mathematically equivalent transformations between the two through quantization scale reparameterization, thus ensuring both accurate quantization and efficient inference. More specifically, we focus on two components with extreme distributions: LayerNorm activations and Softmax activations. Initially, we apply channel-wise quantization and log2 quantization, respectively, which are tailored to their distributions. In particular, for the former, we introduce a learnable per-channel dual clipping scheme, which is designed to efficiently identify outliers in the unbalanced activations with fine granularity. Then, we reparameterize the scales to hardware-friendly layer-wise quantization and log2 quantization for inference. Moreover, quantized weight reconstruction is seamlessly integrated into the above procedure to further push the performance limits. Extensive experiments are performed on different large-scale transformer variants on multiple tasks, including vision, language, and multi-modal transformers, and RepQuant encouragingly demonstrates significant performance advantages.
Transformers are Multi-State RNNs
Transformers are considered conceptually different compared to the previous generation of state-of-the-art NLP models - recurrent neural networks (RNNs). In this work, we demonstrate that decoder-only transformers can in fact be conceptualized as infinite multi-state RNNs - an RNN variant with unlimited hidden state size. We further show that pretrained transformers can be converted into finite multi-state RNNs by fixing the size of their hidden state. We observe that several existing transformers cache compression techniques can be framed as such conversion policies, and introduce a novel policy, TOVA, which is simpler compared to these policies. Our experiments with several long range tasks indicate that TOVA outperforms all other baseline policies, while being nearly on par with the full (infinite) model, and using in some cases only 1{8} of the original cache size. Our results indicate that transformer decoder LLMs often behave in practice as RNNs. They also lay out the option of mitigating one of their most painful computational bottlenecks - the size of their cache memory. We publicly release our code at https://github.com/schwartz-lab-NLP/TOVA.
MaskGIT: Masked Generative Image Transformer
Generative transformers have experienced rapid popularity growth in the computer vision community in synthesizing high-fidelity and high-resolution images. The best generative transformer models so far, however, still treat an image naively as a sequence of tokens, and decode an image sequentially following the raster scan ordering (i.e. line-by-line). We find this strategy neither optimal nor efficient. This paper proposes a novel image synthesis paradigm using a bidirectional transformer decoder, which we term MaskGIT. During training, MaskGIT learns to predict randomly masked tokens by attending to tokens in all directions. At inference time, the model begins with generating all tokens of an image simultaneously, and then refines the image iteratively conditioned on the previous generation. Our experiments demonstrate that MaskGIT significantly outperforms the state-of-the-art transformer model on the ImageNet dataset, and accelerates autoregressive decoding by up to 64x. Besides, we illustrate that MaskGIT can be easily extended to various image editing tasks, such as inpainting, extrapolation, and image manipulation.
ViT-CoMer: Vision Transformer with Convolutional Multi-scale Feature Interaction for Dense Predictions
Although Vision Transformer (ViT) has achieved significant success in computer vision, it does not perform well in dense prediction tasks due to the lack of inner-patch information interaction and the limited diversity of feature scale. Most existing studies are devoted to designing vision-specific transformers to solve the above problems, which introduce additional pre-training costs. Therefore, we present a plain, pre-training-free, and feature-enhanced ViT backbone with Convolutional Multi-scale feature interaction, named ViT-CoMer, which facilitates bidirectional interaction between CNN and transformer. Compared to the state-of-the-art, ViT-CoMer has the following advantages: (1) We inject spatial pyramid multi-receptive field convolutional features into the ViT architecture, which effectively alleviates the problems of limited local information interaction and single-feature representation in ViT. (2) We propose a simple and efficient CNN-Transformer bidirectional fusion interaction module that performs multi-scale fusion across hierarchical features, which is beneficial for handling dense prediction tasks. (3) We evaluate the performance of ViT-CoMer across various dense prediction tasks, different frameworks, and multiple advanced pre-training. Notably, our ViT-CoMer-L achieves 64.3% AP on COCO val2017 without extra training data, and 62.1% mIoU on ADE20K val, both of which are comparable to state-of-the-art methods. We hope ViT-CoMer can serve as a new backbone for dense prediction tasks to facilitate future research. The code will be released at https://github.com/Traffic-X/ViT-CoMer.
Towards Better Disentanglement in Non-Autoregressive Zero-Shot Expressive Voice Conversion
Expressive voice conversion aims to transfer both speaker identity and expressive attributes from a target speech to a given source speech. In this work, we improve over a self-supervised, non-autoregressive framework with a conditional variational autoencoder, focusing on reducing source timbre leakage and improving linguistic-acoustic disentanglement for better style transfer. To minimize style leakage, we use multilingual discrete speech units for content representation and reinforce embeddings with augmentation-based similarity loss and mix-style layer normalization. To enhance expressivity transfer, we incorporate local F0 information via cross-attention and extract style embeddings enriched with global pitch and energy features. Experiments show our model outperforms baselines in emotion and speaker similarity, demonstrating superior style adaptation and reduced source style leakage.
On the Expressive Power of a Variant of the Looped Transformer
Besides natural language processing, transformers exhibit extraordinary performance in solving broader applications, including scientific computing and computer vision. Previous works try to explain this from the expressive power and capability perspectives that standard transformers are capable of performing some algorithms. To empower transformers with algorithmic capabilities and motivated by the recently proposed looped transformer (Yang et al., 2024; Giannou et al., 2023), we design a novel transformer block, dubbed Algorithm Transformer (abbreviated as AlgoFormer). Compared with the standard transformer and vanilla looped transformer, the proposed AlgoFormer can achieve significantly higher expressiveness in algorithm representation when using the same number of parameters. In particular, inspired by the structure of human-designed learning algorithms, our transformer block consists of a pre-transformer that is responsible for task pre-processing, a looped transformer for iterative optimization algorithms, and a post-transformer for producing the desired results after post-processing. We provide theoretical evidence of the expressive power of the AlgoFormer in solving some challenging problems, mirroring human-designed algorithms. Furthermore, some theoretical and empirical results are presented to show that the designed transformer has the potential to be smarter than human-designed algorithms. Experimental results demonstrate the empirical superiority of the proposed transformer in that it outperforms the standard transformer and vanilla looped transformer in some challenging tasks.
Compress image to patches for Vision Transformer
The Vision Transformer (ViT) has made significant strides in the field of computer vision. However, as the depth of the model and the resolution of the input images increase, the computational cost associated with training and running ViT models has surged dramatically. This paper proposes a hybrid model based on CNN and Vision Transformer, named CI2P-ViT. The model incorporates a module called CI2P, which utilizes the CompressAI encoder to compress images and subsequently generates a sequence of patches through a series of convolutions. CI2P can replace the Patch Embedding component in the ViT model, enabling seamless integration into existing ViT models. Compared to ViT-B/16, CI2P-ViT has the number of patches input to the self-attention layer reduced to a quarter of the original. This design not only significantly reduces the computational cost of the ViT model but also effectively enhances the model's accuracy by introducing the inductive bias properties of CNN. The ViT model's precision is markedly enhanced. When trained from the ground up on the Animals-10 dataset, CI2P-ViT achieved an accuracy rate of 92.37%, representing a 3.3% improvement over the ViT-B/16 baseline. Additionally, the model's computational operations, measured in floating-point operations per second (FLOPs), were diminished by 63.35%, and it exhibited a 2-fold increase in training velocity on identical hardware configurations.
Activator: GLU Activations as The Core Functions of a Vision Transformer
Transformer architecture currently represents the main driver behind many successes in a variety of tasks addressed by deep learning, especially the recent advances in natural language processing (NLP) culminating with large language models (LLM). In addition, transformer architecture has found a wide spread of interest from computer vision (CV) researchers and practitioners, allowing for many advancements in vision-related tasks and opening the door for multi-task and multi-modal deep learning architectures that share the same principle of operation. One drawback to these architectures is their reliance on the scaled dot product attention mechanism with the softmax activation function, which is computationally expensive and requires large compute capabilities both for training and inference. This paper investigates substituting the attention mechanism usually adopted for transformer architecture with an architecture incorporating gated linear unit (GLU) activation within a multi-layer perceptron (MLP) structure in conjunction with the default MLP incorporated in the traditional transformer design. Another step forward taken by this paper is to eliminate the second non-gated MLP to further reduce the computational cost. Experimental assessments conducted by this research show that both proposed modifications and reductions offer competitive performance in relation to baseline architectures, in support of the aims of this work in establishing a more efficient yet capable alternative to the traditional attention mechanism as the core component in designing transformer architectures.
CogView2: Faster and Better Text-to-Image Generation via Hierarchical Transformers
The development of the transformer-based text-to-image models are impeded by its slow generation and complexity for high-resolution images. In this work, we put forward a solution based on hierarchical transformers and local parallel auto-regressive generation. We pretrain a 6B-parameter transformer with a simple and flexible self-supervised task, Cross-modal general language model (CogLM), and finetune it for fast super-resolution. The new text-to-image system, CogView2, shows very competitive generation compared to concurrent state-of-the-art DALL-E-2, and naturally supports interactive text-guided editing on images.
Zipformer: A faster and better encoder for automatic speech recognition
The Conformer has become the most popular encoder model for automatic speech recognition (ASR). It adds convolution modules to a transformer to learn both local and global dependencies. In this work we describe a faster, more memory-efficient, and better-performing transformer, called Zipformer. Modeling changes include: 1) a U-Net-like encoder structure where middle stacks operate at lower frame rates; 2) reorganized block structure with more modules, within which we re-use attention weights for efficiency; 3) a modified form of LayerNorm called BiasNorm allows us to retain some length information; 4) new activation functions SwooshR and SwooshL work better than Swish. We also propose a new optimizer, called ScaledAdam, which scales the update by each tensor's current scale to keep the relative change about the same, and also explictly learns the parameter scale. It achieves faster convergence and better performance than Adam. Extensive experiments on LibriSpeech, Aishell-1, and WenetSpeech datasets demonstrate the effectiveness of our proposed Zipformer over other state-of-the-art ASR models. Our code is publicly available at https://github.com/k2-fsa/icefall.
On Learning the Transformer Kernel
In this work we introduce KERNELIZED TRANSFORMER, a generic, scalable, data driven framework for learning the kernel function in Transformers. Our framework approximates the Transformer kernel as a dot product between spectral feature maps and learns the kernel by learning the spectral distribution. This not only helps in learning a generic kernel end-to-end, but also reduces the time and space complexity of Transformers from quadratic to linear. We show that KERNELIZED TRANSFORMERS achieve performance comparable to existing efficient Transformer architectures, both in terms of accuracy as well as computational efficiency. Our study also demonstrates that the choice of the kernel has a substantial impact on performance, and kernel learning variants are competitive alternatives to fixed kernel Transformers, both in long as well as short sequence tasks.
ECViT: Efficient Convolutional Vision Transformer with Local-Attention and Multi-scale Stages
Vision Transformers (ViTs) have revolutionized computer vision by leveraging self-attention to model long-range dependencies. However, ViTs face challenges such as high computational costs due to the quadratic scaling of self-attention and the requirement of a large amount of training data. To address these limitations, we propose the Efficient Convolutional Vision Transformer (ECViT), a hybrid architecture that effectively combines the strengths of CNNs and Transformers. ECViT introduces inductive biases such as locality and translation invariance, inherent to Convolutional Neural Networks (CNNs) into the Transformer framework by extracting patches from low-level features and enhancing the encoder with convolutional operations. Additionally, it incorporates local-attention and a pyramid structure to enable efficient multi-scale feature extraction and representation. Experimental results demonstrate that ECViT achieves an optimal balance between performance and efficiency, outperforming state-of-the-art models on various image classification tasks while maintaining low computational and storage requirements. ECViT offers an ideal solution for applications that prioritize high efficiency without compromising performance.
DuoFormer: Leveraging Hierarchical Representations by Local and Global Attention Vision Transformer
Despite the widespread adoption of transformers in medical applications, the exploration of multi-scale learning through transformers remains limited, while hierarchical representations are considered advantageous for computer-aided medical diagnosis. We propose a novel hierarchical transformer model that adeptly integrates the feature extraction capabilities of Convolutional Neural Networks (CNNs) with the advanced representational potential of Vision Transformers (ViTs). Addressing the lack of inductive biases and dependence on extensive training datasets in ViTs, our model employs a CNN backbone to generate hierarchical visual representations. These representations are adapted for transformer input through an innovative patch tokenization process, preserving the inherited multi-scale inductive biases. We also introduce a scale-wise attention mechanism that directly captures intra-scale and inter-scale associations. This mechanism complements patch-wise attention by enhancing spatial understanding and preserving global perception, which we refer to as local and global attention, respectively. Our model significantly outperforms baseline models in terms of classification accuracy, demonstrating its efficiency in bridging the gap between Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). The components are designed as plug-and-play for different CNN architectures and can be adapted for multiple applications. The code is available at https://github.com/xiaoyatang/DuoFormer.git.
Vision Transformers Need Registers
Transformers have recently emerged as a powerful tool for learning visual representations. In this paper, we identify and characterize artifacts in feature maps of both supervised and self-supervised ViT networks. The artifacts correspond to high-norm tokens appearing during inference primarily in low-informative background areas of images, that are repurposed for internal computations. We propose a simple yet effective solution based on providing additional tokens to the input sequence of the Vision Transformer to fill that role. We show that this solution fixes that problem entirely for both supervised and self-supervised models, sets a new state of the art for self-supervised visual models on dense visual prediction tasks, enables object discovery methods with larger models, and most importantly leads to smoother feature maps and attention maps for downstream visual processing.
Do Vision Transformers See Like Convolutional Neural Networks?
Convolutional neural networks (CNNs) have so far been the de-facto model for visual data. Recent work has shown that (Vision) Transformer models (ViT) can achieve comparable or even superior performance on image classification tasks. This raises a central question: how are Vision Transformers solving these tasks? Are they acting like convolutional networks, or learning entirely different visual representations? Analyzing the internal representation structure of ViTs and CNNs on image classification benchmarks, we find striking differences between the two architectures, such as ViT having more uniform representations across all layers. We explore how these differences arise, finding crucial roles played by self-attention, which enables early aggregation of global information, and ViT residual connections, which strongly propagate features from lower to higher layers. We study the ramifications for spatial localization, demonstrating ViTs successfully preserve input spatial information, with noticeable effects from different classification methods. Finally, we study the effect of (pretraining) dataset scale on intermediate features and transfer learning, and conclude with a discussion on connections to new architectures such as the MLP-Mixer.
JoyHallo: Digital human model for Mandarin
In audio-driven video generation, creating Mandarin videos presents significant challenges. Collecting comprehensive Mandarin datasets is difficult, and the complex lip movements in Mandarin further complicate model training compared to English. In this study, we collected 29 hours of Mandarin speech video from JD Health International Inc. employees, resulting in the jdh-Hallo dataset. This dataset includes a diverse range of ages and speaking styles, encompassing both conversational and specialized medical topics. To adapt the JoyHallo model for Mandarin, we employed the Chinese wav2vec2 model for audio feature embedding. A semi-decoupled structure is proposed to capture inter-feature relationships among lip, expression, and pose features. This integration not only improves information utilization efficiency but also accelerates inference speed by 14.3%. Notably, JoyHallo maintains its strong ability to generate English videos, demonstrating excellent cross-language generation capabilities. The code and models are available at https://jdh-algo.github.io/JoyHallo.
MMFformer: Multimodal Fusion Transformer Network for Depression Detection
Depression is a serious mental health illness that significantly affects an individual's well-being and quality of life, making early detection crucial for adequate care and treatment. Detecting depression is often difficult, as it is based primarily on subjective evaluations during clinical interviews. Hence, the early diagnosis of depression, thanks to the content of social networks, has become a prominent research area. The extensive and diverse nature of user-generated information poses a significant challenge, limiting the accurate extraction of relevant temporal information and the effective fusion of data across multiple modalities. This paper introduces MMFformer, a multimodal depression detection network designed to retrieve depressive spatio-temporal high-level patterns from multimodal social media information. The transformer network with residual connections captures spatial features from videos, and a transformer encoder is exploited to design important temporal dynamics in audio. Moreover, the fusion architecture fused the extracted features through late and intermediate fusion strategies to find out the most relevant intermodal correlations among them. Finally, the proposed network is assessed on two large-scale depression detection datasets, and the results clearly reveal that it surpasses existing state-of-the-art approaches, improving the F1-Score by 13.92% for D-Vlog dataset and 7.74% for LMVD dataset. The code is made available publicly at https://github.com/rezwanh001/Large-Scale-Multimodal-Depression-Detection.
