Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOptimizing ViViT Training: Time and Memory Reduction for Action Recognition
In this paper, we address the challenges posed by the substantial training time and memory consumption associated with video transformers, focusing on the ViViT (Video Vision Transformer) model, in particular the Factorised Encoder version, as our baseline for action recognition tasks. The factorised encoder variant follows the late-fusion approach that is adopted by many state of the art approaches. Despite standing out for its favorable speed/accuracy tradeoffs among the different variants of ViViT, its considerable training time and memory requirements still pose a significant barrier to entry. Our method is designed to lower this barrier and is based on the idea of freezing the spatial transformer during training. This leads to a low accuracy model if naively done. But we show that by (1) appropriately initializing the temporal transformer (a module responsible for processing temporal information) (2) introducing a compact adapter model connecting frozen spatial representations ((a module that selectively focuses on regions of the input image) to the temporal transformer, we can enjoy the benefits of freezing the spatial transformer without sacrificing accuracy. Through extensive experimentation over 6 benchmarks, we demonstrate that our proposed training strategy significantly reduces training costs (by sim 50%) and memory consumption while maintaining or slightly improving performance by up to 1.79\% compared to the baseline model. Our approach additionally unlocks the capability to utilize larger image transformer models as our spatial transformer and access more frames with the same memory consumption.
FMViT: A multiple-frequency mixing Vision Transformer
The transformer model has gained widespread adoption in computer vision tasks in recent times. However, due to the quadratic time and memory complexity of self-attention, which is proportional to the number of input tokens, most existing Vision Transformers (ViTs) encounter challenges in achieving efficient performance in practical industrial deployment scenarios, such as TensorRT and CoreML, where traditional CNNs excel. Although some recent attempts have been made to design CNN-Transformer hybrid architectures to tackle this problem, their overall performance has not met expectations. To tackle these challenges, we propose an efficient hybrid ViT architecture named FMViT. This approach enhances the model's expressive power by blending high-frequency features and low-frequency features with varying frequencies, enabling it to capture both local and global information effectively. Additionally, we introduce deploy-friendly mechanisms such as Convolutional Multigroup Reparameterization (gMLP), Lightweight Multi-head Self-Attention (RLMHSA), and Convolutional Fusion Block (CFB) to further improve the model's performance and reduce computational overhead. Our experiments demonstrate that FMViT surpasses existing CNNs, ViTs, and CNNTransformer hybrid architectures in terms of latency/accuracy trade-offs for various vision tasks. On the TensorRT platform, FMViT outperforms Resnet101 by 2.5% (83.3% vs. 80.8%) in top-1 accuracy on the ImageNet dataset while maintaining similar inference latency. Moreover, FMViT achieves comparable performance with EfficientNet-B5, but with a 43% improvement in inference speed. On CoreML, FMViT outperforms MobileOne by 2.6% in top-1 accuracy on the ImageNet dataset, with inference latency comparable to MobileOne (78.5% vs. 75.9%). Our code can be found at https://github.com/tany0699/FMViT.
Keep It SimPool: Who Said Supervised Transformers Suffer from Attention Deficit?
Convolutional networks and vision transformers have different forms of pairwise interactions, pooling across layers and pooling at the end of the network. Does the latter really need to be different? As a by-product of pooling, vision transformers provide spatial attention for free, but this is most often of low quality unless self-supervised, which is not well studied. Is supervision really the problem? In this work, we develop a generic pooling framework and then we formulate a number of existing methods as instantiations. By discussing the properties of each group of methods, we derive SimPool, a simple attention-based pooling mechanism as a replacement of the default one for both convolutional and transformer encoders. We find that, whether supervised or self-supervised, this improves performance on pre-training and downstream tasks and provides attention maps delineating object boundaries in all cases. One could thus call SimPool universal. To our knowledge, we are the first to obtain attention maps in supervised transformers of at least as good quality as self-supervised, without explicit losses or modifying the architecture. Code at: https://github.com/billpsomas/simpool.
Addressing Representation Collapse in Vector Quantized Models with One Linear Layer
Vector Quantization (VQ) is a widely used method for converting continuous representations into discrete codes, which has become fundamental in unsupervised representation learning and latent generative models. However, VQ models are often hindered by the problem of representation collapse in the latent space, which leads to low codebook utilization and limits the scalability of the codebook for large-scale training. Existing methods designed to mitigate representation collapse typically reduce the dimensionality of latent space at the expense of model capacity, which do not fully resolve the core issue. In this study, we conduct a theoretical analysis of representation collapse in VQ models and identify its primary cause as the disjoint optimization of the codebook, where only a small subset of code vectors are updated through gradient descent. To address this issue, we propose SimVQ, a novel method which reparameterizes the code vectors through a linear transformation layer based on a learnable latent basis. This transformation optimizes the entire linear space spanned by the codebook, rather than merely updating the code vector selected by the nearest-neighbor search in vanilla VQ models. Although it is commonly understood that the multiplication of two linear matrices is equivalent to applying a single linear layer, our approach works surprisingly well in resolving the collapse issue in VQ models with just one linear layer. We validate the efficacy of SimVQ through extensive experiments across various modalities, including image and audio data with different model architectures. Our code is available at https://github.com/youngsheen/SimVQ.
Spatio-temporal Vision Transformer for Super-resolution Microscopy
Structured illumination microscopy (SIM) is an optical super-resolution technique that enables live-cell imaging beyond the diffraction limit. Reconstruction of SIM data is prone to artefacts, which becomes problematic when imaging highly dynamic samples because previous methods rely on the assumption that samples are static. We propose a new transformer-based reconstruction method, VSR-SIM, that uses shifted 3-dimensional window multi-head attention in addition to channel attention mechanism to tackle the problem of video super-resolution (VSR) in SIM. The attention mechanisms are found to capture motion in sequences without the need for common motion estimation techniques such as optical flow. We take an approach to training the network that relies solely on simulated data using videos of natural scenery with a model for SIM image formation. We demonstrate a use case enabled by VSR-SIM referred to as rolling SIM imaging, which increases temporal resolution in SIM by a factor of 9. Our method can be applied to any SIM setup enabling precise recordings of dynamic processes in biomedical research with high temporal resolution.
MiniViT: Compressing Vision Transformers with Weight Multiplexing
Vision Transformer (ViT) models have recently drawn much attention in computer vision due to their high model capability. However, ViT models suffer from huge number of parameters, restricting their applicability on devices with limited memory. To alleviate this problem, we propose MiniViT, a new compression framework, which achieves parameter reduction in vision transformers while retaining the same performance. The central idea of MiniViT is to multiplex the weights of consecutive transformer blocks. More specifically, we make the weights shared across layers, while imposing a transformation on the weights to increase diversity. Weight distillation over self-attention is also applied to transfer knowledge from large-scale ViT models to weight-multiplexed compact models. Comprehensive experiments demonstrate the efficacy of MiniViT, showing that it can reduce the size of the pre-trained Swin-B transformer by 48\%, while achieving an increase of 1.0\% in Top-1 accuracy on ImageNet. Moreover, using a single-layer of parameters, MiniViT is able to compress DeiT-B by 9.7 times from 86M to 9M parameters, without seriously compromising the performance. Finally, we verify the transferability of MiniViT by reporting its performance on downstream benchmarks. Code and models are available at here.
EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention
Vision transformers have shown great success due to their high model capabilities. However, their remarkable performance is accompanied by heavy computation costs, which makes them unsuitable for real-time applications. In this paper, we propose a family of high-speed vision transformers named EfficientViT. We find that the speed of existing transformer models is commonly bounded by memory inefficient operations, especially the tensor reshaping and element-wise functions in MHSA. Therefore, we design a new building block with a sandwich layout, i.e., using a single memory-bound MHSA between efficient FFN layers, which improves memory efficiency while enhancing channel communication. Moreover, we discover that the attention maps share high similarities across heads, leading to computational redundancy. To address this, we present a cascaded group attention module feeding attention heads with different splits of the full feature, which not only saves computation cost but also improves attention diversity. Comprehensive experiments demonstrate EfficientViT outperforms existing efficient models, striking a good trade-off between speed and accuracy. For instance, our EfficientViT-M5 surpasses MobileNetV3-Large by 1.9% in accuracy, while getting 40.4% and 45.2% higher throughput on Nvidia V100 GPU and Intel Xeon CPU, respectively. Compared to the recent efficient model MobileViT-XXS, EfficientViT-M2 achieves 1.8% superior accuracy, while running 5.8x/3.7x faster on the GPU/CPU, and 7.4x faster when converted to ONNX format. Code and models are available at https://github.com/microsoft/Cream/tree/main/EfficientViT.
VPNeXt -- Rethinking Dense Decoding for Plain Vision Transformer
We present VPNeXt, a new and simple model for the Plain Vision Transformer (ViT). Unlike the many related studies that share the same homogeneous paradigms, VPNeXt offers a fresh perspective on dense representation based on ViT. In more detail, the proposed VPNeXt addressed two concerns about the existing paradigm: (1) Is it necessary to use a complex Transformer Mask Decoder architecture to obtain good representations? (2) Does the Plain ViT really need to depend on the mock pyramid feature for upsampling? For (1), we investigated the potential underlying reasons that contributed to the effectiveness of the Transformer Decoder and introduced the Visual Context Replay (VCR) to achieve similar effects efficiently. For (2), we introduced the ViTUp module. This module fully utilizes the previously overlooked ViT real pyramid feature to achieve better upsampling results compared to the earlier mock pyramid feature. This represents the first instance of such functionality in the field of semantic segmentation for Plain ViT. We performed ablation studies on related modules to verify their effectiveness gradually. We conducted relevant comparative experiments and visualizations to show that VPNeXt achieved state-of-the-art performance with a simple and effective design. Moreover, the proposed VPNeXt significantly exceeded the long-established mIoU wall/barrier of the VOC2012 dataset, setting a new state-of-the-art by a large margin, which also stands as the largest improvement since 2015.
ECViT: Efficient Convolutional Vision Transformer with Local-Attention and Multi-scale Stages
Vision Transformers (ViTs) have revolutionized computer vision by leveraging self-attention to model long-range dependencies. However, ViTs face challenges such as high computational costs due to the quadratic scaling of self-attention and the requirement of a large amount of training data. To address these limitations, we propose the Efficient Convolutional Vision Transformer (ECViT), a hybrid architecture that effectively combines the strengths of CNNs and Transformers. ECViT introduces inductive biases such as locality and translation invariance, inherent to Convolutional Neural Networks (CNNs) into the Transformer framework by extracting patches from low-level features and enhancing the encoder with convolutional operations. Additionally, it incorporates local-attention and a pyramid structure to enable efficient multi-scale feature extraction and representation. Experimental results demonstrate that ECViT achieves an optimal balance between performance and efficiency, outperforming state-of-the-art models on various image classification tasks while maintaining low computational and storage requirements. ECViT offers an ideal solution for applications that prioritize high efficiency without compromising performance.
Rethinking Spatial Dimensions of Vision Transformers
Vision Transformer (ViT) extends the application range of transformers from language processing to computer vision tasks as being an alternative architecture against the existing convolutional neural networks (CNN). Since the transformer-based architecture has been innovative for computer vision modeling, the design convention towards an effective architecture has been less studied yet. From the successful design principles of CNN, we investigate the role of spatial dimension conversion and its effectiveness on transformer-based architecture. We particularly attend to the dimension reduction principle of CNNs; as the depth increases, a conventional CNN increases channel dimension and decreases spatial dimensions. We empirically show that such a spatial dimension reduction is beneficial to a transformer architecture as well, and propose a novel Pooling-based Vision Transformer (PiT) upon the original ViT model. We show that PiT achieves the improved model capability and generalization performance against ViT. Throughout the extensive experiments, we further show PiT outperforms the baseline on several tasks such as image classification, object detection, and robustness evaluation. Source codes and ImageNet models are available at https://github.com/naver-ai/pit
VecFusion: Vector Font Generation with Diffusion
We present VecFusion, a new neural architecture that can generate vector fonts with varying topological structures and precise control point positions. Our approach is a cascaded diffusion model which consists of a raster diffusion model followed by a vector diffusion model. The raster model generates low-resolution, rasterized fonts with auxiliary control point information, capturing the global style and shape of the font, while the vector model synthesizes vector fonts conditioned on the low-resolution raster fonts from the first stage. To synthesize long and complex curves, our vector diffusion model uses a transformer architecture and a novel vector representation that enables the modeling of diverse vector geometry and the precise prediction of control points. Our experiments show that, in contrast to previous generative models for vector graphics, our new cascaded vector diffusion model generates higher quality vector fonts, with complex structures and diverse styles.
EfficientFormer: Vision Transformers at MobileNet Speed
Vision Transformers (ViT) have shown rapid progress in computer vision tasks, achieving promising results on various benchmarks. However, due to the massive number of parameters and model design, e.g., attention mechanism, ViT-based models are generally times slower than lightweight convolutional networks. Therefore, the deployment of ViT for real-time applications is particularly challenging, especially on resource-constrained hardware such as mobile devices. Recent efforts try to reduce the computation complexity of ViT through network architecture search or hybrid design with MobileNet block, yet the inference speed is still unsatisfactory. This leads to an important question: can transformers run as fast as MobileNet while obtaining high performance? To answer this, we first revisit the network architecture and operators used in ViT-based models and identify inefficient designs. Then we introduce a dimension-consistent pure transformer (without MobileNet blocks) as a design paradigm. Finally, we perform latency-driven slimming to get a series of final models dubbed EfficientFormer. Extensive experiments show the superiority of EfficientFormer in performance and speed on mobile devices. Our fastest model, EfficientFormer-L1, achieves 79.2% top-1 accuracy on ImageNet-1K with only 1.6 ms inference latency on iPhone 12 (compiled with CoreML), which runs as fast as MobileNetV2times 1.4 (1.6 ms, 74.7% top-1), and our largest model, EfficientFormer-L7, obtains 83.3% accuracy with only 7.0 ms latency. Our work proves that properly designed transformers can reach extremely low latency on mobile devices while maintaining high performance.