UniFormerV2: Spatiotemporal Learning by Arming Image ViTs with Video UniFormer
Learning discriminative spatiotemporal representation is the key problem of video understanding. Recently, Vision Transformers (ViTs) have shown their power in learning long-term video dependency with self-attention. Unfortunately, they exhibit limitations in tackling local video redundancy, due to the blind global comparison among tokens. UniFormer has successfully alleviated this issue, by unifying convolution and self-attention as a relation aggregator in the transformer format. However, this model has to require a tiresome and complicated image-pretraining phrase, before being finetuned on videos. This blocks its wide usage in practice. On the contrary, open-sourced ViTs are readily available and well-pretrained with rich image supervision. Based on these observations, we propose a generic paradigm to build a powerful family of video networks, by arming the pretrained ViTs with efficient UniFormer designs. We call this family UniFormerV2, since it inherits the concise style of the UniFormer block. But it contains brand-new local and global relation aggregators, which allow for preferable accuracy-computation balance by seamlessly integrating advantages from both ViTs and UniFormer. Without any bells and whistles, our UniFormerV2 gets the state-of-the-art recognition performance on 8 popular video benchmarks, including scene-related Kinetics-400/600/700 and Moments in Time, temporal-related Something-Something V1/V2, untrimmed ActivityNet and HACS. In particular, it is the first model to achieve 90% top-1 accuracy on Kinetics-400, to our best knowledge. Code will be available at https://github.com/OpenGVLab/UniFormerV2.
Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding
Predicting physical properties of materials from their crystal structures is a fundamental problem in materials science. In peripheral areas such as the prediction of molecular properties, fully connected attention networks have been shown to be successful. However, unlike these finite atom arrangements, crystal structures are infinitely repeating, periodic arrangements of atoms, whose fully connected attention results in infinitely connected attention. In this work, we show that this infinitely connected attention can lead to a computationally tractable formulation, interpreted as neural potential summation, that performs infinite interatomic potential summations in a deeply learned feature space. We then propose a simple yet effective Transformer-based encoder architecture for crystal structures called Crystalformer. Compared to an existing Transformer-based model, the proposed model requires only 29.4% of the number of parameters, with minimal modifications to the original Transformer architecture. Despite the architectural simplicity, the proposed method outperforms state-of-the-art methods for various property regression tasks on the Materials Project and JARVIS-DFT datasets.
Detection Transformer for Teeth Detection, Segmentation, and Numbering in Oral Rare Diseases: Focus on Data Augmentation and Inpainting Techniques
In this work, we focused on deep learning image processing in the context of oral rare diseases, which pose challenges due to limited data availability. A crucial step involves teeth detection, segmentation and numbering in panoramic radiographs. To this end, we used a dataset consisting of 156 panoramic radiographs from individuals with rare oral diseases and labeled by experts. We trained the Detection Transformer (DETR) neural network for teeth detection, segmentation, and numbering the 52 teeth classes. In addition, we used data augmentation techniques, including geometric transformations. Finally, we generated new panoramic images using inpainting techniques with stable diffusion, by removing teeth from a panoramic radiograph and integrating teeth into it. The results showed a mAP exceeding 0,69 for DETR without data augmentation. The mAP was improved to 0,82 when data augmentation techniques are used. Furthermore, we observed promising performances when using new panoramic radiographs generated with inpainting technique, with mAP of 0,76.
TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters
Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on a fixed number of parameters within linear projections. When architectural modifications (e.g., channel dimensions) are introduced, the entire model typically requires retraining from scratch. As model sizes continue growing, this strategy results in increasingly high computational costs and becomes unsustainable. To overcome this problem, we introduce TokenFormer, a natively scalable architecture that leverages the attention mechanism not only for computations among input tokens but also for interactions between tokens and model parameters, thereby enhancing architectural flexibility. By treating model parameters as tokens, we replace all the linear projections in Transformers with our token-parameter attention layer, where input tokens act as queries and model parameters as keys and values. This reformulation allows for progressive and efficient scaling without necessitating retraining from scratch. Our model scales from 124M to 1.4B parameters by incrementally adding new key-value parameter pairs, achieving performance comparable to Transformers trained from scratch while greatly reducing training costs. Code and models are available at https://github.com/Haiyang-W/TokenFormer.
Relaxed Attention for Transformer Models
The powerful modeling capabilities of all-attention-based transformer architectures often cause overfitting and - for natural language processing tasks - lead to an implicitly learned internal language model in the autoregressive transformer decoder complicating the integration of external language models. In this paper, we explore relaxed attention, a simple and easy-to-implement smoothing of the attention weights, yielding a two-fold improvement to the general transformer architecture: First, relaxed attention provides regularization when applied to the self-attention layers in the encoder. Second, we show that it naturally supports the integration of an external language model as it suppresses the implicitly learned internal language model by relaxing the cross attention in the decoder. We demonstrate the benefit of relaxed attention across several tasks with clear improvement in combination with recent benchmark approaches. Specifically, we exceed the former state-of-the-art performance of 26.90% word error rate on the largest public lip-reading LRS3 benchmark with a word error rate of 26.31%, as well as we achieve a top-performing BLEU score of 37.67 on the IWSLT14 (DErightarrowEN) machine translation task without external language models and virtually no additional model parameters. Code and models will be made publicly available.
A Study on Transformer Configuration and Training Objective
Transformer-based models have delivered impressive results on many tasks, particularly vision and language tasks. In many model training situations, conventional configurations are typically adopted. For example, we often set the base model with hidden dimensions (i.e. model width) to be 768 and the number of transformer layers (i.e. model depth) to be 12. In this paper, we revisit these conventional configurations. Through theoretical analysis and experimental evaluation, we show that the masked autoencoder is effective in alleviating the over-smoothing issue in deep transformer training. Based on this finding, we propose Bamboo, an idea of using deeper and narrower transformer configurations, for masked autoencoder training. On ImageNet, with such a simple change in configuration, re-designed model achieves 87.1% top-1 accuracy and outperforms SoTA models like MAE and BEiT. On language tasks, re-designed model outperforms BERT with default setting by 1.1 points on average, on GLUE datasets.
Bag of Design Choices for Inference of High-Resolution Masked Generative Transformer
Text-to-image diffusion models (DMs) develop at an unprecedented pace, supported by thorough theoretical exploration and empirical analysis. Unfortunately, the discrepancy between DMs and autoregressive models (ARMs) complicates the path toward achieving the goal of unified vision and language generation. Recently, the masked generative Transformer (MGT) serves as a promising intermediary between DM and ARM by predicting randomly masked image tokens (i.e., masked image modeling), combining the efficiency of DM with the discrete token nature of ARM. However, we find that the comprehensive analyses regarding the inference for MGT are virtually non-existent, and thus we aim to present positive design choices to fill this gap. We modify and re-design a set of DM-based inference techniques for MGT and further elucidate their performance on MGT. We also discuss the approach to correcting token's distribution to enhance inference. Extensive experiments and empirical analyses lead to concrete and effective design choices, and these design choices can be merged to achieve further performance gains. For instance, in terms of enhanced inference, we achieve winning rates of approximately 70% compared to vanilla sampling on HPS v2 with the recent SOTA MGT Meissonic. Our contributions have the potential to further enhance the capabilities and future development of MGTs.
HTNet for micro-expression recognition
Facial expression is related to facial muscle contractions and different muscle movements correspond to different emotional states. For micro-expression recognition, the muscle movements are usually subtle, which has a negative impact on the performance of current facial emotion recognition algorithms. Most existing methods use self-attention mechanisms to capture relationships between tokens in a sequence, but they do not take into account the inherent spatial relationships between facial landmarks. This can result in sub-optimal performance on micro-expression recognition tasks.Therefore, learning to recognize facial muscle movements is a key challenge in the area of micro-expression recognition. In this paper, we propose a Hierarchical Transformer Network (HTNet) to identify critical areas of facial muscle movement. HTNet includes two major components: a transformer layer that leverages the local temporal features and an aggregation layer that extracts local and global semantical facial features. Specifically, HTNet divides the face into four different facial areas: left lip area, left eye area, right eye area and right lip area. The transformer layer is used to focus on representing local minor muscle movement with local self-attention in each area. The aggregation layer is used to learn the interactions between eye areas and lip areas. The experiments on four publicly available micro-expression datasets show that the proposed approach outperforms previous methods by a large margin. The codes and models are available at: https://github.com/wangzhifengharrison/HTNet
Less is More: Pay Less Attention in Vision Transformers
Transformers have become one of the dominant architectures in deep learning, particularly as a powerful alternative to convolutional neural networks (CNNs) in computer vision. However, Transformer training and inference in previous works can be prohibitively expensive due to the quadratic complexity of self-attention over a long sequence of representations, especially for high-resolution dense prediction tasks. To this end, we present a novel Less attention vIsion Transformer (LIT), building upon the fact that the early self-attention layers in Transformers still focus on local patterns and bring minor benefits in recent hierarchical vision Transformers. Specifically, we propose a hierarchical Transformer where we use pure multi-layer perceptrons (MLPs) to encode rich local patterns in the early stages while applying self-attention modules to capture longer dependencies in deeper layers. Moreover, we further propose a learned deformable token merging module to adaptively fuse informative patches in a non-uniform manner. The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation, serving as a strong backbone for many vision tasks. Code is available at: https://github.com/zhuang-group/LIT
Toward a Deeper Understanding: RetNet Viewed through Convolution
The success of Vision Transformer (ViT) has been widely reported on a wide range of image recognition tasks. ViT can learn global dependencies superior to CNN, yet CNN's inherent locality can substitute for expensive training resources. Recently, the outstanding performance of RetNet in the field of language modeling has garnered attention, surpassing that of the Transformer with explicit local modeling, shifting researchers' focus towards Transformers in the CV field. This paper investigates the effectiveness of RetNet from a CNN perspective and presents a variant of RetNet tailored to the visual domain. Similar to RetNet we improves ViT's local modeling by applying a weight mask on the original self-attention matrix. A straightforward way to locally adapt the self-attention matrix can be realized by an element-wise learnable weight mask (ELM), for which our preliminary results show promising results. However, the element-wise simple learnable weight mask not only induces a non-trivial additional parameter overhead but also increases the optimization complexity. To this end, this work proposes a novel Gaussian mixture mask (GMM) in which one mask only has two learnable parameters and it can be conveniently used in any ViT variants whose attention mechanism allows the use of masks. Experimental results on multiple small datasets demonstrate that the effectiveness of our proposed Gaussian mask for boosting ViTs for free (almost zero additional parameter or computation cost). Our code can be publicly available at https://github.com/CatworldLee/Gaussian-Mixture-Mask-Attention.
Vision Transformers with Self-Distilled Registers
Vision Transformers (ViTs) have emerged as the dominant architecture for visual processing tasks, demonstrating excellent scalability with increased training data and model size. However, recent work has identified the emergence of artifact tokens in ViTs that are incongruous with the local semantics. These anomalous tokens degrade ViT performance in tasks that require fine-grained localization or structural coherence. An effective mitigation of this issue is to the addition of register tokens to ViTs, which implicitly "absorb" the artifact term during training. Given the availability of various large-scale pre-trained ViTs, in this paper we aim at equipping them with such register tokens without the need of re-training them from scratch, which is infeasible considering their size. Specifically, we propose Post Hoc Registers (PH-Reg), an efficient self-distillation method that integrates registers into an existing ViT without requiring additional labeled data and full retraining. PH-Reg initializes both teacher and student networks from the same pre-trained ViT. The teacher remains frozen and unmodified, while the student is augmented with randomly initialized register tokens. By applying test-time augmentation to the teacher's inputs, we generate denoised dense embeddings free of artifacts, which are then used to optimize only a small subset of unlocked student weights. We show that our approach can effectively reduce the number of artifact tokens, improving the segmentation and depth prediction of the student ViT under zero-shot and linear probing.
Media2Face: Co-speech Facial Animation Generation With Multi-Modality Guidance
The synthesis of 3D facial animations from speech has garnered considerable attention. Due to the scarcity of high-quality 4D facial data and well-annotated abundant multi-modality labels, previous methods often suffer from limited realism and a lack of lexible conditioning. We address this challenge through a trilogy. We first introduce Generalized Neural Parametric Facial Asset (GNPFA), an efficient variational auto-encoder mapping facial geometry and images to a highly generalized expression latent space, decoupling expressions and identities. Then, we utilize GNPFA to extract high-quality expressions and accurate head poses from a large array of videos. This presents the M2F-D dataset, a large, diverse, and scan-level co-speech 3D facial animation dataset with well-annotated emotional and style labels. Finally, we propose Media2Face, a diffusion model in GNPFA latent space for co-speech facial animation generation, accepting rich multi-modality guidances from audio, text, and image. Extensive experiments demonstrate that our model not only achieves high fidelity in facial animation synthesis but also broadens the scope of expressiveness and style adaptability in 3D facial animation.
HiT-SR: Hierarchical Transformer for Efficient Image Super-Resolution
Transformers have exhibited promising performance in computer vision tasks including image super-resolution (SR). However, popular transformer-based SR methods often employ window self-attention with quadratic computational complexity to window sizes, resulting in fixed small windows with limited receptive fields. In this paper, we present a general strategy to convert transformer-based SR networks to hierarchical transformers (HiT-SR), boosting SR performance with multi-scale features while maintaining an efficient design. Specifically, we first replace the commonly used fixed small windows with expanding hierarchical windows to aggregate features at different scales and establish long-range dependencies. Considering the intensive computation required for large windows, we further design a spatial-channel correlation method with linear complexity to window sizes, efficiently gathering spatial and channel information from hierarchical windows. Extensive experiments verify the effectiveness and efficiency of our HiT-SR, and our improved versions of SwinIR-Light, SwinIR-NG, and SRFormer-Light yield state-of-the-art SR results with fewer parameters, FLOPs, and faster speeds (sim7times).
Accelerating Transformers with Spectrum-Preserving Token Merging
Increasing the throughput of the Transformer architecture, a foundational component used in numerous state-of-the-art models for vision and language tasks (e.g., GPT, LLaVa), is an important problem in machine learning. One recent and effective strategy is to merge token representations within Transformer models, aiming to reduce computational and memory requirements while maintaining accuracy. Prior works have proposed algorithms based on Bipartite Soft Matching (BSM), which divides tokens into distinct sets and merges the top k similar tokens. However, these methods have significant drawbacks, such as sensitivity to token-splitting strategies and damage to informative tokens in later layers. This paper presents a novel paradigm called PiToMe, which prioritizes the preservation of informative tokens using an additional metric termed the energy score. This score identifies large clusters of similar tokens as high-energy, indicating potential candidates for merging, while smaller (unique and isolated) clusters are considered as low-energy and preserved. Experimental findings demonstrate that PiToMe saved from 40-60\% FLOPs of the base models while exhibiting superior off-the-shelf performance on image classification (0.5\% average performance drop of ViT-MAE-H compared to 2.6\% as baselines), image-text retrieval (0.3\% average performance drop of CLIP on Flickr30k compared to 4.5\% as others), and analogously in visual questions answering with LLaVa-7B. Furthermore, PiToMe is theoretically shown to preserve intrinsic spectral properties of the original token space under mild conditions
Pay Attention to MLPs
Transformers have become one of the most important architectural innovations in deep learning and have enabled many breakthroughs over the past few years. Here we propose a simple network architecture, gMLP, based on MLPs with gating, and show that it can perform as well as Transformers in key language and vision applications. Our comparisons show that self-attention is not critical for Vision Transformers, as gMLP can achieve the same accuracy. For BERT, our model achieves parity with Transformers on pretraining perplexity and is better on some downstream NLP tasks. On finetuning tasks where gMLP performs worse, making the gMLP model substantially larger can close the gap with Transformers. In general, our experiments show that gMLP can scale as well as Transformers over increased data and compute.
Self-slimmed Vision Transformer
Vision transformers (ViTs) have become the popular structures and outperformed convolutional neural networks (CNNs) on various vision tasks. However, such powerful transformers bring a huge computation burden, because of the exhausting token-to-token comparison. The previous works focus on dropping insignificant tokens to reduce the computational cost of ViTs. But when the dropping ratio increases, this hard manner will inevitably discard the vital tokens, which limits its efficiency. To solve the issue, we propose a generic self-slimmed learning approach for vanilla ViTs, namely SiT. Specifically, we first design a novel Token Slimming Module (TSM), which can boost the inference efficiency of ViTs by dynamic token aggregation. As a general method of token hard dropping, our TSM softly integrates redundant tokens into fewer informative ones. It can dynamically zoom visual attention without cutting off discriminative token relations in the images, even with a high slimming ratio. Furthermore, we introduce a concise Feature Recalibration Distillation (FRD) framework, wherein we design a reverse version of TSM (RTSM) to recalibrate the unstructured token in a flexible auto-encoder manner. Due to the similar structure between teacher and student, our FRD can effectively leverage structure knowledge for better convergence. Finally, we conduct extensive experiments to evaluate our SiT. It demonstrates that our method can speed up ViTs by 1.7x with negligible accuracy drop, and even speed up ViTs by 3.6x while maintaining 97% of their performance. Surprisingly, by simply arming LV-ViT with our SiT, we achieve new state-of-the-art performance on ImageNet. Code is available at https://github.com/Sense-X/SiT.
GIT: A Generative Image-to-text Transformer for Vision and Language
In this paper, we design and train a Generative Image-to-text Transformer, GIT, to unify vision-language tasks such as image/video captioning and question answering. While generative models provide a consistent network architecture between pre-training and fine-tuning, existing work typically contains complex structures (uni/multi-modal encoder/decoder) and depends on external modules such as object detectors/taggers and optical character recognition (OCR). In GIT, we simplify the architecture as one image encoder and one text decoder under a single language modeling task. We also scale up the pre-training data and the model size to boost the model performance. Without bells and whistles, our GIT establishes new state of the arts on 12 challenging benchmarks with a large margin. For instance, our model surpasses the human performance for the first time on TextCaps (138.2 vs. 125.5 in CIDEr). Furthermore, we present a new scheme of generation-based image classification and scene text recognition, achieving decent performance on standard benchmarks. Codes are released at https://github.com/microsoft/GenerativeImage2Text.
Vision Transformers are Robust Learners
Transformers, composed of multiple self-attention layers, hold strong promises toward a generic learning primitive applicable to different data modalities, including the recent breakthroughs in computer vision achieving state-of-the-art (SOTA) standard accuracy. What remains largely unexplored is their robustness evaluation and attribution. In this work, we study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples. We use six different diverse ImageNet datasets concerning robust classification to conduct a comprehensive performance comparison of ViT models and SOTA convolutional neural networks (CNNs), Big-Transfer. Through a series of six systematically designed experiments, we then present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners. For example, with fewer parameters and similar dataset and pre-training combinations, ViT gives a top-1 accuracy of 28.10% on ImageNet-A which is 4.3x higher than a comparable variant of BiT. Our analyses on image masking, Fourier spectrum sensitivity, and spread on discrete cosine energy spectrum reveal intriguing properties of ViT attributing to improved robustness. Code for reproducing our experiments is available at https://git.io/J3VO0.
A Multiscale Visualization of Attention in the Transformer Model
The Transformer is a sequence model that forgoes traditional recurrent architectures in favor of a fully attention-based approach. Besides improving performance, an advantage of using attention is that it can also help to interpret a model by showing how the model assigns weight to different input elements. However, the multi-layer, multi-head attention mechanism in the Transformer model can be difficult to decipher. To make the model more accessible, we introduce an open-source tool that visualizes attention at multiple scales, each of which provides a unique perspective on the attention mechanism. We demonstrate the tool on BERT and OpenAI GPT-2 and present three example use cases: detecting model bias, locating relevant attention heads, and linking neurons to model behavior.
RMT: Retentive Networks Meet Vision Transformers
Transformer first appears in the field of natural language processing and is later migrated to the computer vision domain, where it demonstrates excellent performance in vision tasks. However, recently, Retentive Network (RetNet) has emerged as an architecture with the potential to replace Transformer, attracting widespread attention in the NLP community. Therefore, we raise the question of whether transferring RetNet's idea to vision can also bring outstanding performance to vision tasks. To address this, we combine RetNet and Transformer to propose RMT. Inspired by RetNet, RMT introduces explicit decay into the vision backbone, bringing prior knowledge related to spatial distances to the vision model. This distance-related spatial prior allows for explicit control of the range of tokens that each token can attend to. Additionally, to reduce the computational cost of global modeling, we decompose this modeling process along the two coordinate axes of the image. Abundant experiments have demonstrated that our RMT exhibits exceptional performance across various computer vision tasks. For example, RMT achieves 84.1% Top1-acc on ImageNet-1k using merely 4.5G FLOPs. To the best of our knowledge, among all models, RMT achieves the highest Top1-acc when models are of similar size and trained with the same strategy. Moreover, RMT significantly outperforms existing vision backbones in downstream tasks such as object detection, instance segmentation, and semantic segmentation. Our work is still in progress.
Paying Attention to Astronomical Transients: Introducing the Time-series Transformer for Photometric Classification
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will be impossible for all such events to be classified by humans alone. Recent efforts have sought to leverage machine learning methods to tackle the challenge of astronomical transient classification, with ever improving success. Transformers are a recently developed deep learning architecture, first proposed for natural language processing, that have shown a great deal of recent success. In this work we develop a new transformer architecture, which uses multi-head self attention at its core, for general multi-variate time-series data. Furthermore, the proposed time-series transformer architecture supports the inclusion of an arbitrary number of additional features, while also offering interpretability. We apply the time-series transformer to the task of photometric classification, minimising the reliance of expert domain knowledge for feature selection, while achieving results comparable to state-of-the-art photometric classification methods. We achieve a logarithmic-loss of 0.507 on imbalanced data in a representative setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). Moreover, we achieve a micro-averaged receiver operating characteristic area under curve of 0.98 and micro-averaged precision-recall area under curve of 0.87.
The NLP Task Effectiveness of Long-Range Transformers
Transformer models cannot easily scale to long sequences due to their O(N^2) time and space complexity. This has led to Transformer variants seeking to lower computational complexity, such as Longformer and Performer. While such models have theoretically greater efficiency, their effectiveness on real NLP tasks has not been well studied. We benchmark 7 variants of Transformer models on 5 difficult NLP tasks and 7 datasets. We design experiments to isolate the effect of pretraining and hyperparameter settings, to focus on their capacity for long-range attention. Moreover, we present various methods to investigate attention behaviors to illuminate model details beyond metric scores. We find that the modified attention in long-range transformers has advantages on content selection and query-guided decoding, but they come with previously unrecognized drawbacks such as insufficient attention to distant tokens and accumulated approximation error.
Dawn of the transformer era in speech emotion recognition: closing the valence gap
Recent advances in transformer-based architectures which are pre-trained in self-supervised manner have shown great promise in several machine learning tasks. In the audio domain, such architectures have also been successfully utilised in the field of speech emotion recognition (SER). However, existing works have not evaluated the influence of model size and pre-training data on downstream performance, and have shown limited attention to generalisation, robustness, fairness, and efficiency. The present contribution conducts a thorough analysis of these aspects on several pre-trained variants of wav2vec 2.0 and HuBERT that we fine-tuned on the dimensions arousal, dominance, and valence of MSP-Podcast, while additionally using IEMOCAP and MOSI to test cross-corpus generalisation. To the best of our knowledge, we obtain the top performance for valence prediction without use of explicit linguistic information, with a concordance correlation coefficient (CCC) of .638 on MSP-Podcast. Furthermore, our investigations reveal that transformer-based architectures are more robust to small perturbations compared to a CNN-based baseline and fair with respect to biological sex groups, but not towards individual speakers. Finally, we are the first to show that their extraordinary success on valence is based on implicit linguistic information learnt during fine-tuning of the transformer layers, which explains why they perform on-par with recent multimodal approaches that explicitly utilise textual information. Our findings collectively paint the following picture: transformer-based architectures constitute the new state-of-the-art in SER, but further advances are needed to mitigate remaining robustness and individual speaker issues. To make our findings reproducible, we release the best performing model to the community.
LVFace: Progressive Cluster Optimization for Large Vision Models in Face Recognition
Vision Transformers (ViTs) have revolutionized large-scale visual modeling, yet remain underexplored in face recognition (FR) where CNNs still dominate. We identify a critical bottleneck: CNN-inspired training paradigms fail to unlock ViT's potential, leading to suboptimal performance and convergence instability.To address this challenge, we propose LVFace, a ViT-based FR model that integrates Progressive Cluster Optimization (PCO) to achieve superior results. Specifically, PCO sequentially applies negative class sub-sampling (NCS) for robust and fast feature alignment from random initialization, feature expectation penalties for centroid stabilization, performing cluster boundary refinement through full-batch training without NCS constraints. LVFace establishes a new state-of-the-art face recognition baseline, surpassing leading approaches such as UniFace and TopoFR across multiple benchmarks. Extensive experiments demonstrate that LVFace delivers consistent performance gains, while exhibiting scalability to large-scale datasets and compatibility with mainstream VLMs and LLMs. Notably, LVFace secured 1st place in the ICCV 2021 Masked Face Recognition (MFR)-Ongoing Challenge (March 2025), proving its efficacy in real-world scenarios.
RoFormer: Enhanced Transformer with Rotary Position Embedding
Position encoding recently has shown effective in the transformer architecture. It enables valuable supervision for dependency modeling between elements at different positions of the sequence. In this paper, we first investigate various methods to integrate positional information into the learning process of transformer-based language models. Then, we propose a novel method named Rotary Position Embedding(RoPE) to effectively leverage the positional information. Specifically, the proposed RoPE encodes the absolute position with a rotation matrix and meanwhile incorporates the explicit relative position dependency in self-attention formulation. Notably, RoPE enables valuable properties, including the flexibility of sequence length, decaying inter-token dependency with increasing relative distances, and the capability of equipping the linear self-attention with relative position encoding. Finally, we evaluate the enhanced transformer with rotary position embedding, also called RoFormer, on various long text classification benchmark datasets. Our experiments show that it consistently overcomes its alternatives. Furthermore, we provide a theoretical analysis to explain some experimental results. RoFormer is already integrated into Huggingface: https://huggingface.co/docs/transformers/model_doc/roformer.
LookHere: Vision Transformers with Directed Attention Generalize and Extrapolate
High-resolution images offer more information about scenes that can improve model accuracy. However, the dominant model architecture in computer vision, the vision transformer (ViT), cannot effectively leverage larger images without finetuning -- ViTs poorly extrapolate to more patches at test time, although transformers offer sequence length flexibility. We attribute this shortcoming to the current patch position encoding methods, which create a distribution shift when extrapolating. We propose a drop-in replacement for the position encoding of plain ViTs that restricts attention heads to fixed fields of view, pointed in different directions, using 2D attention masks. Our novel method, called LookHere, provides translation-equivariance, ensures attention head diversity, and limits the distribution shift that attention heads face when extrapolating. We demonstrate that LookHere improves performance on classification (avg. 1.6%), against adversarial attack (avg. 5.4%), and decreases calibration error (avg. 1.5%) -- on ImageNet without extrapolation. With extrapolation, LookHere outperforms the current SoTA position encoding method, 2D-RoPE, by 21.7% on ImageNet when trained at 224^2 px and tested at 1024^2 px. Additionally, we release a high-resolution test set to improve the evaluation of high-resolution image classifiers, called ImageNet-HR.
Three things everyone should know about Vision Transformers
After their initial success in natural language processing, transformer architectures have rapidly gained traction in computer vision, providing state-of-the-art results for tasks such as image classification, detection, segmentation, and video analysis. We offer three insights based on simple and easy to implement variants of vision transformers. (1) The residual layers of vision transformers, which are usually processed sequentially, can to some extent be processed efficiently in parallel without noticeably affecting the accuracy. (2) Fine-tuning the weights of the attention layers is sufficient to adapt vision transformers to a higher resolution and to other classification tasks. This saves compute, reduces the peak memory consumption at fine-tuning time, and allows sharing the majority of weights across tasks. (3) Adding MLP-based patch pre-processing layers improves Bert-like self-supervised training based on patch masking. We evaluate the impact of these design choices using the ImageNet-1k dataset, and confirm our findings on the ImageNet-v2 test set. Transfer performance is measured across six smaller datasets.
Key-Value Transformer
Transformers have emerged as the prevailing standard solution for various AI tasks, including computer vision and natural language processing. The widely adopted Query, Key, and Value formulation (QKV) has played a significant role in this. Nevertheless, no research has examined the essentiality of these three components for transformer performance. Therefore, we conducted an evaluation of the key-value formulation (KV), which generates symmetric attention maps, along with an asymmetric version that incorporates a 2D positional encoding into the attention matrix. Remarkably, this transformer requires fewer parameters and computation than the original one. Through experiments encompassing three task types -- synthetics (such as reversing or sorting a list), vision (mnist or cifar classification), and NLP (character generation and translation) -- we discovered that the KV transformer occasionally outperforms the QKV transformer. However, it also exhibits instances of underperformance compared to QKV, making it challenging to draw a definitive conclusion. Nonetheless, we consider the reported results to be encouraging and anticipate that they may pave the way for more efficient transformers in the future.
Visformer: The Vision-friendly Transformer
The past year has witnessed the rapid development of applying the Transformer module to vision problems. While some researchers have demonstrated that Transformer-based models enjoy a favorable ability of fitting data, there are still growing number of evidences showing that these models suffer over-fitting especially when the training data is limited. This paper offers an empirical study by performing step-by-step operations to gradually transit a Transformer-based model to a convolution-based model. The results we obtain during the transition process deliver useful messages for improving visual recognition. Based on these observations, we propose a new architecture named Visformer, which is abbreviated from the `Vision-friendly Transformer'. With the same computational complexity, Visformer outperforms both the Transformer-based and convolution-based models in terms of ImageNet classification accuracy, and the advantage becomes more significant when the model complexity is lower or the training set is smaller. The code is available at https://github.com/danczs/Visformer.
Energy-Based Transformers are Scalable Learners and Thinkers
Inference-time computation techniques, analogous to human System 2 Thinking, have recently become popular for improving model performances. However, most existing approaches suffer from several limitations: they are modality-specific (e.g., working only in text), problem-specific (e.g., verifiable domains like math and coding), or require additional supervision/training on top of unsupervised pretraining (e.g., verifiers or verifiable rewards). In this paper, we ask the question "Is it possible to generalize these System 2 Thinking approaches, and develop models that learn to think solely from unsupervised learning?" Interestingly, we find the answer is yes, by learning to explicitly verify the compatibility between inputs and candidate-predictions, and then re-framing prediction problems as optimization with respect to this verifier. Specifically, we train Energy-Based Transformers (EBTs) -- a new class of Energy-Based Models (EBMs) -- to assign an energy value to every input and candidate-prediction pair, enabling predictions through gradient descent-based energy minimization until convergence. Across both discrete (text) and continuous (visual) modalities, we find EBTs scale faster than the dominant Transformer++ approach during training, achieving an up to 35% higher scaling rate with respect to data, batch size, parameters, FLOPs, and depth. During inference, EBTs improve performance with System 2 Thinking by 29% more than the Transformer++ on language tasks, and EBTs outperform Diffusion Transformers on image denoising while using fewer forward passes. Further, we find that EBTs achieve better results than existing models on most downstream tasks given the same or worse pretraining performance, suggesting that EBTs generalize better than existing approaches. Consequently, EBTs are a promising new paradigm for scaling both the learning and thinking capabilities of models.