Once for Both: Single Stage of Importance and Sparsity Search for Vision Transformer Compression
Recent Vision Transformer Compression (VTC) works mainly follow a two-stage scheme, where the importance score of each model unit is first evaluated or preset in each submodule, followed by the sparsity score evaluation according to the target sparsity constraint. Such a separate evaluation process induces the gap between importance and sparsity score distributions, thus causing high search costs for VTC. In this work, for the first time, we investigate how to integrate the evaluations of importance and sparsity scores into a single stage, searching the optimal subnets in an efficient manner. Specifically, we present OFB, a cost-efficient approach that simultaneously evaluates both importance and sparsity scores, termed Once for Both (OFB), for VTC. First, a bi-mask scheme is developed by entangling the importance score and the differentiable sparsity score to jointly determine the pruning potential (prunability) of each unit. Such a bi-mask search strategy is further used together with a proposed adaptive one-hot loss to realize the progressive-and-efficient search for the most important subnet. Finally, Progressive Masked Image Modeling (PMIM) is proposed to regularize the feature space to be more representative during the search process, which may be degraded by the dimension reduction. Extensive experiments demonstrate that OFB can achieve superior compression performance over state-of-the-art searching-based and pruning-based methods under various Vision Transformer architectures, meanwhile promoting search efficiency significantly, e.g., costing one GPU search day for the compression of DeiT-S on ImageNet-1K.
SimVG: A Simple Framework for Visual Grounding with Decoupled Multi-modal Fusion
Visual grounding is a common vision task that involves grounding descriptive sentences to the corresponding regions of an image. Most existing methods use independent image-text encoding and apply complex hand-crafted modules or encoder-decoder architectures for modal interaction and query reasoning. However, their performance significantly drops when dealing with complex textual expressions. This is because the former paradigm only utilizes limited downstream data to fit the multi-modal feature fusion. Therefore, it is only effective when the textual expressions are relatively simple. In contrast, given the wide diversity of textual expressions and the uniqueness of downstream training data, the existing fusion module, which extracts multimodal content from a visual-linguistic context, has not been fully investigated. In this paper, we present a simple yet robust transformer-based framework, SimVG, for visual grounding. Specifically, we decouple visual-linguistic feature fusion from downstream tasks by leveraging existing multimodal pre-trained models and incorporating additional object tokens to facilitate deep integration of downstream and pre-training tasks. Furthermore, we design a dynamic weight-balance distillation method in the multi-branch synchronous learning process to enhance the representation capability of the simpler branch. This branch only consists of a lightweight MLP, which simplifies the structure and improves reasoning speed. Experiments on six widely used VG datasets, i.e., RefCOCO/+/g, ReferIt, Flickr30K, and GRefCOCO, demonstrate the superiority of SimVG. Finally, the proposed method not only achieves improvements in efficiency and convergence speed but also attains new state-of-the-art performance on these benchmarks. Codes and models will be available at https://github.com/Dmmm1997/SimVG.
Q-HyViT: Post-Training Quantization of Hybrid Vision Transformers with Bridge Block Reconstruction for IoT Systems
Recently, vision transformers (ViTs) have superseded convolutional neural networks in numerous applications, including classification, detection, and segmentation. However, the high computational requirements of ViTs hinder their widespread implementation. To address this issue, researchers have proposed efficient hybrid transformer architectures that combine convolutional and transformer layers with optimized attention computation of linear complexity. Additionally, post-training quantization has been proposed as a means of mitigating computational demands. For mobile devices, achieving optimal acceleration for ViTs necessitates the strategic integration of quantization techniques and efficient hybrid transformer structures. However, no prior investigation has applied quantization to efficient hybrid transformers. In this paper, we discover that applying existing post-training quantization (PTQ) methods for ViTs to efficient hybrid transformers leads to a drastic accuracy drop, attributed to the four following challenges: (i) highly dynamic ranges, (ii) zero-point overflow, (iii) diverse normalization, and (iv) limited model parameters (<5M). To overcome these challenges, we propose a new post-training quantization method, which is the first to quantize efficient hybrid ViTs (MobileViTv1, MobileViTv2, Mobile-Former, EfficientFormerV1, EfficientFormerV2). We achieve a significant improvement of 17.73% for 8-bit and 29.75% for 6-bit on average, respectively, compared with existing PTQ methods (EasyQuant, FQ-ViT, PTQ4ViT, and RepQ-ViT)}. We plan to release our code at https://gitlab.com/ones-ai/q-hyvit.
LMUFormer: Low Complexity Yet Powerful Spiking Model With Legendre Memory Units
Transformer models have demonstrated high accuracy in numerous applications but have high complexity and lack sequential processing capability making them ill-suited for many streaming applications at the edge where devices are heavily resource-constrained. Thus motivated, many researchers have proposed reformulating the transformer models as RNN modules which modify the self-attention computation with explicit states. However, these approaches often incur significant performance degradation. The ultimate goal is to develop a model that has the following properties: parallel training, streaming and low-cost inference, and SOTA performance. In this paper, we propose a new direction to achieve this goal. We show how architectural modifications to a recurrent model can help push its performance toward Transformer models while retaining its sequential processing capability. Specifically, inspired by the recent success of Legendre Memory Units (LMU) in sequence learning tasks, we propose LMUFormer, which augments the LMU with convolutional patch embedding and convolutional channel mixer. Moreover, we present a spiking version of this architecture, which introduces the benefit of states within the patch embedding and channel mixer modules while simultaneously reducing the computing complexity. We evaluated our architectures on multiple sequence datasets. In comparison to SOTA transformer-based models within the ANN domain on the SCv2 dataset, our LMUFormer demonstrates comparable performance while necessitating a remarkable 53 times reduction in parameters and a substantial 65 times decrement in FLOPs. Additionally, owing to our model's proficiency in real-time data processing, we can achieve a 32.03% reduction in sequence length, all while incurring an inconsequential decline in performance. Our code is publicly available at https://github.com/zeyuliu1037/LMUFormer.git.
FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization
The recent amalgamation of transformer and convolutional designs has led to steady improvements in accuracy and efficiency of the models. In this work, we introduce FastViT, a hybrid vision transformer architecture that obtains the state-of-the-art latency-accuracy trade-off. To this end, we introduce a novel token mixing operator, RepMixer, a building block of FastViT, that uses structural reparameterization to lower the memory access cost by removing skip-connections in the network. We further apply train-time overparametrization and large kernel convolutions to boost accuracy and empirically show that these choices have minimal effect on latency. We show that - our model is 3.5x faster than CMT, a recent state-of-the-art hybrid transformer architecture, 4.9x faster than EfficientNet, and 1.9x faster than ConvNeXt on a mobile device for the same accuracy on the ImageNet dataset. At similar latency, our model obtains 4.2% better Top-1 accuracy on ImageNet than MobileOne. Our model consistently outperforms competing architectures across several tasks -- image classification, detection, segmentation and 3D mesh regression with significant improvement in latency on both a mobile device and a desktop GPU. Furthermore, our model is highly robust to out-of-distribution samples and corruptions, improving over competing robust models.
One-Step Diffusion Distillation through Score Implicit Matching
Despite their strong performances on many generative tasks, diffusion models require a large number of sampling steps in order to generate realistic samples. This has motivated the community to develop effective methods to distill pre-trained diffusion models into more efficient models, but these methods still typically require few-step inference or perform substantially worse than the underlying model. In this paper, we present Score Implicit Matching (SIM) a new approach to distilling pre-trained diffusion models into single-step generator models, while maintaining almost the same sample generation ability as the original model as well as being data-free with no need of training samples for distillation. The method rests upon the fact that, although the traditional score-based loss is intractable to minimize for generator models, under certain conditions we can efficiently compute the gradients for a wide class of score-based divergences between a diffusion model and a generator. SIM shows strong empirical performances for one-step generators: on the CIFAR10 dataset, it achieves an FID of 2.06 for unconditional generation and 1.96 for class-conditional generation. Moreover, by applying SIM to a leading transformer-based diffusion model, we distill a single-step generator for text-to-image (T2I) generation that attains an aesthetic score of 6.42 with no performance decline over the original multi-step counterpart, clearly outperforming the other one-step generators including SDXL-TURBO of 5.33, SDXL-LIGHTNING of 5.34 and HYPER-SDXL of 5.85. We will release this industry-ready one-step transformer-based T2I generator along with this paper.
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations
Equivariant Transformers such as Equiformer have demonstrated the efficacy of applying Transformers to the domain of 3D atomistic systems. However, they are still limited to small degrees of equivariant representations due to their computational complexity. In this paper, we investigate whether these architectures can scale well to higher degrees. Starting from Equiformer, we first replace SO(3) convolutions with eSCN convolutions to efficiently incorporate higher-degree tensors. Then, to better leverage the power of higher degrees, we propose three architectural improvements -- attention re-normalization, separable S^2 activation and separable layer normalization. Putting this all together, we propose EquiformerV2, which outperforms previous state-of-the-art methods on the large-scale OC20 dataset by up to 12% on forces, 4% on energies, offers better speed-accuracy trade-offs, and 2times reduction in DFT calculations needed for computing adsorption energies.
SimFlow: Simplified and End-to-End Training of Latent Normalizing Flows
Normalizing Flows (NFs) learn invertible mappings between the data and a Gaussian distribution. Prior works usually suffer from two limitations. First, they add random noise to training samples or VAE latents as data augmentation, introducing complex pipelines including extra noising and denoising steps. Second, they use a pretrained and frozen VAE encoder, resulting in suboptimal reconstruction and generation quality. In this paper, we find that the two issues can be solved in a very simple way: just fixing the variance (which would otherwise be predicted by the VAE encoder) to a constant (e.g., 0.5). On the one hand, this method allows the encoder to output a broader distribution of tokens and the decoder to learn to reconstruct clean images from the augmented token distribution, avoiding additional noise or denoising design. On the other hand, fixed variance simplifies the VAE evidence lower bound, making it stable to train an NF with a VAE jointly. On the ImageNet 256 times 256 generation task, our model SimFlow obtains a gFID score of 2.15, outperforming the state-of-the-art method STARFlow (gFID 2.40). Moreover, SimFlow can be seamlessly integrated with the end-to-end representation alignment (REPA-E) method and achieves an improved gFID of 1.91, setting a new state of the art among NFs.
Separable Self-attention for Mobile Vision Transformers
Mobile vision transformers (MobileViT) can achieve state-of-the-art performance across several mobile vision tasks, including classification and detection. Though these models have fewer parameters, they have high latency as compared to convolutional neural network-based models. The main efficiency bottleneck in MobileViT is the multi-headed self-attention (MHA) in transformers, which requires O(k^2) time complexity with respect to the number of tokens (or patches) k. Moreover, MHA requires costly operations (e.g., batch-wise matrix multiplication) for computing self-attention, impacting latency on resource-constrained devices. This paper introduces a separable self-attention method with linear complexity, i.e. O(k). A simple yet effective characteristic of the proposed method is that it uses element-wise operations for computing self-attention, making it a good choice for resource-constrained devices. The improved model, MobileViTv2, is state-of-the-art on several mobile vision tasks, including ImageNet object classification and MS-COCO object detection. With about three million parameters, MobileViTv2 achieves a top-1 accuracy of 75.6% on the ImageNet dataset, outperforming MobileViT by about 1% while running 3.2times faster on a mobile device. Our source code is available at: https://github.com/apple/ml-cvnets
Scalable Transformer for PDE Surrogate Modeling
Transformer has shown state-of-the-art performance on various applications and has recently emerged as a promising tool for surrogate modeling of partial differential equations (PDEs). Despite the introduction of linear-complexity variant, applying attention to a large number of grid points can result in instability and is still expensive to compute. In this work, we propose Factorized Transformer(FactFormer), which is based on an axial factorized kernel integral. Concretely, we introduce a learnable projection operator that decomposes the input function into multiple sub-functions with one-dimensional domain. These sub-functions are then evaluated and used to compute the instance-based kernel with an axial factorized scheme. We showcase that the proposed model is able to simulate 2D Kolmogorov flow on a 256 by 256 grid and 3D smoke buoyancy on a 64 by 64 by 64 grid with good accuracy and efficiency. In addition, we find out that with the factorization scheme, the attention matrices enjoy a more compact spectrum than full softmax-free attention matrices.
PVT v2: Improved Baselines with Pyramid Vision Transformer
Transformer recently has presented encouraging progress in computer vision. In this work, we present new baselines by improving the original Pyramid Vision Transformer (PVT v1) by adding three designs, including (1) linear complexity attention layer, (2) overlapping patch embedding, and (3) convolutional feed-forward network. With these modifications, PVT v2 reduces the computational complexity of PVT v1 to linear and achieves significant improvements on fundamental vision tasks such as classification, detection, and segmentation. Notably, the proposed PVT v2 achieves comparable or better performances than recent works such as Swin Transformer. We hope this work will facilitate state-of-the-art Transformer researches in computer vision. Code is available at https://github.com/whai362/PVT.
Re^3Sim: Generating High-Fidelity Simulation Data via 3D-Photorealistic Real-to-Sim for Robotic Manipulation
Real-world data collection for robotics is costly and resource-intensive, requiring skilled operators and expensive hardware. Simulations offer a scalable alternative but often fail to achieve sim-to-real generalization due to geometric and visual gaps. To address these challenges, we propose a 3D-photorealistic real-to-sim system, namely, RE^3SIM, addressing geometric and visual sim-to-real gaps. RE^3SIM employs advanced 3D reconstruction and neural rendering techniques to faithfully recreate real-world scenarios, enabling real-time rendering of simulated cross-view cameras within a physics-based simulator. By utilizing privileged information to collect expert demonstrations efficiently in simulation, and train robot policies with imitation learning, we validate the effectiveness of the real-to-sim-to-real pipeline across various manipulation task scenarios. Notably, with only simulated data, we can achieve zero-shot sim-to-real transfer with an average success rate exceeding 58%. To push the limit of real-to-sim, we further generate a large-scale simulation dataset, demonstrating how a robust policy can be built from simulation data that generalizes across various objects. Codes and demos are available at: http://xshenhan.github.io/Re3Sim/.