TinyViT: Fast Pretraining Distillation for Small Vision Transformers
Vision transformer (ViT) recently has drawn great attention in computer vision due to its remarkable model capability. However, most prevailing ViT models suffer from huge number of parameters, restricting their applicability on devices with limited resources. To alleviate this issue, we propose TinyViT, a new family of tiny and efficient small vision transformers pretrained on large-scale datasets with our proposed fast distillation framework. The central idea is to transfer knowledge from large pretrained models to small ones, while enabling small models to get the dividends of massive pretraining data. More specifically, we apply distillation during pretraining for knowledge transfer. The logits of large teacher models are sparsified and stored in disk in advance to save the memory cost and computation overheads. The tiny student transformers are automatically scaled down from a large pretrained model with computation and parameter constraints. Comprehensive experiments demonstrate the efficacy of TinyViT. It achieves a top-1 accuracy of 84.8% on ImageNet-1k with only 21M parameters, being comparable to Swin-B pretrained on ImageNet-21k while using 4.2 times fewer parameters. Moreover, increasing image resolutions, TinyViT can reach 86.5% accuracy, being slightly better than Swin-L while using only 11% parameters. Last but not the least, we demonstrate a good transfer ability of TinyViT on various downstream tasks. Code and models are available at https://github.com/microsoft/Cream/tree/main/TinyViT.
A Survey on Transformer Compression
Large models based on the Transformer architecture play increasingly vital roles in artificial intelligence, particularly within the realms of natural language processing (NLP) and computer vision (CV). Model compression methods reduce their memory and computational cost, which is a necessary step to implement the transformer models on practical devices. Given the unique architecture of transformer, featuring alternative attention and Feedforward Neural Network (FFN) modules, specific compression techniques are required. The efficiency of these compression methods is also paramount, as it is usually impractical to retrain large models on the entire training dataset.This survey provides a comprehensive review of recent compression methods, with a specific focus on their application to transformer models. The compression methods are primarily categorized into pruning, quantization, knowledge distillation, and efficient architecture design. In each category, we discuss compression methods for both CV and NLP tasks, highlighting common underlying principles. At last, we delve into the relation between various compression methods, and discuss the further directions in this domain.
Unified Visual Transformer Compression
Vision transformers (ViTs) have gained popularity recently. Even without customized image operators such as convolutions, ViTs can yield competitive performance when properly trained on massive data. However, the computational overhead of ViTs remains prohibitive, due to stacking multi-head self-attention modules and else. Compared to the vast literature and prevailing success in compressing convolutional neural networks, the study of Vision Transformer compression has also just emerged, and existing works focused on one or two aspects of compression. This paper proposes a unified ViT compression framework that seamlessly assembles three effective techniques: pruning, layer skipping, and knowledge distillation. We formulate a budget-constrained, end-to-end optimization framework, targeting jointly learning model weights, layer-wise pruning ratios/masks, and skip configurations, under a distillation loss. The optimization problem is then solved using the primal-dual algorithm. Experiments are conducted with several ViT variants, e.g. DeiT and T2T-ViT backbones on the ImageNet dataset, and our approach consistently outperforms recent competitors. For example, DeiT-Tiny can be trimmed down to 50\% of the original FLOPs almost without losing accuracy. Codes are available online:~https://github.com/VITA-Group/UVC.
Long Range Arena: A Benchmark for Efficient Transformers
Transformers do not scale very well to long sequence lengths largely because of quadratic self-attention complexity. In the recent months, a wide spectrum of efficient, fast Transformers have been proposed to tackle this problem, more often than not claiming superior or comparable model quality to vanilla Transformer models. To this date, there is no well-established consensus on how to evaluate this class of models. Moreover, inconsistent benchmarking on a wide spectrum of tasks and datasets makes it difficult to assess relative model quality amongst many models. This paper proposes a systematic and unified benchmark, LRA, specifically focused on evaluating model quality under long-context scenarios. Our benchmark is a suite of tasks consisting of sequences ranging from 1K to 16K tokens, encompassing a wide range of data types and modalities such as text, natural, synthetic images, and mathematical expressions requiring similarity, structural, and visual-spatial reasoning. We systematically evaluate ten well-established long-range Transformer models (Reformers, Linformers, Linear Transformers, Sinkhorn Transformers, Performers, Synthesizers, Sparse Transformers, and Longformers) on our newly proposed benchmark suite. LRA paves the way towards better understanding this class of efficient Transformer models, facilitates more research in this direction, and presents new challenging tasks to tackle. Our benchmark code will be released at https://github.com/google-research/long-range-arena.
A Practical Survey on Faster and Lighter Transformers
Recurrent neural networks are effective models to process sequences. However, they are unable to learn long-term dependencies because of their inherent sequential nature. As a solution, Vaswani et al. introduced the Transformer, a model solely based on the attention mechanism that is able to relate any two positions of the input sequence, hence modelling arbitrary long dependencies. The Transformer has improved the state-of-the-art across numerous sequence modelling tasks. However, its effectiveness comes at the expense of a quadratic computational and memory complexity with respect to the sequence length, hindering its adoption. Fortunately, the deep learning community has always been interested in improving the models' efficiency, leading to a plethora of solutions such as parameter sharing, pruning, mixed-precision, and knowledge distillation. Recently, researchers have directly addressed the Transformer's limitation by designing lower-complexity alternatives such as the Longformer, Reformer, Linformer, and Performer. However, due to the wide range of solutions, it has become challenging for researchers and practitioners to determine which methods to apply in practice in order to meet the desired trade-off between capacity, computation, and memory. This survey addresses this issue by investigating popular approaches to make Transformers faster and lighter and by providing a comprehensive explanation of the methods' strengths, limitations, and underlying assumptions.
Power Law Graph Transformer for Machine Translation and Representation Learning
We present the Power Law Graph Transformer, a transformer model with well defined deductive and inductive tasks for prediction and representation learning. The deductive task learns the dataset level (global) and instance level (local) graph structures in terms of learnable power law distribution parameters. The inductive task outputs the prediction probabilities using the deductive task output, similar to a transductive model. We trained our model with Turkish-English and Portuguese-English datasets from TED talk transcripts for machine translation and compared the model performance and characteristics to a transformer model with scaled dot product attention trained on the same experimental setup. We report BLEU scores of 17.79 and 28.33 on the Turkish-English and Portuguese-English translation tasks with our model, respectively. We also show how a duality between a quantization set and N-dimensional manifold representation can be leveraged to transform between local and global deductive-inductive outputs using successive application of linear and non-linear transformations end-to-end.
SwinFace: A Multi-task Transformer for Face Recognition, Expression Recognition, Age Estimation and Attribute Estimation
In recent years, vision transformers have been introduced into face recognition and analysis and have achieved performance breakthroughs. However, most previous methods generally train a single model or an ensemble of models to perform the desired task, which ignores the synergy among different tasks and fails to achieve improved prediction accuracy, increased data efficiency, and reduced training time. This paper presents a multi-purpose algorithm for simultaneous face recognition, facial expression recognition, age estimation, and face attribute estimation (40 attributes including gender) based on a single Swin Transformer. Our design, the SwinFace, consists of a single shared backbone together with a subnet for each set of related tasks. To address the conflicts among multiple tasks and meet the different demands of tasks, a Multi-Level Channel Attention (MLCA) module is integrated into each task-specific analysis subnet, which can adaptively select the features from optimal levels and channels to perform the desired tasks. Extensive experiments show that the proposed model has a better understanding of the face and achieves excellent performance for all tasks. Especially, it achieves 90.97% accuracy on RAF-DB and 0.22 epsilon-error on CLAP2015, which are state-of-the-art results on facial expression recognition and age estimation respectively. The code and models will be made publicly available at https://github.com/lxq1000/SwinFace.
Rethinking Vision Transformers for MobileNet Size and Speed
With the success of Vision Transformers (ViTs) in computer vision tasks, recent arts try to optimize the performance and complexity of ViTs to enable efficient deployment on mobile devices. Multiple approaches are proposed to accelerate attention mechanism, improve inefficient designs, or incorporate mobile-friendly lightweight convolutions to form hybrid architectures. However, ViT and its variants still have higher latency or considerably more parameters than lightweight CNNs, even true for the years-old MobileNet. In practice, latency and size are both crucial for efficient deployment on resource-constraint hardware. In this work, we investigate a central question, can transformer models run as fast as MobileNet and maintain a similar size? We revisit the design choices of ViTs and propose an improved supernet with low latency and high parameter efficiency. We further introduce a fine-grained joint search strategy that can find efficient architectures by optimizing latency and number of parameters simultaneously. The proposed models, EfficientFormerV2, achieve about 4% higher top-1 accuracy than MobileNetV2 and MobileNetV2times1.4 on ImageNet-1K with similar latency and parameters. We demonstrate that properly designed and optimized vision transformers can achieve high performance with MobileNet-level size and speed.
JetFormer: An Autoregressive Generative Model of Raw Images and Text
Removing modeling constraints and unifying architectures across domains has been a key driver of the recent progress in training large multimodal models. However, most of these models still rely on many separately trained components such as modality-specific encoders and decoders. In this work, we further streamline joint generative modeling of images and text. We propose an autoregressive decoder-only transformer - JetFormer - which is trained to directly maximize the likelihood of raw data, without relying on any separately pretrained components, and can understand and generate both text and images. Specifically, we leverage a normalizing flow model to obtain a soft-token image representation that is jointly trained with an autoregressive multimodal transformer. The normalizing flow model serves as both an image encoder for perception tasks and an image decoder for image generation tasks during inference. JetFormer achieves text-to-image generation quality competitive with recent VQ-VAE- and VAE-based baselines. These baselines rely on pretrained image autoencoders, which are trained with a complex mixture of losses, including perceptual ones. At the same time, JetFormer demonstrates robust image understanding capabilities. To the best of our knowledge, JetFormer is the first model that is capable of generating high-fidelity images and producing strong log-likelihood bounds.
PDE-Transformer: Efficient and Versatile Transformers for Physics Simulations
We introduce PDE-Transformer, an improved transformer-based architecture for surrogate modeling of physics simulations on regular grids. We combine recent architectural improvements of diffusion transformers with adjustments specific for large-scale simulations to yield a more scalable and versatile general-purpose transformer architecture, which can be used as the backbone for building large-scale foundation models in physical sciences. We demonstrate that our proposed architecture outperforms state-of-the-art transformer architectures for computer vision on a large dataset of 16 different types of PDEs. We propose to embed different physical channels individually as spatio-temporal tokens, which interact via channel-wise self-attention. This helps to maintain a consistent information density of tokens when learning multiple types of PDEs simultaneously. We demonstrate that our pre-trained models achieve improved performance on several challenging downstream tasks compared to training from scratch and also beat other foundation model architectures for physics simulations.
Approximate Nullspace Augmented Finetuning for Robust Vision Transformers
Enhancing the robustness of deep learning models, particularly in the realm of vision transformers (ViTs), is crucial for their real-world deployment. In this work, we provide a finetuning approach to enhance the robustness of vision transformers inspired by the concept of nullspace from linear algebra. Our investigation centers on whether a vision transformer can exhibit resilience to input variations akin to the nullspace property in linear mappings, which would imply that perturbations sampled from this nullspace do not influence the model's output when added to the input. We start from the observation that many existing ViTs satisfy this property because their patch embedding layer has a non-trivial nullspace. Then, we extend the notion of nullspace to nonlinear settings and demonstrate that it is possible to synthesize approximate nullspace elements for ViT's encoder blocks through optimization. Finally, we propose a finetuning strategy for ViTs wherein we augment the training data with synthesized approximate nullspace noise. We find that our finetuning approach significantly improves the models' robustness to both adversarial and natural image perturbations.\footnote{Code is available at: https://github.com/Liu-Hy/ns-vit.
Speechformer: Reducing Information Loss in Direct Speech Translation
Transformer-based models have gained increasing popularity achieving state-of-the-art performance in many research fields including speech translation. However, Transformer's quadratic complexity with respect to the input sequence length prevents its adoption as is with audio signals, which are typically represented by long sequences. Current solutions resort to an initial sub-optimal compression based on a fixed sampling of raw audio features. Therefore, potentially useful linguistic information is not accessible to higher-level layers in the architecture. To solve this issue, we propose Speechformer, an architecture that, thanks to reduced memory usage in the attention layers, avoids the initial lossy compression and aggregates information only at a higher level according to more informed linguistic criteria. Experiments on three language pairs (en->de/es/nl) show the efficacy of our solution, with gains of up to 0.8 BLEU on the standard MuST-C corpus and of up to 4.0 BLEU in a low resource scenario.
Emotional Speech-Driven Animation with Content-Emotion Disentanglement
To be widely adopted, 3D facial avatars must be animated easily, realistically, and directly from speech signals. While the best recent methods generate 3D animations that are synchronized with the input audio, they largely ignore the impact of emotions on facial expressions. Realistic facial animation requires lip-sync together with the natural expression of emotion. To that end, we propose EMOTE (Expressive Model Optimized for Talking with Emotion), which generates 3D talking-head avatars that maintain lip-sync from speech while enabling explicit control over the expression of emotion. To achieve this, we supervise EMOTE with decoupled losses for speech (i.e., lip-sync) and emotion. These losses are based on two key observations: (1) deformations of the face due to speech are spatially localized around the mouth and have high temporal frequency, whereas (2) facial expressions may deform the whole face and occur over longer intervals. Thus, we train EMOTE with a per-frame lip-reading loss to preserve the speech-dependent content, while supervising emotion at the sequence level. Furthermore, we employ a content-emotion exchange mechanism in order to supervise different emotions on the same audio, while maintaining the lip motion synchronized with the speech. To employ deep perceptual losses without getting undesirable artifacts, we devise a motion prior in the form of a temporal VAE. Due to the absence of high-quality aligned emotional 3D face datasets with speech, EMOTE is trained with 3D pseudo-ground-truth extracted from an emotional video dataset (i.e., MEAD). Extensive qualitative and perceptual evaluations demonstrate that EMOTE produces speech-driven facial animations with better lip-sync than state-of-the-art methods trained on the same data, while offering additional, high-quality emotional control.
Delving into Masked Autoencoders for Multi-Label Thorax Disease Classification
Vision Transformer (ViT) has become one of the most popular neural architectures due to its great scalability, computational efficiency, and compelling performance in many vision tasks. However, ViT has shown inferior performance to Convolutional Neural Network (CNN) on medical tasks due to its data-hungry nature and the lack of annotated medical data. In this paper, we pre-train ViTs on 266,340 chest X-rays using Masked Autoencoders (MAE) which reconstruct missing pixels from a small part of each image. For comparison, CNNs are also pre-trained on the same 266,340 X-rays using advanced self-supervised methods (e.g., MoCo v2). The results show that our pre-trained ViT performs comparably (sometimes better) to the state-of-the-art CNN (DenseNet-121) for multi-label thorax disease classification. This performance is attributed to the strong recipes extracted from our empirical studies for pre-training and fine-tuning ViT. The pre-training recipe signifies that medical reconstruction requires a much smaller proportion of an image (10% vs. 25%) and a more moderate random resized crop range (0.5~1.0 vs. 0.2~1.0) compared with natural imaging. Furthermore, we remark that in-domain transfer learning is preferred whenever possible. The fine-tuning recipe discloses that layer-wise LR decay, RandAug magnitude, and DropPath rate are significant factors to consider. We hope that this study can direct future research on the application of Transformers to a larger variety of medical imaging tasks.
Progressive Transformers for End-to-End Sign Language Production
The goal of automatic Sign Language Production (SLP) is to translate spoken language to a continuous stream of sign language video at a level comparable to a human translator. If this was achievable, then it would revolutionise Deaf hearing communications. Previous work on predominantly isolated SLP has shown the need for architectures that are better suited to the continuous domain of full sign sequences. In this paper, we propose Progressive Transformers, a novel architecture that can translate from discrete spoken language sentences to continuous 3D skeleton pose outputs representing sign language. We present two model configurations, an end-to-end network that produces sign direct from text and a stacked network that utilises a gloss intermediary. Our transformer network architecture introduces a counter that enables continuous sequence generation at training and inference. We also provide several data augmentation processes to overcome the problem of drift and improve the performance of SLP models. We propose a back translation evaluation mechanism for SLP, presenting benchmark quantitative results on the challenging RWTH-PHOENIX-Weather-2014T(PHOENIX14T) dataset and setting baselines for future research.