AlphaViT: A Flexible Game-Playing AI for Multiple Games and Variable Board Sizes
This paper presents novel game-playing AI agents based on the AlphaZero framework, enhanced with Vision Transformer (ViT): AlphaViT, AlphaViD, and AlphaVDA. These agents are designed to play multiple board games of various sizes using a single network with shared weights, thereby overcoming AlphaZero's limitation of fixed-board-size constraints. AlphaViT employs only a transformer encoder, whereas AlphaViD and AlphaVDA incorporate both transformer encoders and decoders. In AlphaViD, the decoder processes outputs from the encoder, whereas AlphaVDA uses a learnable embeddings as the decoder input. The additional decoder layers in AlphaViD and AlphaVDA provide flexibility to adapt to various action spaces and board sizes. Experimental results show that the proposed agents, trained on either individual games or multiple games simultaneously, consistently outperform traditional algorithms such as Minimax and Monte Carlo Tree Search and approach the performance of AlphaZero, despite using a single deep neural network (DNN) with shared weights. In particular, AlphaViT shows strong performance across all tested games. Furthermore, fine-tuning the DNN using pre-trained weights from small-board games accelerates convergence and improves performance, particularly in Gomoku. Interestingly, simultaneous training on multiple games yields performance comparable to, or even surpassing, single-game training. These results indicate the potential of transformer-based architectures to develop more flexible and robust game-playing AI agents that excel in multiple games and dynamic environments.
Compress image to patches for Vision Transformer
The Vision Transformer (ViT) has made significant strides in the field of computer vision. However, as the depth of the model and the resolution of the input images increase, the computational cost associated with training and running ViT models has surged dramatically. This paper proposes a hybrid model based on CNN and Vision Transformer, named CI2P-ViT. The model incorporates a module called CI2P, which utilizes the CompressAI encoder to compress images and subsequently generates a sequence of patches through a series of convolutions. CI2P can replace the Patch Embedding component in the ViT model, enabling seamless integration into existing ViT models. Compared to ViT-B/16, CI2P-ViT has the number of patches input to the self-attention layer reduced to a quarter of the original. This design not only significantly reduces the computational cost of the ViT model but also effectively enhances the model's accuracy by introducing the inductive bias properties of CNN. The ViT model's precision is markedly enhanced. When trained from the ground up on the Animals-10 dataset, CI2P-ViT achieved an accuracy rate of 92.37%, representing a 3.3% improvement over the ViT-B/16 baseline. Additionally, the model's computational operations, measured in floating-point operations per second (FLOPs), were diminished by 63.35%, and it exhibited a 2-fold increase in training velocity on identical hardware configurations.
Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution
The ubiquitous and demonstrably suboptimal choice of resizing images to a fixed resolution before processing them with computer vision models has not yet been successfully challenged. However, models such as the Vision Transformer (ViT) offer flexible sequence-based modeling, and hence varying input sequence lengths. We take advantage of this with NaViT (Native Resolution ViT) which uses sequence packing during training to process inputs of arbitrary resolutions and aspect ratios. Alongside flexible model usage, we demonstrate improved training efficiency for large-scale supervised and contrastive image-text pretraining. NaViT can be efficiently transferred to standard tasks such as image and video classification, object detection, and semantic segmentation and leads to improved results on robustness and fairness benchmarks. At inference time, the input resolution flexibility can be used to smoothly navigate the test-time cost-performance trade-off. We believe that NaViT marks a departure from the standard, CNN-designed, input and modelling pipeline used by most computer vision models, and represents a promising direction for ViTs.
Value Residual Learning For Alleviating Attention Concentration In Transformers
Transformers can capture long-range dependencies using self-attention, allowing tokens to attend to all others directly. However, stacking multiple attention layers leads to attention concentration. One natural way to address this issue is to use cross-layer attention, allowing information from earlier layers to be directly accessible to later layers. However, this approach is computationally expensive. To address this problem, we propose Transformer with residual value (ResFormer) which approximates cross-layer attention through adding a residual connection from the values of the the first layer to all subsequent layers. Based on this method, one variant is the Transformer with single layer value (SVFormer), where all layers share the same value embedding from first layer, reducing the KV cache by nearly 50%. Comprehensive empirical evidence demonstrates that ResFormer mitigates attention concentration problem in deeper layers and enhances representation across most layers, outperforming the vanilla Transformer, DenseFormer, and NeuTRENO in training error as well as downstream tasks. SVFormer trains significantly faster than the vanilla Transformer and performs better than other methods like GQA and CLA, with performance influenced by sequence length and cumulative learning rate.
Hierarchical Separable Video Transformer for Snapshot Compressive Imaging
Transformers have achieved the state-of-the-art performance on solving the inverse problem of Snapshot Compressive Imaging (SCI) for video, whose ill-posedness is rooted in the mixed degradation of spatial masking and temporal aliasing. However, previous Transformers lack an insight into the degradation and thus have limited performance and efficiency. In this work, we tailor an efficient reconstruction architecture without temporal aggregation in early layers and Hierarchical Separable Video Transformer (HiSViT) as building block. HiSViT is built by multiple groups of Cross-Scale Separable Multi-head Self-Attention (CSS-MSA) and Gated Self-Modulated Feed-Forward Network (GSM-FFN) with dense connections, each of which is conducted within a separate channel portions at a different scale, for multi-scale interactions and long-range modeling. By separating spatial operations from temporal ones, CSS-MSA introduces an inductive bias of paying more attention within frames instead of between frames while saving computational overheads. GSM-FFN further enhances the locality via gated mechanism and factorized spatial-temporal convolutions. Extensive experiments demonstrate that our method outperforms previous methods by !>!0.5 dB with comparable or fewer parameters and complexity. The source codes and pretrained models are released at https://github.com/pwangcs/HiSViT.
Implicit factorized transformer approach to fast prediction of turbulent channel flows
Transformer neural operators have recently become an effective approach for surrogate modeling of systems governed by partial differential equations (PDEs). In this paper, we introduce a modified implicit factorized transformer (IFactFormer-m) model which replaces the original chained factorized attention with parallel factorized attention. The IFactFormer-m model successfully performs long-term predictions for turbulent channel flow, whereas the original IFactFormer (IFactFormer-o), Fourier neural operator (FNO), and implicit Fourier neural operator (IFNO) exhibit a poor performance. Turbulent channel flows are simulated by direct numerical simulation using fine grids at friction Reynolds numbers Re_{tau}approx 180,395,590, and filtered to coarse grids for training neural operator. The neural operator takes the current flow field as input and predicts the flow field at the next time step, and long-term prediction is achieved in the posterior through an autoregressive approach. The results show that IFactFormer-m, compared to other neural operators and the traditional large eddy simulation (LES) methods including dynamic Smagorinsky model (DSM) and the wall-adapted local eddy-viscosity (WALE) model, reduces prediction errors in the short term, and achieves stable and accurate long-term prediction of various statistical properties and flow structures, including the energy spectrum, mean streamwise velocity, root mean square (rms) values of fluctuating velocities, Reynolds shear stress, and spatial structures of instantaneous velocity. Moreover, the trained IFactFormer-m is much faster than traditional LES methods. By analyzing the attention kernels, we elucidate the reasons why IFactFormer-m converges faster and achieves a stable and accurate long-term prediction compared to IFactFormer-o. Code and data are available at: https://github.com/huiyu-2002/IFactFormer-m.
Channel Vision Transformers: An Image Is Worth C x 16 x 16 Words
Vision Transformer (ViT) has emerged as a powerful architecture in the realm of modern computer vision. However, its application in certain imaging fields, such as microscopy and satellite imaging, presents unique challenges. In these domains, images often contain multiple channels, each carrying semantically distinct and independent information. Furthermore, the model must demonstrate robustness to sparsity in input channels, as they may not be densely available during training or testing. In this paper, we propose a modification to the ViT architecture that enhances reasoning across the input channels and introduce Hierarchical Channel Sampling (HCS) as an additional regularization technique to ensure robustness when only partial channels are presented during test time. Our proposed model, ChannelViT, constructs patch tokens independently from each input channel and utilizes a learnable channel embedding that is added to the patch tokens, similar to positional embeddings. We evaluate the performance of ChannelViT on ImageNet, JUMP-CP (microscopy cell imaging), and So2Sat (satellite imaging). Our results show that ChannelViT outperforms ViT on classification tasks and generalizes well, even when a subset of input channels is used during testing. Across our experiments, HCS proves to be a powerful regularizer, independent of the architecture employed, suggesting itself as a straightforward technique for robust ViT training. Lastly, we find that ChannelViT generalizes effectively even when there is limited access to all channels during training, highlighting its potential for multi-channel imaging under real-world conditions with sparse sensors. Our code is available at https://github.com/insitro/ChannelViT.
MatFormer: Nested Transformer for Elastic Inference
Transformer models are deployed in a wide range of settings, from multi-accelerator clusters to standalone mobile phones. The diverse inference constraints in these scenarios necessitate practitioners to train foundation models such as PaLM 2, Llama, & ViTs as a series of models of varying sizes. Due to significant training costs, only a select few model sizes are trained and supported, limiting more fine-grained control over relevant tradeoffs, including latency, cost, and accuracy. This work introduces MatFormer, a nested Transformer architecture designed to offer elasticity in a variety of deployment constraints. Each Feed Forward Network (FFN) block of a MatFormer model is jointly optimized with a few nested smaller FFN blocks. This training procedure allows for the Mix'n'Match of model granularities across layers -- i.e., a trained universal MatFormer model enables extraction of hundreds of accurate smaller models, which were never explicitly optimized. We empirically demonstrate MatFormer's effectiveness across different model classes (decoders & encoders), modalities (language & vision), and scales (up to 2.6B parameters). We find that a 2.6B decoder-only MatFormer language model (MatLM) allows us to extract smaller models spanning from 1.5B to 2.6B, each exhibiting comparable validation loss and one-shot downstream evaluations to their independently trained counterparts. Furthermore, we observe that smaller encoders extracted from a universal MatFormer-based ViT (MatViT) encoder preserve the metric-space structure for adaptive large-scale retrieval. Finally, we showcase that speculative decoding with the accurate and consistent submodels extracted from MatFormer can further reduce inference latency.
Visformer: The Vision-friendly Transformer
The past year has witnessed the rapid development of applying the Transformer module to vision problems. While some researchers have demonstrated that Transformer-based models enjoy a favorable ability of fitting data, there are still growing number of evidences showing that these models suffer over-fitting especially when the training data is limited. This paper offers an empirical study by performing step-by-step operations to gradually transit a Transformer-based model to a convolution-based model. The results we obtain during the transition process deliver useful messages for improving visual recognition. Based on these observations, we propose a new architecture named Visformer, which is abbreviated from the `Vision-friendly Transformer'. With the same computational complexity, Visformer outperforms both the Transformer-based and convolution-based models in terms of ImageNet classification accuracy, and the advantage becomes more significant when the model complexity is lower or the training set is smaller. The code is available at https://github.com/danczs/Visformer.
Aggregated Pyramid Vision Transformer: Split-transform-merge Strategy for Image Recognition without Convolutions
With the achievements of Transformer in the field of natural language processing, the encoder-decoder and the attention mechanism in Transformer have been applied to computer vision. Recently, in multiple tasks of computer vision (image classification, object detection, semantic segmentation, etc.), state-of-the-art convolutional neural networks have introduced some concepts of Transformer. This proves that Transformer has a good prospect in the field of image recognition. After Vision Transformer was proposed, more and more works began to use self-attention to completely replace the convolutional layer. This work is based on Vision Transformer, combined with the pyramid architecture, using Split-transform-merge to propose the group encoder and name the network architecture Aggregated Pyramid Vision Transformer (APVT). We perform image classification tasks on the CIFAR-10 dataset and object detection tasks on the COCO 2017 dataset. Compared with other network architectures that use Transformer as the backbone, APVT has excellent results while reducing the computational cost. We hope this improved strategy can provide a reference for future Transformer research in computer vision.
TurboViT: Generating Fast Vision Transformers via Generative Architecture Search
Vision transformers have shown unprecedented levels of performance in tackling various visual perception tasks in recent years. However, the architectural and computational complexity of such network architectures have made them challenging to deploy in real-world applications with high-throughput, low-memory requirements. As such, there has been significant research recently on the design of efficient vision transformer architectures. In this study, we explore the generation of fast vision transformer architecture designs via generative architecture search (GAS) to achieve a strong balance between accuracy and architectural and computational efficiency. Through this generative architecture search process, we create TurboViT, a highly efficient hierarchical vision transformer architecture design that is generated around mask unit attention and Q-pooling design patterns. The resulting TurboViT architecture design achieves significantly lower architectural computational complexity (>2.47times smaller than FasterViT-0 while achieving same accuracy) and computational complexity (>3.4times fewer FLOPs and 0.9% higher accuracy than MobileViT2-2.0) when compared to 10 other state-of-the-art efficient vision transformer network architecture designs within a similar range of accuracy on the ImageNet-1K dataset. Furthermore, TurboViT demonstrated strong inference latency and throughput in both low-latency and batch processing scenarios (>3.21times lower latency and >3.18times higher throughput compared to FasterViT-0 for low-latency scenario). These promising results demonstrate the efficacy of leveraging generative architecture search for generating efficient transformer architecture designs for high-throughput scenarios.
PDE-Transformer: Efficient and Versatile Transformers for Physics Simulations
We introduce PDE-Transformer, an improved transformer-based architecture for surrogate modeling of physics simulations on regular grids. We combine recent architectural improvements of diffusion transformers with adjustments specific for large-scale simulations to yield a more scalable and versatile general-purpose transformer architecture, which can be used as the backbone for building large-scale foundation models in physical sciences. We demonstrate that our proposed architecture outperforms state-of-the-art transformer architectures for computer vision on a large dataset of 16 different types of PDEs. We propose to embed different physical channels individually as spatio-temporal tokens, which interact via channel-wise self-attention. This helps to maintain a consistent information density of tokens when learning multiple types of PDEs simultaneously. We demonstrate that our pre-trained models achieve improved performance on several challenging downstream tasks compared to training from scratch and also beat other foundation model architectures for physics simulations.