A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT
Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A PFM (e.g., BERT, ChatGPT, and GPT-4) is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. BERT learns bidirectional encoder representations from Transformers, which are trained on large datasets as contextual language models. Similarly, the generative pretrained transformer (GPT) method employs Transformers as the feature extractor and is trained using an autoregressive paradigm on large datasets. Recently, ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few shot prompting. The remarkable achievements of PFM have brought significant breakthroughs to various fields of AI. Numerous studies have proposed different methods, raising the demand for an updated survey. This study provides a comprehensive review of recent research advancements, challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. The review covers the basic components and existing pretraining methods used in natural language processing, computer vision, and graph learning. Additionally, it explores advanced PFMs used for different data modalities and unified PFMs that consider data quality and quantity. The review also discusses research related to the fundamentals of PFMs, such as model efficiency and compression, security, and privacy. Finally, the study provides key implications, future research directions, challenges, and open problems in the field of PFMs. Overall, this survey aims to shed light on the research of the PFMs on scalability, security, logical reasoning ability, cross-domain learning ability, and the user-friendly interactive ability for artificial general intelligence.
Scaling Diffusion Transformers Efficiently via μP
Diffusion Transformers have emerged as the foundation for vision generative models, but their scalability is limited by the high cost of hyperparameter (HP) tuning at large scales. Recently, Maximal Update Parametrization (muP) was proposed for vanilla Transformers, which enables stable HP transfer from small to large language models, and dramatically reduces tuning costs. However, it remains unclear whether muP of vanilla Transformers extends to diffusion Transformers, which differ architecturally and objectively. In this work, we generalize standard muP to diffusion Transformers and validate its effectiveness through large-scale experiments. First, we rigorously prove that muP of mainstream diffusion Transformers, including DiT, U-ViT, PixArt-alpha, and MMDiT, aligns with that of the vanilla Transformer, enabling the direct application of existing muP methodologies. Leveraging this result, we systematically demonstrate that DiT-muP enjoys robust HP transferability. Notably, DiT-XL-2-muP with transferred learning rate achieves 2.9 times faster convergence than the original DiT-XL-2. Finally, we validate the effectiveness of muP on text-to-image generation by scaling PixArt-alpha from 0.04B to 0.61B and MMDiT from 0.18B to 18B. In both cases, models under muP outperform their respective baselines while requiring small tuning cost, only 5.5% of one training run for PixArt-alpha and 3% of consumption by human experts for MMDiT-18B. These results establish muP as a principled and efficient framework for scaling diffusion Transformers.
CvT: Introducing Convolutions to Vision Transformers
We present in this paper a new architecture, named Convolutional vision Transformer (CvT), that improves Vision Transformer (ViT) in performance and efficiency by introducing convolutions into ViT to yield the best of both designs. This is accomplished through two primary modifications: a hierarchy of Transformers containing a new convolutional token embedding, and a convolutional Transformer block leveraging a convolutional projection. These changes introduce desirable properties of convolutional neural networks (CNNs) to the ViT architecture (\ie shift, scale, and distortion invariance) while maintaining the merits of Transformers (\ie dynamic attention, global context, and better generalization). We validate CvT by conducting extensive experiments, showing that this approach achieves state-of-the-art performance over other Vision Transformers and ResNets on ImageNet-1k, with fewer parameters and lower FLOPs. In addition, performance gains are maintained when pretrained on larger datasets (\eg ImageNet-22k) and fine-tuned to downstream tasks. Pre-trained on ImageNet-22k, our CvT-W24 obtains a top-1 accuracy of 87.7\% on the ImageNet-1k val set. Finally, our results show that the positional encoding, a crucial component in existing Vision Transformers, can be safely removed in our model, simplifying the design for higher resolution vision tasks. Code will be released at https://github.com/leoxiaobin/CvT.
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification
The recently developed vision transformer (ViT) has achieved promising results on image classification compared to convolutional neural networks. Inspired by this, in this paper, we study how to learn multi-scale feature representations in transformer models for image classification. To this end, we propose a dual-branch transformer to combine image patches (i.e., tokens in a transformer) of different sizes to produce stronger image features. Our approach processes small-patch and large-patch tokens with two separate branches of different computational complexity and these tokens are then fused purely by attention multiple times to complement each other. Furthermore, to reduce computation, we develop a simple yet effective token fusion module based on cross attention, which uses a single token for each branch as a query to exchange information with other branches. Our proposed cross-attention only requires linear time for both computational and memory complexity instead of quadratic time otherwise. Extensive experiments demonstrate that our approach performs better than or on par with several concurrent works on vision transformer, in addition to efficient CNN models. For example, on the ImageNet1K dataset, with some architectural changes, our approach outperforms the recent DeiT by a large margin of 2\% with a small to moderate increase in FLOPs and model parameters. Our source codes and models are available at https://github.com/IBM/CrossViT.
UPop: Unified and Progressive Pruning for Compressing Vision-Language Transformers
Real-world data contains a vast amount of multimodal information, among which vision and language are the two most representative modalities. Moreover, increasingly heavier models, e.g., Transformers, have attracted the attention of researchers to model compression. However, how to compress multimodal models, especially vison-language Transformers, is still under-explored. This paper proposes the Unified and Progressive Pruning (\emph{UPop}) as a universal vison-language Transformer compression framework, which incorporates 1) unifiedly searching multimodal subnets in a continuous optimization space from the original model, which enables automatic assignment of pruning ratios among compressible modalities and structures; 2) progressively searching and retraining the subnet, which maintains convergence between the search and retrain to attain higher compression ratios. Experiments on various tasks, datasets, and model architectures demonstrate the effectiveness and versatility of the proposed UPop framework. The code is available at https://github.com/sdc17/UPop.
StyleSwin: Transformer-based GAN for High-resolution Image Generation
Despite the tantalizing success in a broad of vision tasks, transformers have not yet demonstrated on-par ability as ConvNets in high-resolution image generative modeling. In this paper, we seek to explore using pure transformers to build a generative adversarial network for high-resolution image synthesis. To this end, we believe that local attention is crucial to strike the balance between computational efficiency and modeling capacity. Hence, the proposed generator adopts Swin transformer in a style-based architecture. To achieve a larger receptive field, we propose double attention which simultaneously leverages the context of the local and the shifted windows, leading to improved generation quality. Moreover, we show that offering the knowledge of the absolute position that has been lost in window-based transformers greatly benefits the generation quality. The proposed StyleSwin is scalable to high resolutions, with both the coarse geometry and fine structures benefit from the strong expressivity of transformers. However, blocking artifacts occur during high-resolution synthesis because performing the local attention in a block-wise manner may break the spatial coherency. To solve this, we empirically investigate various solutions, among which we find that employing a wavelet discriminator to examine the spectral discrepancy effectively suppresses the artifacts. Extensive experiments show the superiority over prior transformer-based GANs, especially on high resolutions, e.g., 1024x1024. The StyleSwin, without complex training strategies, excels over StyleGAN on CelebA-HQ 1024, and achieves on-par performance on FFHQ-1024, proving the promise of using transformers for high-resolution image generation. The code and models will be available at https://github.com/microsoft/StyleSwin.
Scaling Laws for Autoregressive Generative Modeling
We identify empirical scaling laws for the cross-entropy loss in four domains: generative image modeling, video modeling, multimodal imageleftrightarrowtext models, and mathematical problem solving. In all cases autoregressive Transformers smoothly improve in performance as model size and compute budgets increase, following a power-law plus constant scaling law. The optimal model size also depends on the compute budget through a power-law, with exponents that are nearly universal across all data domains. The cross-entropy loss has an information theoretic interpretation as S(True) + D_{KL}(True||Model), and the empirical scaling laws suggest a prediction for both the true data distribution's entropy and the KL divergence between the true and model distributions. With this interpretation, billion-parameter Transformers are nearly perfect models of the YFCC100M image distribution downsampled to an 8times 8 resolution, and we can forecast the model size needed to achieve any given reducible loss (ie D_{KL}) in nats/image for other resolutions. We find a number of additional scaling laws in specific domains: (a) we identify a scaling relation for the mutual information between captions and images in multimodal models, and show how to answer the question "Is a picture worth a thousand words?"; (b) in the case of mathematical problem solving, we identify scaling laws for model performance when extrapolating beyond the training distribution; (c) we finetune generative image models for ImageNet classification and find smooth scaling of the classification loss and error rate, even as the generative loss levels off. Taken together, these results strengthen the case that scaling laws have important implications for neural network performance, including on downstream tasks.
Token Reduction Should Go Beyond Efficiency in Generative Models -- From Vision, Language to Multimodality
In Transformer architectures, tokens\textemdash discrete units derived from raw data\textemdash are formed by segmenting inputs into fixed-length chunks. Each token is then mapped to an embedding, enabling parallel attention computations while preserving the input's essential information. Due to the quadratic computational complexity of transformer self-attention mechanisms, token reduction has primarily been used as an efficiency strategy. This is especially true in single vision and language domains, where it helps balance computational costs, memory usage, and inference latency. Despite these advances, this paper argues that token reduction should transcend its traditional efficiency-oriented role in the era of large generative models. Instead, we position it as a fundamental principle in generative modeling, critically influencing both model architecture and broader applications. Specifically, we contend that across vision, language, and multimodal systems, token reduction can: (i) facilitate deeper multimodal integration and alignment, (ii) mitigate "overthinking" and hallucinations, (iii) maintain coherence over long inputs, and (iv) enhance training stability, etc. We reframe token reduction as more than an efficiency measure. By doing so, we outline promising future directions, including algorithm design, reinforcement learning-guided token reduction, token optimization for in-context learning, and broader ML and scientific domains. We highlight its potential to drive new model architectures and learning strategies that improve robustness, increase interpretability, and better align with the objectives of generative modeling.
Transformers Discover Molecular Structure Without Graph Priors
Graph Neural Networks (GNNs) are the dominant architecture for molecular machine learning, particularly for molecular property prediction and machine learning interatomic potentials (MLIPs). GNNs perform message passing on predefined graphs often induced by a fixed radius cutoff or k-nearest neighbor scheme. While this design aligns with the locality present in many molecular tasks, a hard-coded graph can limit expressivity due to the fixed receptive field and slows down inference with sparse graph operations. In this work, we investigate whether pure, unmodified Transformers trained directly on Cartesian coordinatesx2013without predefined graphs or physical priorsx2013can approximate molecular energies and forces. As a starting point for our analysis, we demonstrate how to train a Transformer to competitive energy and force mean absolute errors under a matched training compute budget, relative to a state-of-the-art equivariant GNN on the OMol25 dataset. We discover that the Transformer learns physically consistent patternsx2013such as attention weights that decay inversely with interatomic distancex2013and flexibly adapts them across different molecular environments due to the absence of hard-coded biases. The use of a standard Transformer also unlocks predictable improvements with respect to scaling training resources, consistent with empirical scaling laws observed in other domains. Our results demonstrate that many favorable properties of GNNs can emerge adaptively in Transformers, challenging the necessity of hard-coded graph inductive biases and pointing toward standardized, scalable architectures for molecular modeling.
Empirical Analysis of Training Strategies of Transformer-based Japanese Chit-chat Systems
In recent years, several high-performance conversational systems have been proposed based on the Transformer encoder-decoder model. Although previous studies analyzed the effects of the model parameters and the decoding method on subjective dialogue evaluations with overall metrics, they did not analyze how the differences of fine-tuning datasets affect on user's detailed impression. In addition, the Transformer-based approach has only been verified for English, not for such languages with large inter-language distances as Japanese. In this study, we develop large-scale Transformer-based Japanese dialogue models and Japanese chit-chat datasets to examine the effectiveness of the Transformer-based approach for building chit-chat dialogue systems. We evaluated and analyzed the impressions of human dialogues in different fine-tuning datasets, model parameters, and the use of additional information.
Softmax-free Linear Transformers
Vision transformers (ViTs) have pushed the state-of-the-art for visual perception tasks. The self-attention mechanism underpinning the strength of ViTs has a quadratic complexity in both computation and memory usage. This motivates the development of approximating the self-attention at linear complexity. However, an in-depth analysis in this work reveals that existing methods are either theoretically flawed or empirically ineffective for visual recognition. We identify that their limitations are rooted in the inheritance of softmax-based self-attention during approximations, that is, normalizing the scaled dot-product between token feature vectors using the softmax function. As preserving the softmax operation challenges any subsequent linearization efforts. By this insight, a family of Softmax-Free Transformers (SOFT) are proposed. Specifically, a Gaussian kernel function is adopted to replace the dot-product similarity, enabling a full self-attention matrix to be approximated under low-rank matrix decomposition. For computational robustness, we estimate the Moore-Penrose inverse using an iterative Newton-Raphson method in the forward process only, while calculating its theoretical gradients only once in the backward process. To further expand applicability (e.g., dense prediction tasks), an efficient symmetric normalization technique is introduced. Extensive experiments on ImageNet, COCO, and ADE20K show that our SOFT significantly improves the computational efficiency of existing ViT variants. With linear complexity, much longer token sequences are permitted by SOFT, resulting in superior trade-off between accuracy and complexity. Code and models are available at https://github.com/fudan-zvg/SOFT.
Speed Always Wins: A Survey on Efficient Architectures for Large Language Models
Large Language Models (LLMs) have delivered impressive results in language understanding, generation, reasoning, and pushes the ability boundary of multimodal models. Transformer models, as the foundation of modern LLMs, offer a strong baseline with excellent scaling properties. However, the traditional transformer architecture requires substantial computations and poses significant obstacles for large-scale training and practical deployment. In this survey, we offer a systematic examination of innovative LLM architectures that address the inherent limitations of transformers and boost the efficiency. Starting from language modeling, this survey covers the background and technical details of linear and sparse sequence modeling methods, efficient full attention variants, sparse mixture-of-experts, hybrid model architectures incorporating the above techniques, and emerging diffusion LLMs. Additionally, we discuss applications of these techniques to other modalities and consider their wider implications for developing scalable, resource-aware foundation models. By grouping recent studies into the above category, this survey presents a blueprint of modern efficient LLM architectures, and we hope this could help motivate future research toward more efficient, versatile AI systems.
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures. The code and models are publicly available at~https://github.com/microsoft/Swin-Transformer.
Stabilizing Transformer Training by Preventing Attention Entropy Collapse
Training stability is of great importance to Transformers. In this work, we investigate the training dynamics of Transformers by examining the evolution of the attention layers. In particular, we track the attention entropy for each attention head during the course of training, which is a proxy for model sharpness. We identify a common pattern across different architectures and tasks, where low attention entropy is accompanied by high training instability, which can take the form of oscillating loss or divergence. We denote the pathologically low attention entropy, corresponding to highly concentrated attention scores, as entropy collapse. As a remedy, we propose sigmaReparam, a simple and efficient solution where we reparametrize all linear layers with spectral normalization and an additional learned scalar. We demonstrate that the proposed reparameterization successfully prevents entropy collapse in the attention layers, promoting more stable training. Additionally, we prove a tight lower bound of the attention entropy, which decreases exponentially fast with the spectral norm of the attention logits, providing additional motivation for our approach. We conduct experiments with sigmaReparam on image classification, image self-supervised learning, machine translation, automatic speech recognition, and language modeling tasks, across Transformer architectures. We show that sigmaReparam provides stability and robustness with respect to the choice of hyperparameters, going so far as enabling training (a) a Vision Transformer to competitive performance without warmup, weight decay, layer normalization or adaptive optimizers; (b) deep architectures in machine translation and (c) speech recognition to competitive performance without warmup and adaptive optimizers.
cosFormer: Rethinking Softmax in Attention
Transformer has shown great successes in natural language processing, computer vision, and audio processing. As one of its core components, the softmax attention helps to capture long-range dependencies yet prohibits its scale-up due to the quadratic space and time complexity to the sequence length. Kernel methods are often adopted to reduce the complexity by approximating the softmax operator. Nevertheless, due to the approximation errors, their performances vary in different tasks/corpus and suffer crucial performance drops when compared with the vanilla softmax attention. In this paper, we propose a linear transformer called cosFormer that can achieve comparable or better accuracy to the vanilla transformer in both casual and cross attentions. cosFormer is based on two key properties of softmax attention: i). non-negativeness of the attention matrix; ii). a non-linear re-weighting scheme that can concentrate the distribution of the attention matrix. As its linear substitute, cosFormer fulfills these properties with a linear operator and a cosine-based distance re-weighting mechanism. Extensive experiments on language modeling and text understanding tasks demonstrate the effectiveness of our method. We further examine our method on long sequences and achieve state-of-the-art performance on the Long-Range Arena benchmark. The source code is available at https://github.com/OpenNLPLab/cosFormer.
Transfer Learning for Fine-grained Classification Using Semi-supervised Learning and Visual Transformers
Fine-grained classification is a challenging task that involves identifying subtle differences between objects within the same category. This task is particularly challenging in scenarios where data is scarce. Visual transformers (ViT) have recently emerged as a powerful tool for image classification, due to their ability to learn highly expressive representations of visual data using self-attention mechanisms. In this work, we explore Semi-ViT, a ViT model fine tuned using semi-supervised learning techniques, suitable for situations where we have lack of annotated data. This is particularly common in e-commerce, where images are readily available but labels are noisy, nonexistent, or expensive to obtain. Our results demonstrate that Semi-ViT outperforms traditional convolutional neural networks (CNN) and ViTs, even when fine-tuned with limited annotated data. These findings indicate that Semi-ViTs hold significant promise for applications that require precise and fine-grained classification of visual data.
SAMformer: Unlocking the Potential of Transformers in Time Series Forecasting with Sharpness-Aware Minimization and Channel-Wise Attention
Transformer-based architectures achieved breakthrough performance in natural language processing and computer vision, yet they remain inferior to simpler linear baselines in multivariate long-term forecasting. To better understand this phenomenon, we start by studying a toy linear forecasting problem for which we show that transformers are incapable of converging to their true solution despite their high expressive power. We further identify the attention of transformers as being responsible for this low generalization capacity. Building upon this insight, we propose a shallow lightweight transformer model that successfully escapes bad local minima when optimized with sharpness-aware optimization. We empirically demonstrate that this result extends to all commonly used real-world multivariate time series datasets. In particular, SAMformer surpasses current state-of-the-art methods and is on par with the biggest foundation model MOIRAI while having significantly fewer parameters. The code is available at https://github.com/romilbert/samformer.
DREAM-Talk: Diffusion-based Realistic Emotional Audio-driven Method for Single Image Talking Face Generation
The generation of emotional talking faces from a single portrait image remains a significant challenge. The simultaneous achievement of expressive emotional talking and accurate lip-sync is particularly difficult, as expressiveness is often compromised for the accuracy of lip-sync. As widely adopted by many prior works, the LSTM network often fails to capture the subtleties and variations of emotional expressions. To address these challenges, we introduce DREAM-Talk, a two-stage diffusion-based audio-driven framework, tailored for generating diverse expressions and accurate lip-sync concurrently. In the first stage, we propose EmoDiff, a novel diffusion module that generates diverse highly dynamic emotional expressions and head poses in accordance with the audio and the referenced emotion style. Given the strong correlation between lip motion and audio, we then refine the dynamics with enhanced lip-sync accuracy using audio features and emotion style. To this end, we deploy a video-to-video rendering module to transfer the expressions and lip motions from our proxy 3D avatar to an arbitrary portrait. Both quantitatively and qualitatively, DREAM-Talk outperforms state-of-the-art methods in terms of expressiveness, lip-sync accuracy and perceptual quality.
Synergistic Benefits of Joint Molecule Generation and Property Prediction
Modeling the joint distribution of data samples and their properties allows to construct a single model for both data generation and property prediction, with synergistic benefits reaching beyond purely generative or predictive models. However, training joint models presents daunting architectural and optimization challenges. Here, we propose Hyformer, a transformer-based joint model that successfully blends the generative and predictive functionalities, using an alternating attention mechanism and a joint pre-training scheme. We show that Hyformer is simultaneously optimized for molecule generation and property prediction, while exhibiting synergistic benefits in conditional sampling, out-of-distribution property prediction and representation learning. Finally, we demonstrate the benefits of joint learning in a drug design use case of discovering novel antimicrobial~peptides.
Attention Is Not All You Need Anymore
In recent years, the popular Transformer architecture has achieved great success in many application areas, including natural language processing and computer vision. Many existing works aim to reduce the computational and memory complexity of the self-attention mechanism in the Transformer by trading off performance. However, performance is key for the continuing success of the Transformer. In this paper, a family of drop-in replacements for the self-attention mechanism in the Transformer, called the Extractors, is proposed. Four types of the Extractors, namely the super high-performance Extractor (SHE), the higher-performance Extractor (HE), the worthwhile Extractor (WE), and the minimalist Extractor (ME), are proposed as examples. Experimental results show that replacing the self-attention mechanism with the SHE evidently improves the performance of the Transformer, whereas the simplified versions of the SHE, i.e., the HE, the WE, and the ME, perform close to or better than the self-attention mechanism with less computational and memory complexity. Furthermore, the proposed Extractors have the potential or are able to run faster than the self-attention mechanism since their critical paths of computation are much shorter. Additionally, the sequence prediction problem in the context of text generation is formulated using variable-length discrete-time Markov chains, and the Transformer is reviewed based on our understanding.
ViTAR: Vision Transformer with Any Resolution
his paper tackles a significant challenge faced by Vision Transformers (ViTs): their constrained scalability across different image resolutions. Typically, ViTs experience a performance decline when processing resolutions different from those seen during training. Our work introduces two key innovations to address this issue. Firstly, we propose a novel module for dynamic resolution adjustment, designed with a single Transformer block, specifically to achieve highly efficient incremental token integration. Secondly, we introduce fuzzy positional encoding in the Vision Transformer to provide consistent positional awareness across multiple resolutions, thereby preventing overfitting to any single training resolution. Our resulting model, ViTAR (Vision Transformer with Any Resolution), demonstrates impressive adaptability, achieving 83.3\% top-1 accuracy at a 1120x1120 resolution and 80.4\% accuracy at a 4032x4032 resolution, all while reducing computational costs. ViTAR also shows strong performance in downstream tasks such as instance and semantic segmentation and can easily combined with self-supervised learning techniques like Masked AutoEncoder. Our work provides a cost-effective solution for enhancing the resolution scalability of ViTs, paving the way for more versatile and efficient high-resolution image processing.
GaussianSpeech: Audio-Driven Gaussian Avatars
We introduce GaussianSpeech, a novel approach that synthesizes high-fidelity animation sequences of photo-realistic, personalized 3D human head avatars from spoken audio. To capture the expressive, detailed nature of human heads, including skin furrowing and finer-scale facial movements, we propose to couple speech signal with 3D Gaussian splatting to create realistic, temporally coherent motion sequences. We propose a compact and efficient 3DGS-based avatar representation that generates expression-dependent color and leverages wrinkle- and perceptually-based losses to synthesize facial details, including wrinkles that occur with different expressions. To enable sequence modeling of 3D Gaussian splats with audio, we devise an audio-conditioned transformer model capable of extracting lip and expression features directly from audio input. Due to the absence of high-quality datasets of talking humans in correspondence with audio, we captured a new large-scale multi-view dataset of audio-visual sequences of talking humans with native English accents and diverse facial geometry. GaussianSpeech consistently achieves state-of-the-art performance with visually natural motion at real time rendering rates, while encompassing diverse facial expressions and styles.
T-Mamba: A unified framework with Long-Range Dependency in dual-domain for 2D & 3D Tooth Segmentation
Tooth segmentation is a pivotal step in modern digital dentistry, essential for applications across orthodontic diagnosis and treatment planning. Despite its importance, this process is fraught with challenges due to the high noise and low contrast inherent in 2D and 3D tooth data. Both Convolutional Neural Networks (CNNs) and Transformers has shown promise in medical image segmentation, yet each method has limitations in handling long-range dependencies and computational complexity. To address this issue, this paper introduces T-Mamba, integrating frequency-based features and shared bi-positional encoding into vision mamba to address limitations in efficient global feature modeling. Besides, we design a gate selection unit to integrate two features in spatial domain and one feature in frequency domain adaptively. T-Mamba is the first work to introduce frequency-based features into vision mamba, and its flexibility allows it to process both 2D and 3D tooth data without the need for separate modules. Also, the TED3, a large-scale public tooth 2D dental X-ray dataset, has been presented in this paper. Extensive experiments demonstrate that T-Mamba achieves new SOTA results on a public tooth CBCT dataset and outperforms previous SOTA methods on TED3 dataset. The code and models are publicly available at: https://github.com/isbrycee/T-Mamba.
DopQ-ViT: Towards Distribution-Friendly and Outlier-Aware Post-Training Quantization for Vision Transformers
Vision transformers (ViTs) have garnered significant attention for their performance in vision tasks, but the high computational cost and significant latency issues have hindered widespread adoption. Post-training quantization (PTQ), a promising method for model compression, still faces accuracy degradation challenges with ViTs. There are two reasons for this: the existing quantization paradigm does not fit the power-law distribution of post-Softmax activations well, and accuracy inevitably decreases after reparameterizing post-LayerNorm activations. We propose a Distribution-Friendly and Outlier-Aware Post-training Quantization method for Vision Transformers, named DopQ-ViT. DopQ-ViT analyzes the inefficiencies of current quantizers and introduces a distribution-friendly Tan Quantizer called TanQ. TanQ focuses more on values near 1, more accurately preserving the power-law distribution of post-Softmax activations, and achieves favorable results. Besides, during the reparameterization of post-LayerNorm activations from channel-wise to layer-wise quantization, the accuracy degradation is mainly due to the significant impact of outliers in the scaling factors. Therefore, DopQ-ViT proposes a method to select Median as the Optimal Scaling Factor, denoted as MOSF, which compensates for the influence of outliers and preserves the performance of the quantization model. DopQ-ViT has been extensively validated and significantly improves the performance of quantization models, especially in low-bit settings.
Text2Lip: Progressive Lip-Synced Talking Face Generation from Text via Viseme-Guided Rendering
Generating semantically coherent and visually accurate talking faces requires bridging the gap between linguistic meaning and facial articulation. Although audio-driven methods remain prevalent, their reliance on high-quality paired audio visual data and the inherent ambiguity in mapping acoustics to lip motion pose significant challenges in terms of scalability and robustness. To address these issues, we propose Text2Lip, a viseme-centric framework that constructs an interpretable phonetic-visual bridge by embedding textual input into structured viseme sequences. These mid-level units serve as a linguistically grounded prior for lip motion prediction. Furthermore, we design a progressive viseme-audio replacement strategy based on curriculum learning, enabling the model to gradually transition from real audio to pseudo-audio reconstructed from enhanced viseme features via cross-modal attention. This allows for robust generation in both audio-present and audio-free scenarios. Finally, a landmark-guided renderer synthesizes photorealistic facial videos with accurate lip synchronization. Extensive evaluations show that Text2Lip outperforms existing approaches in semantic fidelity, visual realism, and modality robustness, establishing a new paradigm for controllable and flexible talking face generation. Our project homepage is https://plyon1.github.io/Text2Lip/.
Sequencer: Deep LSTM for Image Classification
In recent computer vision research, the advent of the Vision Transformer (ViT) has rapidly revolutionized various architectural design efforts: ViT achieved state-of-the-art image classification performance using self-attention found in natural language processing, and MLP-Mixer achieved competitive performance using simple multi-layer perceptrons. In contrast, several studies have also suggested that carefully redesigned convolutional neural networks (CNNs) can achieve advanced performance comparable to ViT without resorting to these new ideas. Against this background, there is growing interest in what inductive bias is suitable for computer vision. Here we propose Sequencer, a novel and competitive architecture alternative to ViT that provides a new perspective on these issues. Unlike ViTs, Sequencer models long-range dependencies using LSTMs rather than self-attention layers. We also propose a two-dimensional version of Sequencer module, where an LSTM is decomposed into vertical and horizontal LSTMs to enhance performance. Despite its simplicity, several experiments demonstrate that Sequencer performs impressively well: Sequencer2D-L, with 54M parameters, realizes 84.6% top-1 accuracy on only ImageNet-1K. Not only that, we show that it has good transferability and the robust resolution adaptability on double resolution-band.
PreciseControl: Enhancing Text-To-Image Diffusion Models with Fine-Grained Attribute Control
Recently, we have seen a surge of personalization methods for text-to-image (T2I) diffusion models to learn a concept using a few images. Existing approaches, when used for face personalization, suffer to achieve convincing inversion with identity preservation and rely on semantic text-based editing of the generated face. However, a more fine-grained control is desired for facial attribute editing, which is challenging to achieve solely with text prompts. In contrast, StyleGAN models learn a rich face prior and enable smooth control towards fine-grained attribute editing by latent manipulation. This work uses the disentangled W+ space of StyleGANs to condition the T2I model. This approach allows us to precisely manipulate facial attributes, such as smoothly introducing a smile, while preserving the existing coarse text-based control inherent in T2I models. To enable conditioning of the T2I model on the W+ space, we train a latent mapper to translate latent codes from W+ to the token embedding space of the T2I model. The proposed approach excels in the precise inversion of face images with attribute preservation and facilitates continuous control for fine-grained attribute editing. Furthermore, our approach can be readily extended to generate compositions involving multiple individuals. We perform extensive experiments to validate our method for face personalization and fine-grained attribute editing.
DreamFace: Progressive Generation of Animatable 3D Faces under Text Guidance
Emerging Metaverse applications demand accessible, accurate, and easy-to-use tools for 3D digital human creations in order to depict different cultures and societies as if in the physical world. Recent large-scale vision-language advances pave the way to for novices to conveniently customize 3D content. However, the generated CG-friendly assets still cannot represent the desired facial traits for human characteristics. In this paper, we present DreamFace, a progressive scheme to generate personalized 3D faces under text guidance. It enables layman users to naturally customize 3D facial assets that are compatible with CG pipelines, with desired shapes, textures, and fine-grained animation capabilities. From a text input to describe the facial traits, we first introduce a coarse-to-fine scheme to generate the neutral facial geometry with a unified topology. We employ a selection strategy in the CLIP embedding space, and subsequently optimize both the details displacements and normals using Score Distillation Sampling from generic Latent Diffusion Model. Then, for neutral appearance generation, we introduce a dual-path mechanism, which combines the generic LDM with a novel texture LDM to ensure both the diversity and textural specification in the UV space. We also employ a two-stage optimization to perform SDS in both the latent and image spaces to significantly provides compact priors for fine-grained synthesis. Our generated neutral assets naturally support blendshapes-based facial animations. We further improve the animation ability with personalized deformation characteristics by learning the universal expression prior using the cross-identity hypernetwork. Notably, DreamFace can generate of realistic 3D facial assets with physically-based rendering quality and rich animation ability from video footage, even for fashion icons or exotic characters in cartoons and fiction movies.
Multi-Dimensional Hyena for Spatial Inductive Bias
In recent years, Vision Transformers have attracted increasing interest from computer vision researchers. However, the advantage of these transformers over CNNs is only fully manifested when trained over a large dataset, mainly due to the reduced inductive bias towards spatial locality within the transformer's self-attention mechanism. In this work, we present a data-efficient vision transformer that does not rely on self-attention. Instead, it employs a novel generalization to multiple axes of the very recent Hyena layer. We propose several alternative approaches for obtaining this generalization and delve into their unique distinctions and considerations from both empirical and theoretical perspectives. Our empirical findings indicate that the proposed Hyena N-D layer boosts the performance of various Vision Transformer architectures, such as ViT, Swin, and DeiT across multiple datasets. Furthermore, in the small dataset regime, our Hyena-based ViT is favorable to ViT variants from the recent literature that are specifically designed for solving the same challenge, i.e., working with small datasets or incorporating image-specific inductive bias into the self-attention mechanism. Finally, we show that a hybrid approach that is based on Hyena N-D for the first layers in ViT, followed by layers that incorporate conventional attention, consistently boosts the performance of various vision transformer architectures.