Scalable Video Object Segmentation with Simplified Framework
The current popular methods for video object segmentation (VOS) implement feature matching through several hand-crafted modules that separately perform feature extraction and matching. However, the above hand-crafted designs empirically cause insufficient target interaction, thus limiting the dynamic target-aware feature learning in VOS. To tackle these limitations, this paper presents a scalable Simplified VOS (SimVOS) framework to perform joint feature extraction and matching by leveraging a single transformer backbone. Specifically, SimVOS employs a scalable ViT backbone for simultaneous feature extraction and matching between query and reference features. This design enables SimVOS to learn better target-ware features for accurate mask prediction. More importantly, SimVOS could directly apply well-pretrained ViT backbones (e.g., MAE) for VOS, which bridges the gap between VOS and large-scale self-supervised pre-training. To achieve a better performance-speed trade-off, we further explore within-frame attention and propose a new token refinement module to improve the running speed and save computational cost. Experimentally, our SimVOS achieves state-of-the-art results on popular video object segmentation benchmarks, i.e., DAVIS-2017 (88.0% J&F), DAVIS-2016 (92.9% J&F) and YouTube-VOS 2019 (84.2% J&F), without applying any synthetic video or BL30K pre-training used in previous VOS approaches.
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification
The recently developed vision transformer (ViT) has achieved promising results on image classification compared to convolutional neural networks. Inspired by this, in this paper, we study how to learn multi-scale feature representations in transformer models for image classification. To this end, we propose a dual-branch transformer to combine image patches (i.e., tokens in a transformer) of different sizes to produce stronger image features. Our approach processes small-patch and large-patch tokens with two separate branches of different computational complexity and these tokens are then fused purely by attention multiple times to complement each other. Furthermore, to reduce computation, we develop a simple yet effective token fusion module based on cross attention, which uses a single token for each branch as a query to exchange information with other branches. Our proposed cross-attention only requires linear time for both computational and memory complexity instead of quadratic time otherwise. Extensive experiments demonstrate that our approach performs better than or on par with several concurrent works on vision transformer, in addition to efficient CNN models. For example, on the ImageNet1K dataset, with some architectural changes, our approach outperforms the recent DeiT by a large margin of 2\% with a small to moderate increase in FLOPs and model parameters. Our source codes and models are available at https://github.com/IBM/CrossViT.
ShiftAddViT: Mixture of Multiplication Primitives Towards Efficient Vision Transformer
Vision Transformers (ViTs) have shown impressive performance and have become a unified backbone for multiple vision tasks. But both attention and multi-layer perceptions (MLPs) in ViTs are not efficient enough due to dense multiplications, resulting in costly training and inference. To this end, we propose to reparameterize the pre-trained ViT with a mixture of multiplication primitives, e.g., bitwise shifts and additions, towards a new type of multiplication-reduced model, dubbed ShiftAddViT, which aims for end-to-end inference speedups on GPUs without the need of training from scratch. Specifically, all MatMuls among queries, keys, and values are reparameterized by additive kernels, after mapping queries and keys to binary codes in Hamming space. The remaining MLPs or linear layers are then reparameterized by shift kernels. We utilize TVM to implement and optimize those customized kernels for practical hardware deployment on GPUs. We find that such a reparameterization on (quadratic or linear) attention maintains model accuracy, while inevitably leading to accuracy drops when being applied to MLPs. To marry the best of both worlds, we further propose a new mixture of experts (MoE) framework to reparameterize MLPs by taking multiplication or its primitives as experts, e.g., multiplication and shift, and designing a new latency-aware load-balancing loss. Such a loss helps to train a generic router for assigning a dynamic amount of input tokens to different experts according to their latency. In principle, the faster experts run, the larger amount of input tokens are assigned. Extensive experiments consistently validate the effectiveness of our proposed ShiftAddViT, achieving up to 5.18\times$ latency reductions on GPUs and 42.9%$ energy savings, while maintaining comparable accuracy as original or efficient ViTs.
LookupViT: Compressing visual information to a limited number of tokens
Vision Transformers (ViT) have emerged as the de-facto choice for numerous industry grade vision solutions. But their inference cost can be prohibitive for many settings, as they compute self-attention in each layer which suffers from quadratic computational complexity in the number of tokens. On the other hand, spatial information in images and spatio-temporal information in videos is usually sparse and redundant. In this work, we introduce LookupViT, that aims to exploit this information sparsity to reduce ViT inference cost. LookupViT provides a novel general purpose vision transformer block that operates by compressing information from higher resolution tokens to a fixed number of tokens. These few compressed tokens undergo meticulous processing, while the higher-resolution tokens are passed through computationally cheaper layers. Information sharing between these two token sets is enabled through a bidirectional cross-attention mechanism. The approach offers multiple advantages - (a) easy to implement on standard ML accelerators (GPUs/TPUs) via standard high-level operators, (b) applicable to standard ViT and its variants, thus generalizes to various tasks, (c) can handle different tokenization and attention approaches. LookupViT also offers flexibility for the compressed tokens, enabling performance-computation trade-offs in a single trained model. We show LookupViT's effectiveness on multiple domains - (a) for image-classification (ImageNet-1K and ImageNet-21K), (b) video classification (Kinetics400 and Something-Something V2), (c) image captioning (COCO-Captions) with a frozen encoder. LookupViT provides 2times reduction in FLOPs while upholding or improving accuracy across these domains. In addition, LookupViT also demonstrates out-of-the-box robustness and generalization on image classification (ImageNet-C,R,A,O), improving by up to 4% over ViT.
UbiMoE: A Ubiquitous Mixture-of-Experts Vision Transformer Accelerator With Hybrid Computation Pattern on FPGA
Compared to traditional Vision Transformers (ViT), Mixture-of-Experts Vision Transformers (MoE-ViT) are introduced to scale model size without a proportional increase in computational complexity, making them a new research focus. Given the high performance and reconfigurability, FPGA-based accelerators for MoE-ViT emerge, delivering substantial gains over general-purpose processors. However, existing accelerators often fall short of fully exploring the design space, leading to suboptimal trade-offs between resource utilization and performance. To overcome this problem, we introduce UbiMoE, a novel end-to-end FPGA accelerator tailored for MoE-ViT. Leveraging the unique computational and memory access patterns of MoE-ViTs, we develop a latency-optimized streaming attention kernel and a resource-efficient reusable linear kernel, effectively balancing performance and resource consumption. To further enhance design efficiency, we propose a two-stage heuristic search algorithm that optimally tunes hardware parameters for various FPGA resource constraints. Compared to state-of-the-art (SOTA) FPGA designs, UbiMoE achieves 1.34x and 3.35x throughput improvements for MoE-ViT on Xilinx ZCU102 and Alveo U280 platforms, respectively, while enhancing energy efficiency by 1.75x and 1.54x. Our implementation is available at https://github.com/DJ000011/UbiMoE.
Global Vision Transformer Pruning with Hessian-Aware Saliency
Transformers yield state-of-the-art results across many tasks. However, their heuristically designed architecture impose huge computational costs during inference. This work aims on challenging the common design philosophy of the Vision Transformer (ViT) model with uniform dimension across all the stacked blocks in a model stage, where we redistribute the parameters both across transformer blocks and between different structures within the block via the first systematic attempt on global structural pruning. Dealing with diverse ViT structural components, we derive a novel Hessian-based structural pruning criteria comparable across all layers and structures, with latency-aware regularization for direct latency reduction. Performing iterative pruning on the DeiT-Base model leads to a new architecture family called NViT (Novel ViT), with a novel parameter redistribution that utilizes parameters more efficiently. On ImageNet-1K, NViT-Base achieves a 2.6x FLOPs reduction, 5.1x parameter reduction, and 1.9x run-time speedup over the DeiT-Base model in a near lossless manner. Smaller NViT variants achieve more than 1% accuracy gain at the same throughput of the DeiT Small/Tiny variants, as well as a lossless 3.3x parameter reduction over the SWIN-Small model. These results outperform prior art by a large margin. Further analysis is provided on the parameter redistribution insight of NViT, where we show the high prunability of ViT models, distinct sensitivity within ViT block, and unique parameter distribution trend across stacked ViT blocks. Our insights provide viability for a simple yet effective parameter redistribution rule towards more efficient ViTs for off-the-shelf performance boost.
Patches Are All You Need?
Although convolutional networks have been the dominant architecture for vision tasks for many years, recent experiments have shown that Transformer-based models, most notably the Vision Transformer (ViT), may exceed their performance in some settings. However, due to the quadratic runtime of the self-attention layers in Transformers, ViTs require the use of patch embeddings, which group together small regions of the image into single input features, in order to be applied to larger image sizes. This raises a question: Is the performance of ViTs due to the inherently-more-powerful Transformer architecture, or is it at least partly due to using patches as the input representation? In this paper, we present some evidence for the latter: specifically, we propose the ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on patches as input, separates the mixing of spatial and channel dimensions, and maintains equal size and resolution throughout the network. In contrast, however, the ConvMixer uses only standard convolutions to achieve the mixing steps. Despite its simplicity, we show that the ConvMixer outperforms the ViT, MLP-Mixer, and some of their variants for similar parameter counts and data set sizes, in addition to outperforming classical vision models such as the ResNet. Our code is available at https://github.com/locuslab/convmixer.
I-ViT: Integer-only Quantization for Efficient Vision Transformer Inference
Vision Transformers (ViTs) have achieved state-of-the-art performance on various computer vision applications. However, these models have considerable storage and computational overheads, making their deployment and efficient inference on edge devices challenging. Quantization is a promising approach to reducing model complexity, and the dyadic arithmetic pipeline can allow the quantized models to perform efficient integer-only inference. Unfortunately, dyadic arithmetic is based on the homogeneity condition in convolutional neural networks, which is not applicable to the non-linear components in ViTs, making integer-only inference of ViTs an open issue. In this paper, we propose I-ViT, an integer-only quantization scheme for ViTs, to enable ViTs to perform the entire computational graph of inference with integer arithmetic and bit-shifting, and without any floating-point arithmetic. In I-ViT, linear operations (e.g., MatMul and Dense) follow the integer-only pipeline with dyadic arithmetic, and non-linear operations (e.g., Softmax, GELU, and LayerNorm) are approximated by the proposed light-weight integer-only arithmetic methods. More specifically, I-ViT applies the proposed Shiftmax and ShiftGELU, which are designed to use integer bit-shifting to approximate the corresponding floating-point operations. We evaluate I-ViT on various benchmark models and the results show that integer-only INT8 quantization achieves comparable (or even slightly higher) accuracy to the full-precision (FP) baseline. Furthermore, we utilize TVM for practical hardware deployment on the GPU's integer arithmetic units, achieving 3.72sim4.11times inference speedup compared to the FP model. Code of both Pytorch and TVM is released at https://github.com/zkkli/I-ViT.
A Survey of Transformers
Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.
TED-VITON: Transformer-Empowered Diffusion Models for Virtual Try-On
Recent advancements in Virtual Try-On (VTO) have demonstrated exceptional efficacy in generating realistic images and preserving garment details, largely attributed to the robust generative capabilities of text-to-image (T2I) diffusion backbones. However, the T2I models that underpin these methods have become outdated, thereby limiting the potential for further improvement in VTO. Additionally, current methods face notable challenges in accurately rendering text on garments without distortion and preserving fine-grained details, such as textures and material fidelity. The emergence of Diffusion Transformer (DiT) based T2I models has showcased impressive performance and offers a promising opportunity for advancing VTO. Directly applying existing VTO techniques to transformer-based T2I models is ineffective due to substantial architectural differences, which hinder their ability to fully leverage the models' advanced capabilities for improved text generation. To address these challenges and unlock the full potential of DiT-based T2I models for VTO, we propose TED-VITON, a novel framework that integrates a Garment Semantic (GS) Adapter for enhancing garment-specific features, a Text Preservation Loss to ensure accurate and distortion-free text rendering, and a constraint mechanism to generate prompts by optimizing Large Language Model (LLM). These innovations enable state-of-the-art (SOTA) performance in visual quality and text fidelity, establishing a new benchmark for VTO task.
SiMBA: Simplified Mamba-Based Architecture for Vision and Multivariate Time series
Transformers have widely adopted attention networks for sequence mixing and MLPs for channel mixing, playing a pivotal role in achieving breakthroughs across domains. However, recent literature highlights issues with attention networks, including low inductive bias and quadratic complexity concerning input sequence length. State Space Models (SSMs) like S4 and others (Hippo, Global Convolutions, liquid S4, LRU, Mega, and Mamba), have emerged to address the above issues to help handle longer sequence lengths. Mamba, while being the state-of-the-art SSM, has a stability issue when scaled to large networks for computer vision datasets. We propose SiMBA, a new architecture that introduces Einstein FFT (EinFFT) for channel modeling by specific eigenvalue computations and uses the Mamba block for sequence modeling. Extensive performance studies across image and time-series benchmarks demonstrate that SiMBA outperforms existing SSMs, bridging the performance gap with state-of-the-art transformers. Notably, SiMBA establishes itself as the new state-of-the-art SSM on ImageNet and transfer learning benchmarks such as Stanford Car and Flower as well as task learning benchmarks as well as seven time series benchmark datasets. The project page is available on this website ~https://github.com/badripatro/Simba.
Sparse-VQ Transformer: An FFN-Free Framework with Vector Quantization for Enhanced Time Series Forecasting
Time series analysis is vital for numerous applications, and transformers have become increasingly prominent in this domain. Leading methods customize the transformer architecture from NLP and CV, utilizing a patching technique to convert continuous signals into segments. Yet, time series data are uniquely challenging due to significant distribution shifts and intrinsic noise levels. To address these two challenges,we introduce the Sparse Vector Quantized FFN-Free Transformer (Sparse-VQ). Our methodology capitalizes on a sparse vector quantization technique coupled with Reverse Instance Normalization (RevIN) to reduce noise impact and capture sufficient statistics for forecasting, serving as an alternative to the Feed-Forward layer (FFN) in the transformer architecture. Our FFN-free approach trims the parameter count, enhancing computational efficiency and reducing overfitting. Through evaluations across ten benchmark datasets, including the newly introduced CAISO dataset, Sparse-VQ surpasses leading models with a 7.84% and 4.17% decrease in MAE for univariate and multivariate time series forecasting, respectively. Moreover, it can be seamlessly integrated with existing transformer-based models to elevate their performance.