Ingredients: Blending Custom Photos with Video Diffusion Transformers
This paper presents a powerful framework to customize video creations by incorporating multiple specific identity (ID) photos, with video diffusion Transformers, referred to as Ingredients. Generally, our method consists of three primary modules: (i) a facial extractor that captures versatile and precise facial features for each human ID from both global and local perspectives; (ii) a multi-scale projector that maps face embeddings into the contextual space of image query in video diffusion transformers; (iii) an ID router that dynamically combines and allocates multiple ID embedding to the corresponding space-time regions. Leveraging a meticulously curated text-video dataset and a multi-stage training protocol, Ingredients demonstrates superior performance in turning custom photos into dynamic and personalized video content. Qualitative evaluations highlight the advantages of proposed method, positioning it as a significant advancement toward more effective generative video control tools in Transformer-based architecture, compared to existing methods. The data, code, and model weights are publicly available at: https://github.com/feizc/Ingredients.
Image Reconstruction using Enhanced Vision Transformer
Removing noise from images is a challenging and fundamental problem in the field of computer vision. Images captured by modern cameras are inevitably degraded by noise which limits the accuracy of any quantitative measurements on those images. In this project, we propose a novel image reconstruction framework which can be used for tasks such as image denoising, deblurring or inpainting. The model proposed in this project is based on Vision Transformer (ViT) that takes 2D images as input and outputs embeddings which can be used for reconstructing denoised images. We incorporate four additional optimization techniques in the framework to improve the model reconstruction capability, namely Locality Sensitive Attention (LSA), Shifted Patch Tokenization (SPT), Rotary Position Embeddings (RoPE) and adversarial loss function inspired from Generative Adversarial Networks (GANs). LSA, SPT and RoPE enable the transformer to learn from the dataset more efficiently, while the adversarial loss function enhances the resolution of the reconstructed images. Based on our experiments, the proposed architecture outperforms the benchmark U-Net model by more than 3.5\% structural similarity (SSIM) for the reconstruction tasks of image denoising and inpainting. The proposed enhancements further show an improvement of \textasciitilde5\% SSIM over the benchmark for both tasks.
GeneFace++: Generalized and Stable Real-Time Audio-Driven 3D Talking Face Generation
Generating talking person portraits with arbitrary speech audio is a crucial problem in the field of digital human and metaverse. A modern talking face generation method is expected to achieve the goals of generalized audio-lip synchronization, good video quality, and high system efficiency. Recently, neural radiance field (NeRF) has become a popular rendering technique in this field since it could achieve high-fidelity and 3D-consistent talking face generation with a few-minute-long training video. However, there still exist several challenges for NeRF-based methods: 1) as for the lip synchronization, it is hard to generate a long facial motion sequence of high temporal consistency and audio-lip accuracy; 2) as for the video quality, due to the limited data used to train the renderer, it is vulnerable to out-of-domain input condition and produce bad rendering results occasionally; 3) as for the system efficiency, the slow training and inference speed of the vanilla NeRF severely obstruct its usage in real-world applications. In this paper, we propose GeneFace++ to handle these challenges by 1) utilizing the pitch contour as an auxiliary feature and introducing a temporal loss in the facial motion prediction process; 2) proposing a landmark locally linear embedding method to regulate the outliers in the predicted motion sequence to avoid robustness issues; 3) designing a computationally efficient NeRF-based motion-to-video renderer to achieves fast training and real-time inference. With these settings, GeneFace++ becomes the first NeRF-based method that achieves stable and real-time talking face generation with generalized audio-lip synchronization. Extensive experiments show that our method outperforms state-of-the-art baselines in terms of subjective and objective evaluation. Video samples are available at https://genefaceplusplus.github.io .
A Length-Extrapolatable Transformer
Position modeling plays a critical role in Transformers. In this paper, we focus on length extrapolation, i.e., training on short texts while evaluating longer sequences. We define attention resolution as an indicator of extrapolation. Then we propose two designs to improve the above metric of Transformers. Specifically, we introduce a relative position embedding to explicitly maximize attention resolution. Moreover, we use blockwise causal attention during inference for better resolution. We evaluate different Transformer variants with language modeling. Experimental results show that our model achieves strong performance in both interpolation and extrapolation settings. The code will be available at https://aka.ms/LeX-Transformer.
Q-HyViT: Post-Training Quantization of Hybrid Vision Transformers with Bridge Block Reconstruction for IoT Systems
Recently, vision transformers (ViTs) have superseded convolutional neural networks in numerous applications, including classification, detection, and segmentation. However, the high computational requirements of ViTs hinder their widespread implementation. To address this issue, researchers have proposed efficient hybrid transformer architectures that combine convolutional and transformer layers with optimized attention computation of linear complexity. Additionally, post-training quantization has been proposed as a means of mitigating computational demands. For mobile devices, achieving optimal acceleration for ViTs necessitates the strategic integration of quantization techniques and efficient hybrid transformer structures. However, no prior investigation has applied quantization to efficient hybrid transformers. In this paper, we discover that applying existing post-training quantization (PTQ) methods for ViTs to efficient hybrid transformers leads to a drastic accuracy drop, attributed to the four following challenges: (i) highly dynamic ranges, (ii) zero-point overflow, (iii) diverse normalization, and (iv) limited model parameters (<5M). To overcome these challenges, we propose a new post-training quantization method, which is the first to quantize efficient hybrid ViTs (MobileViTv1, MobileViTv2, Mobile-Former, EfficientFormerV1, EfficientFormerV2). We achieve a significant improvement of 17.73% for 8-bit and 29.75% for 6-bit on average, respectively, compared with existing PTQ methods (EasyQuant, FQ-ViT, PTQ4ViT, and RepQ-ViT)}. We plan to release our code at https://gitlab.com/ones-ai/q-hyvit.
Position Prediction as an Effective Pretraining Strategy
Transformers have gained increasing popularity in a wide range of applications, including Natural Language Processing (NLP), Computer Vision and Speech Recognition, because of their powerful representational capacity. However, harnessing this representational capacity effectively requires a large amount of data, strong regularization, or both, to mitigate overfitting. Recently, the power of the Transformer has been unlocked by self-supervised pretraining strategies based on masked autoencoders which rely on reconstructing masked inputs, directly, or contrastively from unmasked content. This pretraining strategy which has been used in BERT models in NLP, Wav2Vec models in Speech and, recently, in MAE models in Vision, forces the model to learn about relationships between the content in different parts of the input using autoencoding related objectives. In this paper, we propose a novel, but surprisingly simple alternative to content reconstruction~-- that of predicting locations from content, without providing positional information for it. Doing so requires the Transformer to understand the positional relationships between different parts of the input, from their content alone. This amounts to an efficient implementation where the pretext task is a classification problem among all possible positions for each input token. We experiment on both Vision and Speech benchmarks, where our approach brings improvements over strong supervised training baselines and is comparable to modern unsupervised/self-supervised pretraining methods. Our method also enables Transformers trained without position embeddings to outperform ones trained with full position information.
Multi Resolution Analysis (MRA) for Approximate Self-Attention
Transformers have emerged as a preferred model for many tasks in natural langugage processing and vision. Recent efforts on training and deploying Transformers more efficiently have identified many strategies to approximate the self-attention matrix, a key module in a Transformer architecture. Effective ideas include various prespecified sparsity patterns, low-rank basis expansions and combinations thereof. In this paper, we revisit classical Multiresolution Analysis (MRA) concepts such as Wavelets, whose potential value in this setting remains underexplored thus far. We show that simple approximations based on empirical feedback and design choices informed by modern hardware and implementation challenges, eventually yield a MRA-based approach for self-attention with an excellent performance profile across most criteria of interest. We undertake an extensive set of experiments and demonstrate that this multi-resolution scheme outperforms most efficient self-attention proposals and is favorable for both short and long sequences. Code is available at https://github.com/mlpen/mra-attention.
Efficient pre-training objectives for Transformers
The Transformer architecture deeply changed the natural language processing, outperforming all previous state-of-the-art models. However, well-known Transformer models like BERT, RoBERTa, and GPT-2 require a huge compute budget to create a high quality contextualised representation. In this paper, we study several efficient pre-training objectives for Transformers-based models. By testing these objectives on different tasks, we determine which of the ELECTRA model's new features is the most relevant. We confirm that Transformers pre-training is improved when the input does not contain masked tokens and that the usage of the whole output to compute the loss reduces training time. Moreover, inspired by ELECTRA, we study a model composed of two blocks; a discriminator and a simple generator based on a statistical model with no impact on the computational performances. Besides, we prove that eliminating the MASK token and considering the whole output during the loss computation are essential choices to improve performance. Furthermore, we show that it is possible to efficiently train BERT-like models using a discriminative approach as in ELECTRA but without a complex generator, which is expensive. Finally, we show that ELECTRA benefits heavily from a state-of-the-art hyper-parameters search.
Tracking Universal Features Through Fine-Tuning and Model Merging
We study how features emerge, disappear, and persist across models fine-tuned on different domains of text. More specifically, we start from a base one-layer Transformer language model that is trained on a combination of the BabyLM corpus, and a collection of Python code from The Stack. This base model is adapted to two new domains of text: TinyStories, and the Lua programming language, respectively; and then these two models are merged using these two models using spherical linear interpolation. Our exploration aims to provide deeper insights into the stability and transformation of features across typical transfer-learning scenarios using small-scale models and sparse auto-encoders.
AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer
Vision Transformer (ViT) has become one of the most prevailing fundamental backbone networks in the computer vision community. Despite the high accuracy, deploying it in real applications raises critical challenges including the high computational cost and inference latency. Recently, the post-training quantization (PTQ) technique has emerged as a promising way to enhance ViT's efficiency. Nevertheless, existing PTQ approaches for ViT suffer from the inflexible quantization on the post-Softmax and post-GELU activations that obey the power-law-like distributions. To address these issues, we propose a novel non-uniform quantizer, dubbed the Adaptive Logarithm AdaLog (AdaLog) quantizer. It optimizes the logarithmic base to accommodate the power-law-like distribution of activations, while simultaneously allowing for hardware-friendly quantization and de-quantization. By employing the bias reparameterization, the AdaLog quantizer is applicable to both the post-Softmax and post-GELU activations. Moreover, we develop an efficient Fast Progressive Combining Search (FPCS) strategy to determine the optimal logarithm base for AdaLog, as well as the scaling factors and zero points for the uniform quantizers. Extensive experimental results on public benchmarks demonstrate the effectiveness of our approach for various ViT-based architectures and vision tasks including classification, object detection, and instance segmentation. Code is available at https://github.com/GoatWu/AdaLog.
MatFormer: Nested Transformer for Elastic Inference
Transformer models are deployed in a wide range of settings, from multi-accelerator clusters to standalone mobile phones. The diverse inference constraints in these scenarios necessitate practitioners to train foundation models such as PaLM 2, Llama, & ViTs as a series of models of varying sizes. Due to significant training costs, only a select few model sizes are trained and supported, limiting more fine-grained control over relevant tradeoffs, including latency, cost, and accuracy. This work introduces MatFormer, a nested Transformer architecture designed to offer elasticity in a variety of deployment constraints. Each Feed Forward Network (FFN) block of a MatFormer model is jointly optimized with a few nested smaller FFN blocks. This training procedure allows for the Mix'n'Match of model granularities across layers -- i.e., a trained universal MatFormer model enables extraction of hundreds of accurate smaller models, which were never explicitly optimized. We empirically demonstrate MatFormer's effectiveness across different model classes (decoders & encoders), modalities (language & vision), and scales (up to 2.6B parameters). We find that a 2.6B decoder-only MatFormer language model (MatLM) allows us to extract smaller models spanning from 1.5B to 2.6B, each exhibiting comparable validation loss and one-shot downstream evaluations to their independently trained counterparts. Furthermore, we observe that smaller encoders extracted from a universal MatFormer-based ViT (MatViT) encoder preserve the metric-space structure for adaptive large-scale retrieval. Finally, we showcase that speculative decoding with the accurate and consistent submodels extracted from MatFormer can further reduce inference latency.
Reducing the Transformer Architecture to a Minimum
Transformers are a widespread and successful model architecture, particularly in Natural Language Processing (NLP) and Computer Vision (CV). The essential innovation of this architecture is the Attention Mechanism, which solves the problem of extracting relevant context information from long sequences in NLP and realistic scenes in CV. A classical neural network component, a Multi-Layer Perceptron (MLP), complements the attention mechanism. Its necessity is frequently justified by its capability of modeling nonlinear relationships. However, the attention mechanism itself is nonlinear through its internal use of similarity measures. A possible hypothesis is that this nonlinearity is sufficient for modeling typical application problems. As the MLPs usually contain the most trainable parameters of the whole model, their omission would substantially reduce the parameter set size. Further components can also be reorganized to reduce the number of parameters. Under some conditions, query and key matrices can be collapsed into a single matrix of the same size. The same is true about value and projection matrices, which can also be omitted without eliminating the substance of the attention mechanism. Initially, the similarity measure was defined asymmetrically, with peculiar properties such as that a token is possibly dissimilar to itself. A possible symmetric definition requires only half of the parameters. We have laid the groundwork by testing widespread CV benchmarks: MNIST and CIFAR-10. The tests have shown that simplified transformer architectures (a) without MLP, (b) with collapsed matrices, and (c) symmetric similarity matrices exhibit similar performance as the original architecture, saving up to 90% of parameters without hurting the classification performance.
White-Box Transformers via Sparse Rate Reduction
In this paper, we contend that the objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a mixture of low-dimensional Gaussian distributions supported on incoherent subspaces. The quality of the final representation can be measured by a unified objective function called sparse rate reduction. From this perspective, popular deep networks such as transformers can be naturally viewed as realizing iterative schemes to optimize this objective incrementally. Particularly, we show that the standard transformer block can be derived from alternating optimization on complementary parts of this objective: the multi-head self-attention operator can be viewed as a gradient descent step to compress the token sets by minimizing their lossy coding rate, and the subsequent multi-layer perceptron can be viewed as attempting to sparsify the representation of the tokens. This leads to a family of white-box transformer-like deep network architectures which are mathematically fully interpretable. Despite their simplicity, experiments show that these networks indeed learn to optimize the designed objective: they compress and sparsify representations of large-scale real-world vision datasets such as ImageNet, and achieve performance very close to thoroughly engineered transformers such as ViT. Code is at https://github.com/Ma-Lab-Berkeley/CRATE.
Do Transformers Really Perform Bad for Graph Representation?
The Transformer architecture has become a dominant choice in many domains, such as natural language processing and computer vision. Yet, it has not achieved competitive performance on popular leaderboards of graph-level prediction compared to mainstream GNN variants. Therefore, it remains a mystery how Transformers could perform well for graph representation learning. In this paper, we solve this mystery by presenting Graphormer, which is built upon the standard Transformer architecture, and could attain excellent results on a broad range of graph representation learning tasks, especially on the recent OGB Large-Scale Challenge. Our key insight to utilizing Transformer in the graph is the necessity of effectively encoding the structural information of a graph into the model. To this end, we propose several simple yet effective structural encoding methods to help Graphormer better model graph-structured data. Besides, we mathematically characterize the expressive power of Graphormer and exhibit that with our ways of encoding the structural information of graphs, many popular GNN variants could be covered as the special cases of Graphormer.
Any2Point: Empowering Any-modality Large Models for Efficient 3D Understanding
Large foundation models have recently emerged as a prominent focus of interest, attaining superior performance in widespread scenarios. Due to the scarcity of 3D data, many efforts have been made to adapt pre-trained transformers from vision to 3D domains. However, such 2D-to-3D approaches are still limited, due to the potential loss of spatial geometries and high computation cost. More importantly, their frameworks are mainly designed for 2D models, lacking a general any-to-3D paradigm. In this paper, we introduce Any2Point, a parameter-efficient method to empower any-modality large models (vision, language, audio) for 3D understanding. Given a frozen transformer from any source modality, we propose a 3D-to-any (1D or 2D) virtual projection strategy that correlates the input 3D points to the original 1D or 2D positions within the source modality. This mechanism enables us to assign each 3D token with a positional encoding paired with the pre-trained model, which avoids 3D geometry loss caused by the true projection and better motivates the transformer for 3D learning with 1D/2D positional priors. Then, within each transformer block, we insert an any-to-3D guided adapter module for parameter-efficient fine-tuning. The adapter incorporates prior spatial knowledge from the source modality to guide the local feature aggregation of 3D tokens, compelling the semantic adaption of any-modality transformers. We conduct extensive experiments to showcase the effectiveness and efficiency of our method. Code and models are released at https://github.com/Ivan-Tang-3D/Any2Point.
Scaling Rectified Flow Transformers for High-Resolution Image Synthesis
Diffusion models create data from noise by inverting the forward paths of data towards noise and have emerged as a powerful generative modeling technique for high-dimensional, perceptual data such as images and videos. Rectified flow is a recent generative model formulation that connects data and noise in a straight line. Despite its better theoretical properties and conceptual simplicity, it is not yet decisively established as standard practice. In this work, we improve existing noise sampling techniques for training rectified flow models by biasing them towards perceptually relevant scales. Through a large-scale study, we demonstrate the superior performance of this approach compared to established diffusion formulations for high-resolution text-to-image synthesis. Additionally, we present a novel transformer-based architecture for text-to-image generation that uses separate weights for the two modalities and enables a bidirectional flow of information between image and text tokens, improving text comprehension, typography, and human preference ratings. We demonstrate that this architecture follows predictable scaling trends and correlates lower validation loss to improved text-to-image synthesis as measured by various metrics and human evaluations. Our largest models outperform state-of-the-art models, and we will make our experimental data, code, and model weights publicly available.
Escaping the Big Data Paradigm with Compact Transformers
With the rise of Transformers as the standard for language processing, and their advancements in computer vision, there has been a corresponding growth in parameter size and amounts of training data. Many have come to believe that because of this, transformers are not suitable for small sets of data. This trend leads to concerns such as: limited availability of data in certain scientific domains and the exclusion of those with limited resource from research in the field. In this paper, we aim to present an approach for small-scale learning by introducing Compact Transformers. We show for the first time that with the right size, convolutional tokenization, transformers can avoid overfitting and outperform state-of-the-art CNNs on small datasets. Our models are flexible in terms of model size, and can have as little as 0.28M parameters while achieving competitive results. Our best model can reach 98% accuracy when training from scratch on CIFAR-10 with only 3.7M parameters, which is a significant improvement in data-efficiency over previous Transformer based models being over 10x smaller than other transformers and is 15% the size of ResNet50 while achieving similar performance. CCT also outperforms many modern CNN based approaches, and even some recent NAS-based approaches. Additionally, we obtain a new SOTA result on Flowers-102 with 99.76% top-1 accuracy, and improve upon the existing baseline on ImageNet (82.71% accuracy with 29% as many parameters as ViT), as well as NLP tasks. Our simple and compact design for transformers makes them more feasible to study for those with limited computing resources and/or dealing with small datasets, while extending existing research efforts in data efficient transformers. Our code and pre-trained models are publicly available at https://github.com/SHI-Labs/Compact-Transformers.
ViTGAN: Training GANs with Vision Transformers
Recently, Vision Transformers (ViTs) have shown competitive performance on image recognition while requiring less vision-specific inductive biases. In this paper, we investigate if such observation can be extended to image generation. To this end, we integrate the ViT architecture into generative adversarial networks (GANs). We observe that existing regularization methods for GANs interact poorly with self-attention, causing serious instability during training. To resolve this issue, we introduce novel regularization techniques for training GANs with ViTs. Empirically, our approach, named ViTGAN, achieves comparable performance to state-of-the-art CNN-based StyleGAN2 on CIFAR-10, CelebA, and LSUN bedroom datasets.
Efficient Speech Translation with Dynamic Latent Perceivers
Transformers have been the dominant architecture for Speech Translation in recent years, achieving significant improvements in translation quality. Since speech signals are longer than their textual counterparts, and due to the quadratic complexity of the Transformer, a down-sampling step is essential for its adoption in Speech Translation. Instead, in this research, we propose to ease the complexity by using a Perceiver encoder to map the speech inputs to a fixed-length latent representation. Furthermore, we introduce a novel way of training Perceivers, with Dynamic Latent Access (DLA), unlocking larger latent spaces without any additional computational overhead. Speech-to-Text Perceivers with DLA can match the performance of Transformer baselines across three language pairs in MuST-C. Finally, a DLA-trained model is easily adaptable to DLA at inference, and can be flexibly deployed with various computational budgets, without significant drops in translation quality.
When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations
Vision Transformers (ViTs) and MLPs signal further efforts on replacing hand-wired features or inductive biases with general-purpose neural architectures. Existing works empower the models by massive data, such as large-scale pre-training and/or repeated strong data augmentations, and still report optimization-related problems (e.g., sensitivity to initialization and learning rates). Hence, this paper investigates ViTs and MLP-Mixers from the lens of loss geometry, intending to improve the models' data efficiency at training and generalization at inference. Visualization and Hessian reveal extremely sharp local minima of converged models. By promoting smoothness with a recently proposed sharpness-aware optimizer, we substantially improve the accuracy and robustness of ViTs and MLP-Mixers on various tasks spanning supervised, adversarial, contrastive, and transfer learning (e.g., +5.3\% and +11.0\% top-1 accuracy on ImageNet for ViT-B/16 and Mixer-B/16, respectively, with the simple Inception-style preprocessing). We show that the improved smoothness attributes to sparser active neurons in the first few layers. The resultant ViTs outperform ResNets of similar size and throughput when trained from scratch on ImageNet without large-scale pre-training or strong data augmentations. Model checkpoints are available at https://github.com/google-research/vision_transformer.
TransformerRanker: A Tool for Efficiently Finding the Best-Suited Language Models for Downstream Classification Tasks
Classification tasks in NLP are typically addressed by selecting a pre-trained language model (PLM) from a model hub, and fine-tuning it for the task at hand. However, given the very large number of PLMs that are currently available, a practical challenge is to determine which of them will perform best for a specific downstream task. With this paper, we introduce TransformerRanker, a lightweight library that efficiently ranks PLMs for classification tasks without the need for computationally costly fine-tuning. Our library implements current approaches for transferability estimation (LogME, H-Score, kNN), in combination with layer aggregation options, which we empirically showed to yield state-of-the-art rankings of PLMs (Garbas et al., 2024). We designed the interface to be lightweight and easy to use, allowing users to directly connect to the HuggingFace Transformers and Dataset libraries. Users need only select a downstream classification task and a list of PLMs to create a ranking of likely best-suited PLMs for their task. We make TransformerRanker available as a pip-installable open-source library https://github.com/flairNLP/transformer-ranker.
Make-A-Character 2: Animatable 3D Character Generation From a Single Image
This report introduces Make-A-Character 2, an advanced system for generating high-quality 3D characters from single portrait photographs, ideal for game development and digital human applications. Make-A-Character 2 builds upon its predecessor by incorporating several significant improvements for image-based head generation. We utilize the IC-Light method to correct non-ideal illumination in input photos and apply neural network-based color correction to harmonize skin tones between the photos and game engine renders. We also employ the Hierarchical Representation Network to capture high-frequency facial structures and conduct adaptive skeleton calibration for accurate and expressive facial animations. The entire image-to-3D-character generation process takes less than 2 minutes. Furthermore, we leverage transformer architecture to generate co-speech facial and gesture actions, enabling real-time conversation with the generated character. These technologies have been integrated into our conversational AI avatar products.
GiT: Towards Generalist Vision Transformer through Universal Language Interface
This paper proposes a simple, yet effective framework, called GiT, simultaneously applicable for various vision tasks only with a vanilla ViT. Motivated by the universality of the Multi-layer Transformer architecture (e.g, GPT) widely used in large language models (LLMs), we seek to broaden its scope to serve as a powerful vision foundation model (VFM). However, unlike language modeling, visual tasks typically require specific modules, such as bounding box heads for detection and pixel decoders for segmentation, greatly hindering the application of powerful multi-layer transformers in the vision domain. To solve this, we design a universal language interface that empowers the successful auto-regressive decoding to adeptly unify various visual tasks, from image-level understanding (e.g., captioning), over sparse perception (e.g., detection), to dense prediction (e.g., segmentation). Based on the above designs, the entire model is composed solely of a ViT, without any specific additions, offering a remarkable architectural simplification. GiT is a multi-task visual model, jointly trained across five representative benchmarks without task-specific fine-tuning. Interestingly, our GiT builds a new benchmark in generalist performance, and fosters mutual enhancement across tasks, leading to significant improvements compared to isolated training. This reflects a similar impact observed in LLMs. Further enriching training with 27 datasets, GiT achieves strong zero-shot results over various tasks. Due to its simple design, this paradigm holds promise for narrowing the architectural gap between vision and language. Code and models will be available at https://github.com/Haiyang-W/GiT.
Change of Thought: Adaptive Test-Time Computation
Transformers evaluated in a single, fixed-depth pass are provably limited in expressive power to the constant-depth circuit class TC0. Running a Transformer autoregressively removes that ceiling -- first in next-token prediction and, more recently, in chain-of-thought reasoning. Both regimes rely on feedback loops that decode internal states into tokens only to re-encode them in subsequent steps. While this "thinking aloud" mirrors human reasoning, biological brains iterate without externalising intermediate states as language. To boost the expressive power of encoder Transformers without resorting to token-level autoregression, we introduce the SELF-Transformer: an encoder layer that iteratively refines its own attention weights to a fixed point. Instead of producing -- in one pass -- the alignment matrix that remixes the input sequence, the SELF-Transformer iteratively updates that matrix internally, scaling test-time computation with input difficulty. This adaptivity yields up to 20\% accuracy gains on encoder-style benchmarks without increasing parameter count, demonstrating that input-adaptive alignment at test time offers substantial benefits for only a modest extra compute budget. Self-Transformers thus recover much of the expressive power of iterative reasoning while preserving the simplicity of pure encoder architectures.
Visual Echoes: A Simple Unified Transformer for Audio-Visual Generation
In recent years, with the realistic generation results and a wide range of personalized applications, diffusion-based generative models gain huge attention in both visual and audio generation areas. Compared to the considerable advancements of text2image or text2audio generation, research in audio2visual or visual2audio generation has been relatively slow. The recent audio-visual generation methods usually resort to huge large language model or composable diffusion models. Instead of designing another giant model for audio-visual generation, in this paper we take a step back showing a simple and lightweight generative transformer, which is not fully investigated in multi-modal generation, can achieve excellent results on image2audio generation. The transformer operates in the discrete audio and visual Vector-Quantized GAN space, and is trained in the mask denoising manner. After training, the classifier-free guidance could be deployed off-the-shelf achieving better performance, without any extra training or modification. Since the transformer model is modality symmetrical, it could also be directly deployed for audio2image generation and co-generation. In the experiments, we show that our simple method surpasses recent image2audio generation methods. Generated audio samples can be found at https://docs.google.com/presentation/d/1ZtC0SeblKkut4XJcRaDsSTuCRIXB3ypxmSi7HTY3IyQ
ChatAnything: Facetime Chat with LLM-Enhanced Personas
In this technical report, we target generating anthropomorphized personas for LLM-based characters in an online manner, including visual appearance, personality and tones, with only text descriptions. To achieve this, we first leverage the in-context learning capability of LLMs for personality generation by carefully designing a set of system prompts. We then propose two novel concepts: the mixture of voices (MoV) and the mixture of diffusers (MoD) for diverse voice and appearance generation. For MoV, we utilize the text-to-speech (TTS) algorithms with a variety of pre-defined tones and select the most matching one based on the user-provided text description automatically. For MoD, we combine the recent popular text-to-image generation techniques and talking head algorithms to streamline the process of generating talking objects. We termed the whole framework as ChatAnything. With it, users could be able to animate anything with any personas that are anthropomorphic using just a few text inputs. However, we have observed that the anthropomorphic objects produced by current generative models are often undetectable by pre-trained face landmark detectors, leading to failure of the face motion generation, even if these faces possess human-like appearances because those images are nearly seen during the training (e.g., OOD samples). To address this issue, we incorporate pixel-level guidance to infuse human face landmarks during the image generation phase. To benchmark these metrics, we have built an evaluation dataset. Based on it, we verify that the detection rate of the face landmark is significantly increased from 57.0% to 92.5% thus allowing automatic face animation based on generated speech content. The code and more results can be found at https://chatanything.github.io/.
Mixture-of-Transformers: A Sparse and Scalable Architecture for Multi-Modal Foundation Models
The development of large language models (LLMs) has expanded to multi-modal systems capable of processing text, images, and speech within a unified framework. Training these models demands significantly larger datasets and computational resources compared to text-only LLMs. To address the scaling challenges, we introduce Mixture-of-Transformers (MoT), a sparse multi-modal transformer architecture that significantly reduces pretraining computational costs. MoT decouples non-embedding parameters of the model by modality -- including feed-forward networks, attention matrices, and layer normalization -- enabling modality-specific processing with global self-attention over the full input sequence. We evaluate MoT across multiple settings and model scales. In the Chameleon 7B setting (autoregressive text-and-image generation), MoT matches the dense baseline's performance using only 55.8\% of the FLOPs. When extended to include speech, MoT reaches speech performance comparable to the dense baseline with only 37.2\% of the FLOPs. In the Transfusion setting, where text and image are trained with different objectives, a 7B MoT model matches the image modality performance of the dense baseline with one third of the FLOPs, and a 760M MoT model outperforms a 1.4B dense baseline across key image generation metrics. System profiling further highlights MoT's practical benefits, achieving dense baseline image quality in 47.2\% of the wall-clock time and text quality in 75.6\% of the wall-clock time (measured on AWS p4de.24xlarge instances with NVIDIA A100 GPUs).
FiTv2: Scalable and Improved Flexible Vision Transformer for Diffusion Model
Nature is infinitely resolution-free. In the context of this reality, existing diffusion models, such as Diffusion Transformers, often face challenges when processing image resolutions outside of their trained domain. To address this limitation, we conceptualize images as sequences of tokens with dynamic sizes, rather than traditional methods that perceive images as fixed-resolution grids. This perspective enables a flexible training strategy that seamlessly accommodates various aspect ratios during both training and inference, thus promoting resolution generalization and eliminating biases introduced by image cropping. On this basis, we present the Flexible Vision Transformer (FiT), a transformer architecture specifically designed for generating images with unrestricted resolutions and aspect ratios. We further upgrade the FiT to FiTv2 with several innovative designs, includingthe Query-Key vector normalization, the AdaLN-LoRA module, a rectified flow scheduler, and a Logit-Normal sampler. Enhanced by a meticulously adjusted network structure, FiTv2 exhibits 2times convergence speed of FiT. When incorporating advanced training-free extrapolation techniques, FiTv2 demonstrates remarkable adaptability in both resolution extrapolation and diverse resolution generation. Additionally, our exploration of the scalability of the FiTv2 model reveals that larger models exhibit better computational efficiency. Furthermore, we introduce an efficient post-training strategy to adapt a pre-trained model for the high-resolution generation. Comprehensive experiments demonstrate the exceptional performance of FiTv2 across a broad range of resolutions. We have released all the codes and models at https://github.com/whlzy/FiT to promote the exploration of diffusion transformer models for arbitrary-resolution image generation.
Small-E: Small Language Model with Linear Attention for Efficient Speech Synthesis
Recent advancements in text-to-speech (TTS) powered by language models have showcased remarkable capabilities in achieving naturalness and zero-shot voice cloning. Notably, the decoder-only transformer is the prominent architecture in this domain. However, transformers face challenges stemming from their quadratic complexity in sequence length, impeding training on lengthy sequences and resource-constrained hardware. Moreover they lack specific inductive bias with regards to the monotonic nature of TTS alignments. In response, we propose to replace transformers with emerging recurrent architectures and introduce specialized cross-attention mechanisms for reducing repeating and skipping issues. Consequently our architecture can be efficiently trained on long samples and achieve state-of-the-art zero-shot voice cloning against baselines of comparable size. Our implementation and demos are available at https://github.com/theodorblackbird/lina-speech.