ODEFormer: Symbolic Regression of Dynamical Systems with Transformers
We introduce ODEFormer, the first transformer able to infer multidimensional ordinary differential equation (ODE) systems in symbolic form from the observation of a single solution trajectory. We perform extensive evaluations on two datasets: (i) the existing "Strogatz" dataset featuring two-dimensional systems; (ii) ODEBench, a collection of one- to four-dimensional systems that we carefully curated from the literature to provide a more holistic benchmark. ODEFormer consistently outperforms existing methods while displaying substantially improved robustness to noisy and irregularly sampled observations, as well as faster inference. We release our code, model and benchmark dataset publicly.
RVT: Robotic View Transformer for 3D Object Manipulation
For 3D object manipulation, methods that build an explicit 3D representation perform better than those relying only on camera images. But using explicit 3D representations like voxels comes at large computing cost, adversely affecting scalability. In this work, we propose RVT, a multi-view transformer for 3D manipulation that is both scalable and accurate. Some key features of RVT are an attention mechanism to aggregate information across views and re-rendering of the camera input from virtual views around the robot workspace. In simulations, we find that a single RVT model works well across 18 RLBench tasks with 249 task variations, achieving 26% higher relative success than the existing state-of-the-art method (PerAct). It also trains 36X faster than PerAct for achieving the same performance and achieves 2.3X the inference speed of PerAct. Further, RVT can perform a variety of manipulation tasks in the real world with just a few (sim10) demonstrations per task. Visual results, code, and trained model are provided at https://robotic-view-transformer.github.io/.
PredFormer: Transformers Are Effective Spatial-Temporal Predictive Learners
Spatiotemporal predictive learning methods generally fall into two categories: recurrent-based approaches, which face challenges in parallelization and performance, and recurrent-free methods, which employ convolutional neural networks (CNNs) as encoder-decoder architectures. These methods benefit from strong inductive biases but often at the expense of scalability and generalization. This paper proposes PredFormer, a pure transformer-based framework for spatiotemporal predictive learning. Motivated by the Vision Transformers (ViT) design, PredFormer leverages carefully designed Gated Transformer blocks, following a comprehensive analysis of 3D attention mechanisms, including full-, factorized-, and interleaved-spatial-temporal attention. With its recurrent-free, transformer-based design, PredFormer is both simple and efficient, significantly outperforming previous methods by large margins. Extensive experiments on synthetic and real-world datasets demonstrate that PredFormer achieves state-of-the-art performance. On Moving MNIST, PredFormer achieves a 51.3% reduction in MSE relative to SimVP. For TaxiBJ, the model decreases MSE by 33.1% and boosts FPS from 533 to 2364. Additionally, on WeatherBench, it reduces MSE by 11.1% while enhancing FPS from 196 to 404. These performance gains in both accuracy and efficiency demonstrate PredFormer's potential for real-world applications. The source code will be released at https://github.com/yyyujintang/PredFormer .
FlatFormer: Flattened Window Attention for Efficient Point Cloud Transformer
Transformer, as an alternative to CNN, has been proven effective in many modalities (e.g., texts and images). For 3D point cloud transformers, existing efforts focus primarily on pushing their accuracy to the state-of-the-art level. However, their latency lags behind sparse convolution-based models (3x slower), hindering their usage in resource-constrained, latency-sensitive applications (such as autonomous driving). This inefficiency comes from point clouds' sparse and irregular nature, whereas transformers are designed for dense, regular workloads. This paper presents FlatFormer to close this latency gap by trading spatial proximity for better computational regularity. We first flatten the point cloud with window-based sorting and partition points into groups of equal sizes rather than windows of equal shapes. This effectively avoids expensive structuring and padding overheads. We then apply self-attention within groups to extract local features, alternate sorting axis to gather features from different directions, and shift windows to exchange features across groups. FlatFormer delivers state-of-the-art accuracy on Waymo Open Dataset with 4.6x speedup over (transformer-based) SST and 1.4x speedup over (sparse convolutional) CenterPoint. This is the first point cloud transformer that achieves real-time performance on edge GPUs and is faster than sparse convolutional methods while achieving on-par or even superior accuracy on large-scale benchmarks.
Transformer-VQ: Linear-Time Transformers via Vector Quantization
We introduce Transformer-VQ, a decoder-only transformer computing softmax-based dense self-attention in linear time. Transformer-VQ's efficient attention is enabled by vector-quantized keys and a novel caching mechanism. In large-scale experiments, Transformer-VQ is shown highly competitive in quality, with strong results on Enwik8 (0.99 bpb), PG-19 (26.6 ppl), and ImageNet64 (3.16 bpb). Code: https://github.com/transformer-vq/transformer_vq
MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer
Light-weight convolutional neural networks (CNNs) are the de-facto for mobile vision tasks. Their spatial inductive biases allow them to learn representations with fewer parameters across different vision tasks. However, these networks are spatially local. To learn global representations, self-attention-based vision trans-formers (ViTs) have been adopted. Unlike CNNs, ViTs are heavy-weight. In this paper, we ask the following question: is it possible to combine the strengths of CNNs and ViTs to build a light-weight and low latency network for mobile vision tasks? Towards this end, we introduce MobileViT, a light-weight and general-purpose vision transformer for mobile devices. MobileViT presents a different perspective for the global processing of information with transformers, i.e., transformers as convolutions. Our results show that MobileViT significantly outperforms CNN- and ViT-based networks across different tasks and datasets. On the ImageNet-1k dataset, MobileViT achieves top-1 accuracy of 78.4% with about 6 million parameters, which is 3.2% and 6.2% more accurate than MobileNetv3 (CNN-based) and DeIT (ViT-based) for a similar number of parameters. On the MS-COCO object detection task, MobileViT is 5.7% more accurate than MobileNetv3 for a similar number of parameters. Our source code is open-source and available at: https://github.com/apple/ml-cvnets
ViT-CoMer: Vision Transformer with Convolutional Multi-scale Feature Interaction for Dense Predictions
Although Vision Transformer (ViT) has achieved significant success in computer vision, it does not perform well in dense prediction tasks due to the lack of inner-patch information interaction and the limited diversity of feature scale. Most existing studies are devoted to designing vision-specific transformers to solve the above problems, which introduce additional pre-training costs. Therefore, we present a plain, pre-training-free, and feature-enhanced ViT backbone with Convolutional Multi-scale feature interaction, named ViT-CoMer, which facilitates bidirectional interaction between CNN and transformer. Compared to the state-of-the-art, ViT-CoMer has the following advantages: (1) We inject spatial pyramid multi-receptive field convolutional features into the ViT architecture, which effectively alleviates the problems of limited local information interaction and single-feature representation in ViT. (2) We propose a simple and efficient CNN-Transformer bidirectional fusion interaction module that performs multi-scale fusion across hierarchical features, which is beneficial for handling dense prediction tasks. (3) We evaluate the performance of ViT-CoMer across various dense prediction tasks, different frameworks, and multiple advanced pre-training. Notably, our ViT-CoMer-L achieves 64.3% AP on COCO val2017 without extra training data, and 62.1% mIoU on ADE20K val, both of which are comparable to state-of-the-art methods. We hope ViT-CoMer can serve as a new backbone for dense prediction tasks to facilitate future research. The code will be released at https://github.com/Traffic-X/ViT-CoMer.
Vector-quantized Image Modeling with Improved VQGAN
Pretraining language models with next-token prediction on massive text corpora has delivered phenomenal zero-shot, few-shot, transfer learning and multi-tasking capabilities on both generative and discriminative language tasks. Motivated by this success, we explore a Vector-quantized Image Modeling (VIM) approach that involves pretraining a Transformer to predict rasterized image tokens autoregressively. The discrete image tokens are encoded from a learned Vision-Transformer-based VQGAN (ViT-VQGAN). We first propose multiple improvements over vanilla VQGAN from architecture to codebook learning, yielding better efficiency and reconstruction fidelity. The improved ViT-VQGAN further improves vector-quantized image modeling tasks, including unconditional, class-conditioned image generation and unsupervised representation learning. When trained on ImageNet at \(256\times256\) resolution, we achieve Inception Score (IS) of 175.1 and Fr'echet Inception Distance (FID) of 4.17, a dramatic improvement over the vanilla VQGAN, which obtains 70.6 and 17.04 for IS and FID, respectively. Based on ViT-VQGAN and unsupervised pretraining, we further evaluate the pretrained Transformer by averaging intermediate features, similar to Image GPT (iGPT). This ImageNet-pretrained VIM-L significantly beats iGPT-L on linear-probe accuracy from 60.3% to 73.2% for a similar model size. VIM-L also outperforms iGPT-XL which is trained with extra web image data and larger model size.
MOR-VIT: Efficient Vision Transformer with Mixture-of-Recursions
Vision Transformers (ViTs) have achieved remarkable success in image recognition, yet standard ViT architectures are hampered by substantial parameter redundancy and high computational cost, limiting their practical deployment. While recent efforts on efficient ViTs primarily focus on static model compression or token-level sparsification, they remain constrained by fixed computational depth for all tokens. In this work, we present MoR-ViT, a novel vision transformer framework that, for the first time, incorporates a token-level dynamic recursion mechanism inspired by the Mixture-of-Recursions (MoR) paradigm. This approach enables each token to adaptively determine its processing depth, yielding a flexible and input-dependent allocation of computational resources. Extensive experiments on ImageNet-1K and transfer benchmarks demonstrate that MoR-ViT not only achieves state-of-the-art accuracy with up to 70% parameter reduction and 2.5x inference acceleration, but also outperforms leading efficient ViT baselines such as DynamicViT and TinyViT under comparable conditions. These results establish dynamic recursion as an effective strategy for efficient vision transformers and open new avenues for scalable and deployable deep learning models in real-world scenarios.
MIMO Is All You Need : A Strong Multi-In-Multi-Out Baseline for Video Prediction
The mainstream of the existing approaches for video prediction builds up their models based on a Single-In-Single-Out (SISO) architecture, which takes the current frame as input to predict the next frame in a recursive manner. This way often leads to severe performance degradation when they try to extrapolate a longer period of future, thus limiting the practical use of the prediction model. Alternatively, a Multi-In-Multi-Out (MIMO) architecture that outputs all the future frames at one shot naturally breaks the recursive manner and therefore prevents error accumulation. However, only a few MIMO models for video prediction are proposed and they only achieve inferior performance due to the date. The real strength of the MIMO model in this area is not well noticed and is largely under-explored. Motivated by that, we conduct a comprehensive investigation in this paper to thoroughly exploit how far a simple MIMO architecture can go. Surprisingly, our empirical studies reveal that a simple MIMO model can outperform the state-of-the-art work with a large margin much more than expected, especially in dealing with longterm error accumulation. After exploring a number of ways and designs, we propose a new MIMO architecture based on extending the pure Transformer with local spatio-temporal blocks and a new multi-output decoder, namely MIMO-VP, to establish a new standard in video prediction. We evaluate our model in four highly competitive benchmarks (Moving MNIST, Human3.6M, Weather, KITTI). Extensive experiments show that our model wins 1st place on all the benchmarks with remarkable performance gains and surpasses the best SISO model in all aspects including efficiency, quantity, and quality. We believe our model can serve as a new baseline to facilitate the future research of video prediction tasks. The code will be released.
Rethinking Vision Transformers for MobileNet Size and Speed
With the success of Vision Transformers (ViTs) in computer vision tasks, recent arts try to optimize the performance and complexity of ViTs to enable efficient deployment on mobile devices. Multiple approaches are proposed to accelerate attention mechanism, improve inefficient designs, or incorporate mobile-friendly lightweight convolutions to form hybrid architectures. However, ViT and its variants still have higher latency or considerably more parameters than lightweight CNNs, even true for the years-old MobileNet. In practice, latency and size are both crucial for efficient deployment on resource-constraint hardware. In this work, we investigate a central question, can transformer models run as fast as MobileNet and maintain a similar size? We revisit the design choices of ViTs and propose an improved supernet with low latency and high parameter efficiency. We further introduce a fine-grained joint search strategy that can find efficient architectures by optimizing latency and number of parameters simultaneously. The proposed models, EfficientFormerV2, achieve about 4% higher top-1 accuracy than MobileNetV2 and MobileNetV2times1.4 on ImageNet-1K with similar latency and parameters. We demonstrate that properly designed and optimized vision transformers can achieve high performance with MobileNet-level size and speed.
SHViT: Single-Head Vision Transformer with Memory Efficient Macro Design
Recently, efficient Vision Transformers have shown great performance with low latency on resource-constrained devices. Conventionally, they use 4x4 patch embeddings and a 4-stage structure at the macro level, while utilizing sophisticated attention with multi-head configuration at the micro level. This paper aims to address computational redundancy at all design levels in a memory-efficient manner. We discover that using larger-stride patchify stem not only reduces memory access costs but also achieves competitive performance by leveraging token representations with reduced spatial redundancy from the early stages. Furthermore, our preliminary analyses suggest that attention layers in the early stages can be substituted with convolutions, and several attention heads in the latter stages are computationally redundant. To handle this, we introduce a single-head attention module that inherently prevents head redundancy and simultaneously boosts accuracy by parallelly combining global and local information. Building upon our solutions, we introduce SHViT, a Single-Head Vision Transformer that obtains the state-of-the-art speed-accuracy tradeoff. For example, on ImageNet-1k, our SHViT-S4 is 3.3x, 8.1x, and 2.4x faster than MobileViTv2 x1.0 on GPU, CPU, and iPhone12 mobile device, respectively, while being 1.3% more accurate. For object detection and instance segmentation on MS COCO using Mask-RCNN head, our model achieves performance comparable to FastViT-SA12 while exhibiting 3.8x and 2.0x lower backbone latency on GPU and mobile device, respectively.
ResFormer: Scaling ViTs with Multi-Resolution Training
Vision Transformers (ViTs) have achieved overwhelming success, yet they suffer from vulnerable resolution scalability, i.e., the performance drops drastically when presented with input resolutions that are unseen during training. We introduce, ResFormer, a framework that is built upon the seminal idea of multi-resolution training for improved performance on a wide spectrum of, mostly unseen, testing resolutions. In particular, ResFormer operates on replicated images of different resolutions and enforces a scale consistency loss to engage interactive information across different scales. More importantly, to alternate among varying resolutions effectively, especially novel ones in testing, we propose a global-local positional embedding strategy that changes smoothly conditioned on input sizes. We conduct extensive experiments for image classification on ImageNet. The results provide strong quantitative evidence that ResFormer has promising scaling abilities towards a wide range of resolutions. For instance, ResFormer-B-MR achieves a Top-1 accuracy of 75.86% and 81.72% when evaluated on relatively low and high resolutions respectively (i.e., 96 and 640), which are 48% and 7.49% better than DeiT-B. We also demonstrate, moreover, ResFormer is flexible and can be easily extended to semantic segmentation, object detection and video action recognition. Code is available at https://github.com/ruitian12/resformer.
Unleashing Vecset Diffusion Model for Fast Shape Generation
3D shape generation has greatly flourished through the development of so-called "native" 3D diffusion, particularly through the Vecset Diffusion Model (VDM). While recent advancements have shown promising results in generating high-resolution 3D shapes, VDM still struggles with high-speed generation. Challenges exist because of difficulties not only in accelerating diffusion sampling but also VAE decoding in VDM, areas under-explored in previous works. To address these challenges, we present FlashVDM, a systematic framework for accelerating both VAE and DiT in VDM. For DiT, FlashVDM enables flexible diffusion sampling with as few as 5 inference steps and comparable quality, which is made possible by stabilizing consistency distillation with our newly introduced Progressive Flow Distillation. For VAE, we introduce a lightning vecset decoder equipped with Adaptive KV Selection, Hierarchical Volume Decoding, and Efficient Network Design. By exploiting the locality of the vecset and the sparsity of shape surface in the volume, our decoder drastically lowers FLOPs, minimizing the overall decoding overhead. We apply FlashVDM to Hunyuan3D-2 to obtain Hunyuan3D-2 Turbo. Through systematic evaluation, we show that our model significantly outperforms existing fast 3D generation methods, achieving comparable performance to the state-of-the-art while reducing inference time by over 45x for reconstruction and 32x for generation. Code and models are available at https://github.com/Tencent/FlashVDM.
Behavior Generation with Latent Actions
Generative modeling of complex behaviors from labeled datasets has been a longstanding problem in decision making. Unlike language or image generation, decision making requires modeling actions - continuous-valued vectors that are multimodal in their distribution, potentially drawn from uncurated sources, where generation errors can compound in sequential prediction. A recent class of models called Behavior Transformers (BeT) addresses this by discretizing actions using k-means clustering to capture different modes. However, k-means struggles to scale for high-dimensional action spaces or long sequences, and lacks gradient information, and thus BeT suffers in modeling long-range actions. In this work, we present Vector-Quantized Behavior Transformer (VQ-BeT), a versatile model for behavior generation that handles multimodal action prediction, conditional generation, and partial observations. VQ-BeT augments BeT by tokenizing continuous actions with a hierarchical vector quantization module. Across seven environments including simulated manipulation, autonomous driving, and robotics, VQ-BeT improves on state-of-the-art models such as BeT and Diffusion Policies. Importantly, we demonstrate VQ-BeT's improved ability to capture behavior modes while accelerating inference speed 5x over Diffusion Policies. Videos and code can be found https://sjlee.cc/vq-bet
MemoryFormer: Minimize Transformer Computation by Removing Fully-Connected Layers
In order to reduce the computational complexity of large language models, great efforts have been made to to improve the efficiency of transformer models such as linear attention and flash-attention. However, the model size and corresponding computational complexity are constantly scaled up in pursuit of higher performance. In this work, we present MemoryFormer, a novel transformer architecture which significantly reduces the computational complexity (FLOPs) from a new perspective. We eliminate nearly all the computations of the transformer model except for the necessary computation required by the multi-head attention operation. This is made possible by utilizing an alternative method for feature transformation to replace the linear projection of fully-connected layers. Specifically, we first construct a group of in-memory lookup tables that store a large amount of discrete vectors to replace the weight matrix used in linear projection. We then use a hash algorithm to retrieve a correlated subset of vectors dynamically based on the input embedding. The retrieved vectors combined together will form the output embedding, which provides an estimation of the result of matrix multiplication operation in a fully-connected layer. Compared to conducting matrix multiplication, retrieving data blocks from memory is a much cheaper operation which requires little computations. We train MemoryFormer from scratch and conduct extensive experiments on various benchmarks to demonstrate the effectiveness of the proposed model.
Dream3DAvatar: Text-Controlled 3D Avatar Reconstruction from a Single Image
With the rapid advancement of 3D representation techniques and generative models, substantial progress has been made in reconstructing full-body 3D avatars from a single image. However, this task remains fundamentally ill-posedness due to the limited information available from monocular input, making it difficult to control the geometry and texture of occluded regions during generation. To address these challenges, we redesign the reconstruction pipeline and propose Dream3DAvatar, an efficient and text-controllable two-stage framework for 3D avatar generation. In the first stage, we develop a lightweight, adapter-enhanced multi-view generation model. Specifically, we introduce the Pose-Adapter to inject SMPL-X renderings and skeletal information into SDXL, enforcing geometric and pose consistency across views. To preserve facial identity, we incorporate ID-Adapter-G, which injects high-resolution facial features into the generation process. Additionally, we leverage BLIP2 to generate high-quality textual descriptions of the multi-view images, enhancing text-driven controllability in occluded regions. In the second stage, we design a feedforward Transformer model equipped with a multi-view feature fusion module to reconstruct high-fidelity 3D Gaussian Splat representations (3DGS) from the generated images. Furthermore, we introduce ID-Adapter-R, which utilizes a gating mechanism to effectively fuse facial features into the reconstruction process, improving high-frequency detail recovery. Extensive experiments demonstrate that our method can generate realistic, animation-ready 3D avatars without any post-processing and consistently outperforms existing baselines across multiple evaluation metrics.
ViKANformer: Embedding Kolmogorov Arnold Networks in Vision Transformers for Pattern-Based Learning
Vision Transformers (ViTs) have significantly advanced image classification by applying self-attention on patch embeddings. However, the standard MLP blocks in each Transformer layer may not capture complex nonlinear dependencies optimally. In this paper, we propose ViKANformer, a Vision Transformer where we replace the MLP sub-layers with Kolmogorov-Arnold Network (KAN) expansions, including Vanilla KAN, Efficient-KAN, Fast-KAN, SineKAN, and FourierKAN, while also examining a Flash Attention variant. By leveraging the Kolmogorov-Arnold theorem, which guarantees that multivariate continuous functions can be expressed via sums of univariate continuous functions, we aim to boost representational power. Experimental results on MNIST demonstrate that SineKAN, Fast-KAN, and a well-tuned Vanilla KAN can achieve over 97% accuracy, albeit with increased training overhead. This trade-off highlights that KAN expansions may be beneficial if computational cost is acceptable. We detail the expansions, present training/test accuracy and F1/ROC metrics, and provide pseudocode and hyperparameters for reproducibility. Finally, we compare ViKANformer to a simple MLP and a small CNN baseline on MNIST, illustrating the efficiency of Transformer-based methods even on a small-scale dataset.
Finite Scalar Quantization: VQ-VAE Made Simple
We propose to replace vector quantization (VQ) in the latent representation of VQ-VAEs with a simple scheme termed finite scalar quantization (FSQ), where we project the VAE representation down to a few dimensions (typically less than 10). Each dimension is quantized to a small set of fixed values, leading to an (implicit) codebook given by the product of these sets. By appropriately choosing the number of dimensions and values each dimension can take, we obtain the same codebook size as in VQ. On top of such discrete representations, we can train the same models that have been trained on VQ-VAE representations. For example, autoregressive and masked transformer models for image generation, multimodal generation, and dense prediction computer vision tasks. Concretely, we employ FSQ with MaskGIT for image generation, and with UViM for depth estimation, colorization, and panoptic segmentation. Despite the much simpler design of FSQ, we obtain competitive performance in all these tasks. We emphasize that FSQ does not suffer from codebook collapse and does not need the complex machinery employed in VQ (commitment losses, codebook reseeding, code splitting, entropy penalties, etc.) to learn expressive discrete representations.
Any2Point: Empowering Any-modality Large Models for Efficient 3D Understanding
Large foundation models have recently emerged as a prominent focus of interest, attaining superior performance in widespread scenarios. Due to the scarcity of 3D data, many efforts have been made to adapt pre-trained transformers from vision to 3D domains. However, such 2D-to-3D approaches are still limited, due to the potential loss of spatial geometries and high computation cost. More importantly, their frameworks are mainly designed for 2D models, lacking a general any-to-3D paradigm. In this paper, we introduce Any2Point, a parameter-efficient method to empower any-modality large models (vision, language, audio) for 3D understanding. Given a frozen transformer from any source modality, we propose a 3D-to-any (1D or 2D) virtual projection strategy that correlates the input 3D points to the original 1D or 2D positions within the source modality. This mechanism enables us to assign each 3D token with a positional encoding paired with the pre-trained model, which avoids 3D geometry loss caused by the true projection and better motivates the transformer for 3D learning with 1D/2D positional priors. Then, within each transformer block, we insert an any-to-3D guided adapter module for parameter-efficient fine-tuning. The adapter incorporates prior spatial knowledge from the source modality to guide the local feature aggregation of 3D tokens, compelling the semantic adaption of any-modality transformers. We conduct extensive experiments to showcase the effectiveness and efficiency of our method. Code and models are released at https://github.com/Ivan-Tang-3D/Any2Point.
CvT: Introducing Convolutions to Vision Transformers
We present in this paper a new architecture, named Convolutional vision Transformer (CvT), that improves Vision Transformer (ViT) in performance and efficiency by introducing convolutions into ViT to yield the best of both designs. This is accomplished through two primary modifications: a hierarchy of Transformers containing a new convolutional token embedding, and a convolutional Transformer block leveraging a convolutional projection. These changes introduce desirable properties of convolutional neural networks (CNNs) to the ViT architecture (\ie shift, scale, and distortion invariance) while maintaining the merits of Transformers (\ie dynamic attention, global context, and better generalization). We validate CvT by conducting extensive experiments, showing that this approach achieves state-of-the-art performance over other Vision Transformers and ResNets on ImageNet-1k, with fewer parameters and lower FLOPs. In addition, performance gains are maintained when pretrained on larger datasets (\eg ImageNet-22k) and fine-tuned to downstream tasks. Pre-trained on ImageNet-22k, our CvT-W24 obtains a top-1 accuracy of 87.7\% on the ImageNet-1k val set. Finally, our results show that the positional encoding, a crucial component in existing Vision Transformers, can be safely removed in our model, simplifying the design for higher resolution vision tasks. Code will be released at https://github.com/leoxiaobin/CvT.
SBCFormer: Lightweight Network Capable of Full-size ImageNet Classification at 1 FPS on Single Board Computers
Computer vision has become increasingly prevalent in solving real-world problems across diverse domains, including smart agriculture, fishery, and livestock management. These applications may not require processing many image frames per second, leading practitioners to use single board computers (SBCs). Although many lightweight networks have been developed for mobile/edge devices, they primarily target smartphones with more powerful processors and not SBCs with the low-end CPUs. This paper introduces a CNN-ViT hybrid network called SBCFormer, which achieves high accuracy and fast computation on such low-end CPUs. The hardware constraints of these CPUs make the Transformer's attention mechanism preferable to convolution. However, using attention on low-end CPUs presents a challenge: high-resolution internal feature maps demand excessive computational resources, but reducing their resolution results in the loss of local image details. SBCFormer introduces an architectural design to address this issue. As a result, SBCFormer achieves the highest trade-off between accuracy and speed on a Raspberry Pi 4 Model B with an ARM-Cortex A72 CPU. For the first time, it achieves an ImageNet-1K top-1 accuracy of around 80% at a speed of 1.0 frame/sec on the SBC. Code is available at https://github.com/xyongLu/SBCFormer.
Scalable Vision Transformers with Hierarchical Pooling
The recently proposed Visual image Transformers (ViT) with pure attention have achieved promising performance on image recognition tasks, such as image classification. However, the routine of the current ViT model is to maintain a full-length patch sequence during inference, which is redundant and lacks hierarchical representation. To this end, we propose a Hierarchical Visual Transformer (HVT) which progressively pools visual tokens to shrink the sequence length and hence reduces the computational cost, analogous to the feature maps downsampling in Convolutional Neural Networks (CNNs). It brings a great benefit that we can increase the model capacity by scaling dimensions of depth/width/resolution/patch size without introducing extra computational complexity due to the reduced sequence length. Moreover, we empirically find that the average pooled visual tokens contain more discriminative information than the single class token. To demonstrate the improved scalability of our HVT, we conduct extensive experiments on the image classification task. With comparable FLOPs, our HVT outperforms the competitive baselines on ImageNet and CIFAR-100 datasets. Code is available at https://github.com/MonashAI/HVT
StarVector: Generating Scalable Vector Graphics Code from Images
Scalable Vector Graphics (SVGs) have become integral in modern image rendering applications due to their infinite scalability in resolution, versatile usability, and editing capabilities. SVGs are particularly popular in the fields of web development and graphic design. Existing approaches for SVG modeling using deep learning often struggle with generating complex SVGs and are restricted to simpler ones that require extensive processing and simplification. This paper introduces StarVector, a multimodal SVG generation model that effectively integrates Code Generation Large Language Models (CodeLLMs) and vision models. Our approach utilizes a CLIP image encoder to extract visual representations from pixel-based images, which are then transformed into visual tokens via an adapter module. These visual tokens are pre-pended to the SVG token embeddings, and the sequence is modeled by the StarCoder model using next-token prediction, effectively learning to align the visual and code tokens. This enables StarVector to generate unrestricted SVGs that accurately represent pixel images. To evaluate StarVector's performance, we present SVG-Bench, a comprehensive benchmark for evaluating SVG methods across multiple datasets and relevant metrics. Within this benchmark, we introduce novel datasets including SVG-Stack, a large-scale dataset of real-world SVG examples, and use it to pre-train StarVector as a large foundation model for SVGs. Our results demonstrate significant enhancements in visual quality and complexity handling over current methods, marking a notable advancement in SVG generation technology. Code and models: https://github.com/joanrod/star-vector
De novo protein design using geometric vector field networks
Innovations like protein diffusion have enabled significant progress in de novo protein design, which is a vital topic in life science. These methods typically depend on protein structure encoders to model residue backbone frames, where atoms do not exist. Most prior encoders rely on atom-wise features, such as angles and distances between atoms, which are not available in this context. Thus far, only several simple encoders, such as IPA, have been proposed for this scenario, exposing the frame modeling as a bottleneck. In this work, we proffer the Vector Field Network (VFN), which enables network layers to perform learnable vector computations between coordinates of frame-anchored virtual atoms, thus achieving a higher capability for modeling frames. The vector computation operates in a manner similar to a linear layer, with each input channel receiving 3D virtual atom coordinates instead of scalar values. The multiple feature vectors output by the vector computation are then used to update the residue representations and virtual atom coordinates via attention aggregation. Remarkably, VFN also excels in modeling both frames and atoms, as the real atoms can be treated as the virtual atoms for modeling, positioning VFN as a potential universal encoder. In protein diffusion (frame modeling), VFN exhibits an impressive performance advantage over IPA, excelling in terms of both designability (67.04% vs. 53.58%) and diversity (66.54% vs. 51.98%). In inverse folding (frame and atom modeling), VFN outperforms the previous SoTA model, PiFold (54.7% vs. 51.66%), on sequence recovery rate. We also propose a method of equipping VFN with the ESM model, which significantly surpasses the previous ESM-based SoTA (62.67% vs. 55.65%), LM-Design, by a substantial margin.
Key-Value Transformer
Transformers have emerged as the prevailing standard solution for various AI tasks, including computer vision and natural language processing. The widely adopted Query, Key, and Value formulation (QKV) has played a significant role in this. Nevertheless, no research has examined the essentiality of these three components for transformer performance. Therefore, we conducted an evaluation of the key-value formulation (KV), which generates symmetric attention maps, along with an asymmetric version that incorporates a 2D positional encoding into the attention matrix. Remarkably, this transformer requires fewer parameters and computation than the original one. Through experiments encompassing three task types -- synthetics (such as reversing or sorting a list), vision (mnist or cifar classification), and NLP (character generation and translation) -- we discovered that the KV transformer occasionally outperforms the QKV transformer. However, it also exhibits instances of underperformance compared to QKV, making it challenging to draw a definitive conclusion. Nonetheless, we consider the reported results to be encouraging and anticipate that they may pave the way for more efficient transformers in the future.
Unleashing Vanilla Vision Transformer with Masked Image Modeling for Object Detection
We present an approach to efficiently and effectively adapt a masked image modeling (MIM) pre-trained vanilla Vision Transformer (ViT) for object detection, which is based on our two novel observations: (i) A MIM pre-trained vanilla ViT encoder can work surprisingly well in the challenging object-level recognition scenario even with randomly sampled partial observations, e.g., only 25% sim 50% of the input embeddings. (ii) In order to construct multi-scale representations for object detection from single-scale ViT, a randomly initialized compact convolutional stem supplants the pre-trained large kernel patchify stem, and its intermediate features can naturally serve as the higher resolution inputs of a feature pyramid network without further upsampling or other manipulations. While the pre-trained ViT is only regarded as the 3^{rd}-stage of our detector's backbone instead of the whole feature extractor. This results in a ConvNet-ViT hybrid feature extractor. The proposed detector, named MIMDet, enables a MIM pre-trained vanilla ViT to outperform hierarchical Swin Transformer by 2.5 box AP and 2.6 mask AP on COCO, and achieves better results compared with the previous best adapted vanilla ViT detector using a more modest fine-tuning recipe while converging 2.8times faster. Code and pre-trained models are available at https://github.com/hustvl/MIMDet.
DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers
Scaling multi-dimensional transformers to long sequences is indispensable across various domains. However, the challenges of large memory requirements and slow speeds of such sequences necessitate sequence parallelism. All existing approaches fall under the category of embedded sequence parallelism, which are limited to shard along a single sequence dimension, thereby introducing significant communication overhead. However, the nature of multi-dimensional transformers involves independent calculations across multiple sequence dimensions. To this end, we propose Dynamic Sequence Parallelism (DSP) as a novel abstraction of sequence parallelism. DSP dynamically switches the parallel dimension among all sequences according to the computation stage with efficient resharding strategy. DSP offers significant reductions in communication costs, adaptability across modules, and ease of implementation with minimal constraints. Experimental evaluations demonstrate DSP's superiority over state-of-the-art embedded sequence parallelism methods by remarkable throughput improvements ranging from 32.2% to 10x, with less than 25% communication volume.
EcoFormer: Energy-Saving Attention with Linear Complexity
Transformer is a transformative framework that models sequential data and has achieved remarkable performance on a wide range of tasks, but with high computational and energy cost. To improve its efficiency, a popular choice is to compress the models via binarization which constrains the floating-point values into binary ones to save resource consumption owing to cheap bitwise operations significantly. However, existing binarization methods only aim at minimizing the information loss for the input distribution statistically, while ignoring the pairwise similarity modeling at the core of the attention. To this end, we propose a new binarization paradigm customized to high-dimensional softmax attention via kernelized hashing, called EcoFormer, to map the original queries and keys into low-dimensional binary codes in Hamming space. The kernelized hash functions are learned to match the ground-truth similarity relations extracted from the attention map in a self-supervised way. Based on the equivalence between the inner product of binary codes and the Hamming distance as well as the associative property of matrix multiplication, we can approximate the attention in linear complexity by expressing it as a dot-product of binary codes. Moreover, the compact binary representations of queries and keys enable us to replace most of the expensive multiply-accumulate operations in attention with simple accumulations to save considerable on-chip energy footprint on edge devices. Extensive experiments on both vision and language tasks show that EcoFormer consistently achieves comparable performance with standard attentions while consuming much fewer resources. For example, based on PVTv2-B0 and ImageNet-1K, Ecoformer achieves a 73% on-chip energy footprint reduction with only a 0.33% performance drop compared to the standard attention. Code is available at https://github.com/ziplab/EcoFormer.
Self-Supervised Learning with Swin Transformers
We are witnessing a modeling shift from CNN to Transformers in computer vision. In this work, we present a self-supervised learning approach called MoBY, with Vision Transformers as its backbone architecture. The approach basically has no new inventions, which is combined from MoCo v2 and BYOL and tuned to achieve reasonably high accuracy on ImageNet-1K linear evaluation: 72.8% and 75.0% top-1 accuracy using DeiT-S and Swin-T, respectively, by 300-epoch training. The performance is slightly better than recent works of MoCo v3 and DINO which adopt DeiT as the backbone, but with much lighter tricks. More importantly, the general-purpose Swin Transformer backbone enables us to also evaluate the learnt representations on downstream tasks such as object detection and semantic segmentation, in contrast to a few recent approaches built on ViT/DeiT which only report linear evaluation results on ImageNet-1K due to ViT/DeiT not tamed for these dense prediction tasks. We hope our results can facilitate more comprehensive evaluation of self-supervised learning methods designed for Transformer architectures. Our code and models are available at https://github.com/SwinTransformer/Transformer-SSL, which will be continually enriched.
LookHere: Vision Transformers with Directed Attention Generalize and Extrapolate
High-resolution images offer more information about scenes that can improve model accuracy. However, the dominant model architecture in computer vision, the vision transformer (ViT), cannot effectively leverage larger images without finetuning -- ViTs poorly extrapolate to more patches at test time, although transformers offer sequence length flexibility. We attribute this shortcoming to the current patch position encoding methods, which create a distribution shift when extrapolating. We propose a drop-in replacement for the position encoding of plain ViTs that restricts attention heads to fixed fields of view, pointed in different directions, using 2D attention masks. Our novel method, called LookHere, provides translation-equivariance, ensures attention head diversity, and limits the distribution shift that attention heads face when extrapolating. We demonstrate that LookHere improves performance on classification (avg. 1.6%), against adversarial attack (avg. 5.4%), and decreases calibration error (avg. 1.5%) -- on ImageNet without extrapolation. With extrapolation, LookHere outperforms the current SoTA position encoding method, 2D-RoPE, by 21.7% on ImageNet when trained at 224^2 px and tested at 1024^2 px. Additionally, we release a high-resolution test set to improve the evaluation of high-resolution image classifiers, called ImageNet-HR.
CascadedViT: Cascaded Chunk-FeedForward and Cascaded Group Attention Vision Transformer
Vision Transformers (ViTs) have demonstrated remarkable performance across a range of computer vision tasks; however, their high computational, memory, and energy demands hinder deployment on resource-constrained platforms. In this paper, we propose Cascaded-ViT (CViT), a lightweight and compute-efficient vision transformer architecture featuring a novel feedforward network design called Cascaded-Chunk Feed Forward Network (CCFFN). By splitting input features, CCFFN improves parameter and FLOP efficiency without sacrificing accuracy. Experiments on ImageNet-1K show that our CViT-XL model achieves 75.5\% Top-1 accuracy while reducing FLOPs by 15\% and energy consumption by 3.3\% compared to EfficientViT-M5. Across various model sizes, the CViT family consistently exhibits the lowest energy consumption, making it suitable for deployment on battery-constrained devices such as mobile phones and drones. Furthermore, when evaluated using a new metric called Accuracy-Per-FLOP (APF), which quantifies compute efficiency relative to accuracy, CViT models consistently achieve top-ranking efficiency. Particularly, CViT-L is 2.2\% more accurate than EfficientViT-M2 while having comparable APF scores.
Comprehensive Survey of Model Compression and Speed up for Vision Transformers
Vision Transformers (ViT) have marked a paradigm shift in computer vision, outperforming state-of-the-art models across diverse tasks. However, their practical deployment is hampered by high computational and memory demands. This study addresses the challenge by evaluating four primary model compression techniques: quantization, low-rank approximation, knowledge distillation, and pruning. We methodically analyze and compare the efficacy of these techniques and their combinations in optimizing ViTs for resource-constrained environments. Our comprehensive experimental evaluation demonstrates that these methods facilitate a balanced compromise between model accuracy and computational efficiency, paving the way for wider application in edge computing devices.
DecompX: Explaining Transformers Decisions by Propagating Token Decomposition
An emerging solution for explaining Transformer-based models is to use vector-based analysis on how the representations are formed. However, providing a faithful vector-based explanation for a multi-layer model could be challenging in three aspects: (1) Incorporating all components into the analysis, (2) Aggregating the layer dynamics to determine the information flow and mixture throughout the entire model, and (3) Identifying the connection between the vector-based analysis and the model's predictions. In this paper, we present DecompX to tackle these challenges. DecompX is based on the construction of decomposed token representations and their successive propagation throughout the model without mixing them in between layers. Additionally, our proposal provides multiple advantages over existing solutions for its inclusion of all encoder components (especially nonlinear feed-forward networks) and the classification head. The former allows acquiring precise vectors while the latter transforms the decomposition into meaningful prediction-based values, eliminating the need for norm- or summation-based vector aggregation. According to the standard faithfulness evaluations, DecompX consistently outperforms existing gradient-based and vector-based approaches on various datasets. Our code is available at https://github.com/mohsenfayyaz/DecompX.
DuoFormer: Leveraging Hierarchical Representations by Local and Global Attention Vision Transformer
Despite the widespread adoption of transformers in medical applications, the exploration of multi-scale learning through transformers remains limited, while hierarchical representations are considered advantageous for computer-aided medical diagnosis. We propose a novel hierarchical transformer model that adeptly integrates the feature extraction capabilities of Convolutional Neural Networks (CNNs) with the advanced representational potential of Vision Transformers (ViTs). Addressing the lack of inductive biases and dependence on extensive training datasets in ViTs, our model employs a CNN backbone to generate hierarchical visual representations. These representations are adapted for transformer input through an innovative patch tokenization process, preserving the inherited multi-scale inductive biases. We also introduce a scale-wise attention mechanism that directly captures intra-scale and inter-scale associations. This mechanism complements patch-wise attention by enhancing spatial understanding and preserving global perception, which we refer to as local and global attention, respectively. Our model significantly outperforms baseline models in terms of classification accuracy, demonstrating its efficiency in bridging the gap between Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). The components are designed as plug-and-play for different CNN architectures and can be adapted for multiple applications. The code is available at https://github.com/xiaoyatang/DuoFormer.git.
Navigating Efficiency in MobileViT through Gaussian Process on Global Architecture Factors
Numerous techniques have been meticulously designed to achieve optimal architectures for convolutional neural networks (CNNs), yet a comparable focus on vision transformers (ViTs) has been somewhat lacking. Despite the remarkable success of ViTs in various vision tasks, their heavyweight nature presents challenges of computational costs. In this paper, we leverage the Gaussian process to systematically explore the nonlinear and uncertain relationship between performance and global architecture factors of MobileViT, such as resolution, width, and depth including the depth of in-verted residual blocks and the depth of ViT blocks, and joint factors including resolution-depth and resolution-width. We present design principles twisting magic 4D cube of the global architecture factors that minimize model sizes and computational costs with higher model accuracy. We introduce a formula for downsizing architectures by iteratively deriving smaller MobileViT V2, all while adhering to a specified constraint of multiply-accumulate operations (MACs). Experiment results show that our formula significantly outperforms CNNs and mobile ViTs across diversified datasets
TinyViT: Fast Pretraining Distillation for Small Vision Transformers
Vision transformer (ViT) recently has drawn great attention in computer vision due to its remarkable model capability. However, most prevailing ViT models suffer from huge number of parameters, restricting their applicability on devices with limited resources. To alleviate this issue, we propose TinyViT, a new family of tiny and efficient small vision transformers pretrained on large-scale datasets with our proposed fast distillation framework. The central idea is to transfer knowledge from large pretrained models to small ones, while enabling small models to get the dividends of massive pretraining data. More specifically, we apply distillation during pretraining for knowledge transfer. The logits of large teacher models are sparsified and stored in disk in advance to save the memory cost and computation overheads. The tiny student transformers are automatically scaled down from a large pretrained model with computation and parameter constraints. Comprehensive experiments demonstrate the efficacy of TinyViT. It achieves a top-1 accuracy of 84.8% on ImageNet-1k with only 21M parameters, being comparable to Swin-B pretrained on ImageNet-21k while using 4.2 times fewer parameters. Moreover, increasing image resolutions, TinyViT can reach 86.5% accuracy, being slightly better than Swin-L while using only 11% parameters. Last but not the least, we demonstrate a good transfer ability of TinyViT on various downstream tasks. Code and models are available at https://github.com/microsoft/Cream/tree/main/TinyViT.
ViR: Vision Retention Networks
Vision Transformers (ViTs) have attracted a lot of popularity in recent years, due to their exceptional capabilities in modeling long-range spatial dependencies and scalability for large scale training. Although the training parallelism of self-attention mechanism plays an important role in retaining great performance, its quadratic complexity baffles the application of ViTs in many scenarios which demand fast inference. This effect is even more pronounced in applications in which autoregressive modeling of input features is required. In Natural Language Processing (NLP), a new stream of efforts have proposed parallelizable models with recurrent formulation that allows for efficient inference in generative applications. Inspired by this trend, we propose a new class of computer vision models, dubbed Vision Retention Networks (ViR), with dual parallel and recurrent formulations, which strike an optimal balance between fast inference and parallel training with competitive performance. In particular, ViR scales favorably for image throughput and memory consumption in tasks that require higher-resolution images due to its flexible formulation in processing large sequence lengths. The ViR is the first attempt to realize dual parallel and recurrent equivalency in a general vision backbone for recognition tasks. We have validated the effectiveness of ViR through extensive experiments with different dataset sizes and various image resolutions and achieved competitive performance. Our code and pretrained models will be made publicly available.
MASTER: Multi-task Pre-trained Bottlenecked Masked Autoencoders are Better Dense Retrievers
Pre-trained Transformers (\eg BERT) have been commonly used in existing dense retrieval methods for parameter initialization, and recent studies are exploring more effective pre-training tasks for further improving the quality of dense vectors. Although various novel and effective tasks have been proposed, their different input formats and learning objectives make them hard to be integrated for jointly improving the model performance. In this work, we aim to unify a variety of pre-training tasks into the bottlenecked masked autoencoder manner, and integrate them into a multi-task pre-trained model, namely MASTER. Concretely, MASTER utilizes a shared-encoder multi-decoder architecture that can construct a representation bottleneck to compress the abundant semantic information across tasks into dense vectors. Based on it, we integrate three types of representative pre-training tasks: corrupted passages recovering, related passages recovering and PLMs outputs recovering, to characterize the inner-passage information, inter-passage relations and PLMs knowledge. Extensive experiments have shown that our approach outperforms competitive dense retrieval methods. Our code and data are publicly released in https://github.com/microsoft/SimXNS.
SimBEV: A Synthetic Multi-Task Multi-Sensor Driving Data Generation Tool and Dataset
Bird's-eye view (BEV) perception for autonomous driving has garnered significant attention in recent years, in part because BEV representation facilitates the fusion of multi-sensor data. This enables a variety of perception tasks including BEV segmentation, a concise view of the environment that can be used to plan a vehicle's trajectory. However, this representation is not fully supported by existing datasets, and creation of new datasets can be a time-consuming endeavor. To address this problem, in this paper we introduce SimBEV, an extensively configurable and scalable randomized synthetic data generation tool that incorporates information from multiple sources to capture accurate BEV ground truth data, supports a comprehensive array of sensors, and enables a variety of perception tasks including BEV segmentation and 3D object detection. We use SimBEV to create the SimBEV dataset, a large collection of annotated perception data from diverse driving scenarios.
VQ4DiT: Efficient Post-Training Vector Quantization for Diffusion Transformers
The Diffusion Transformers Models (DiTs) have transitioned the network architecture from traditional UNets to transformers, demonstrating exceptional capabilities in image generation. Although DiTs have been widely applied to high-definition video generation tasks, their large parameter size hinders inference on edge devices. Vector quantization (VQ) can decompose model weight into a codebook and assignments, allowing extreme weight quantization and significantly reducing memory usage. In this paper, we propose VQ4DiT, a fast post-training vector quantization method for DiTs. We found that traditional VQ methods calibrate only the codebook without calibrating the assignments. This leads to weight sub-vectors being incorrectly assigned to the same assignment, providing inconsistent gradients to the codebook and resulting in a suboptimal result. To address this challenge, VQ4DiT calculates the candidate assignment set for each weight sub-vector based on Euclidean distance and reconstructs the sub-vector based on the weighted average. Then, using the zero-data and block-wise calibration method, the optimal assignment from the set is efficiently selected while calibrating the codebook. VQ4DiT quantizes a DiT XL/2 model on a single NVIDIA A100 GPU within 20 minutes to 5 hours depending on the different quantization settings. Experiments show that VQ4DiT establishes a new state-of-the-art in model size and performance trade-offs, quantizing weights to 2-bit precision while retaining acceptable image generation quality.
VDT: General-purpose Video Diffusion Transformers via Mask Modeling
This work introduces Video Diffusion Transformer (VDT), which pioneers the use of transformers in diffusion-based video generation. It features transformer blocks with modularized temporal and spatial attention modules to leverage the rich spatial-temporal representation inherited in transformers. We also propose a unified spatial-temporal mask modeling mechanism, seamlessly integrated with the model, to cater to diverse video generation scenarios. VDT offers several appealing benefits. 1) It excels at capturing temporal dependencies to produce temporally consistent video frames and even simulate the physics and dynamics of 3D objects over time. 2) It facilitates flexible conditioning information, \eg, simple concatenation in the token space, effectively unifying different token lengths and modalities. 3) Pairing with our proposed spatial-temporal mask modeling mechanism, it becomes a general-purpose video diffuser for harnessing a range of tasks, including unconditional generation, video prediction, interpolation, animation, and completion, etc. Extensive experiments on these tasks spanning various scenarios, including autonomous driving, natural weather, human action, and physics-based simulation, demonstrate the effectiveness of VDT. Additionally, we present comprehensive studies on how \model handles conditioning information with the mask modeling mechanism, which we believe will benefit future research and advance the field. Project page: https:VDT-2023.github.io
Generative Artificial Intelligence for Navigating Synthesizable Chemical Space
We introduce SynFormer, a generative modeling framework designed to efficiently explore and navigate synthesizable chemical space. Unlike traditional molecular generation approaches, we generate synthetic pathways for molecules to ensure that designs are synthetically tractable. By incorporating a scalable transformer architecture and a diffusion module for building block selection, SynFormer surpasses existing models in synthesizable molecular design. We demonstrate SynFormer's effectiveness in two key applications: (1) local chemical space exploration, where the model generates synthesizable analogs of a reference molecule, and (2) global chemical space exploration, where the model aims to identify optimal molecules according to a black-box property prediction oracle. Additionally, we demonstrate the scalability of our approach via the improvement in performance as more computational resources become available. With our code and trained models openly available, we hope that SynFormer will find use across applications in drug discovery and materials science.
Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios
Due to the complex attention mechanisms and model design, most existing vision Transformers (ViTs) can not perform as efficiently as convolutional neural networks (CNNs) in realistic industrial deployment scenarios, e.g. TensorRT and CoreML. This poses a distinct challenge: Can a visual neural network be designed to infer as fast as CNNs and perform as powerful as ViTs? Recent works have tried to design CNN-Transformer hybrid architectures to address this issue, yet the overall performance of these works is far away from satisfactory. To end these, we propose a next generation vision Transformer for efficient deployment in realistic industrial scenarios, namely Next-ViT, which dominates both CNNs and ViTs from the perspective of latency/accuracy trade-off. In this work, the Next Convolution Block (NCB) and Next Transformer Block (NTB) are respectively developed to capture local and global information with deployment-friendly mechanisms. Then, Next Hybrid Strategy (NHS) is designed to stack NCB and NTB in an efficient hybrid paradigm, which boosts performance in various downstream tasks. Extensive experiments show that Next-ViT significantly outperforms existing CNNs, ViTs and CNN-Transformer hybrid architectures with respect to the latency/accuracy trade-off across various vision tasks. On TensorRT, Next-ViT surpasses ResNet by 5.5 mAP (from 40.4 to 45.9) on COCO detection and 7.7% mIoU (from 38.8% to 46.5%) on ADE20K segmentation under similar latency. Meanwhile, it achieves comparable performance with CSWin, while the inference speed is accelerated by 3.6x. On CoreML, Next-ViT surpasses EfficientFormer by 4.6 mAP (from 42.6 to 47.2) on COCO detection and 3.5% mIoU (from 45.1% to 48.6%) on ADE20K segmentation under similar latency. Our code and models are made public at: https://github.com/bytedance/Next-ViT
PVTransformer: Point-to-Voxel Transformer for Scalable 3D Object Detection
3D object detectors for point clouds often rely on a pooling-based PointNet to encode sparse points into grid-like voxels or pillars. In this paper, we identify that the common PointNet design introduces an information bottleneck that limits 3D object detection accuracy and scalability. To address this limitation, we propose PVTransformer: a transformer-based point-to-voxel architecture for 3D detection. Our key idea is to replace the PointNet pooling operation with an attention module, leading to a better point-to-voxel aggregation function. Our design respects the permutation invariance of sparse 3D points while being more expressive than the pooling-based PointNet. Experimental results show our PVTransformer achieves much better performance compared to the latest 3D object detectors. On the widely used Waymo Open Dataset, our PVTransformer achieves state-of-the-art 76.5 mAPH L2, outperforming the prior art of SWFormer by +1.7 mAPH L2.
Fast and Simplex: 2-Simplicial Attention in Triton
Recent work has shown that training loss scales as a power law with both model size and the number of tokens, and that achieving compute-optimal models requires scaling model size and token count together. However, these scaling laws assume an infinite supply of data and apply primarily in compute-bound settings. As modern large language models increasingly rely on massive internet-scale datasets, the assumption that they are compute-bound is becoming less valid. This shift highlights the need for architectures that prioritize token efficiency. In this work, we investigate the use of the 2-simplicial Transformer, an architecture that generalizes standard dot-product attention to trilinear functions through an efficient Triton kernel implementation. We demonstrate that the 2-simplicial Transformer achieves better token efficiency than standard Transformers: for a fixed token budget, similarly sized models outperform their dot-product counterparts on tasks involving mathematics, coding, reasoning, and logic. We quantify these gains by demonstrating that 2-simplicial attention changes the exponent in the scaling laws for knowledge and reasoning tasks compared to dot product attention.
Complete and Efficient Graph Transformers for Crystal Material Property Prediction
Crystal structures are characterized by atomic bases within a primitive unit cell that repeats along a regular lattice throughout 3D space. The periodic and infinite nature of crystals poses unique challenges for geometric graph representation learning. Specifically, constructing graphs that effectively capture the complete geometric information of crystals and handle chiral crystals remains an unsolved and challenging problem. In this paper, we introduce a novel approach that utilizes the periodic patterns of unit cells to establish the lattice-based representation for each atom, enabling efficient and expressive graph representations of crystals. Furthermore, we propose ComFormer, a SE(3) transformer designed specifically for crystalline materials. ComFormer includes two variants; namely, iComFormer that employs invariant geometric descriptors of Euclidean distances and angles, and eComFormer that utilizes equivariant vector representations. Experimental results demonstrate the state-of-the-art predictive accuracy of ComFormer variants on various tasks across three widely-used crystal benchmarks. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS).
SimDA: Simple Diffusion Adapter for Efficient Video Generation
The recent wave of AI-generated content has witnessed the great development and success of Text-to-Image (T2I) technologies. By contrast, Text-to-Video (T2V) still falls short of expectations though attracting increasing interests. Existing works either train from scratch or adapt large T2I model to videos, both of which are computation and resource expensive. In this work, we propose a Simple Diffusion Adapter (SimDA) that fine-tunes only 24M out of 1.1B parameters of a strong T2I model, adapting it to video generation in a parameter-efficient way. In particular, we turn the T2I model for T2V by designing light-weight spatial and temporal adapters for transfer learning. Besides, we change the original spatial attention to the proposed Latent-Shift Attention (LSA) for temporal consistency. With similar model architecture, we further train a video super-resolution model to generate high-definition (1024x1024) videos. In addition to T2V generation in the wild, SimDA could also be utilized in one-shot video editing with only 2 minutes tuning. Doing so, our method could minimize the training effort with extremely few tunable parameters for model adaptation.
Multiscale Vision Transformers
We present Multiscale Vision Transformers (MViT) for video and image recognition, by connecting the seminal idea of multiscale feature hierarchies with transformer models. Multiscale Transformers have several channel-resolution scale stages. Starting from the input resolution and a small channel dimension, the stages hierarchically expand the channel capacity while reducing the spatial resolution. This creates a multiscale pyramid of features with early layers operating at high spatial resolution to model simple low-level visual information, and deeper layers at spatially coarse, but complex, high-dimensional features. We evaluate this fundamental architectural prior for modeling the dense nature of visual signals for a variety of video recognition tasks where it outperforms concurrent vision transformers that rely on large scale external pre-training and are 5-10x more costly in computation and parameters. We further remove the temporal dimension and apply our model for image classification where it outperforms prior work on vision transformers. Code is available at: https://github.com/facebookresearch/SlowFast
CellVTA: Enhancing Vision Foundation Models for Accurate Cell Segmentation and Classification
Cell instance segmentation is a fundamental task in digital pathology with broad clinical applications. Recently, vision foundation models, which are predominantly based on Vision Transformers (ViTs), have achieved remarkable success in pathology image analysis. However, their improvements in cell instance segmentation remain limited. A key challenge arises from the tokenization process in ViTs, which substantially reduces the spatial resolution of input images, leading to suboptimal segmentation quality, especially for small and densely packed cells. To address this problem, we propose CellVTA (Cell Vision Transformer with Adapter), a novel method that improves the performance of vision foundation models for cell instance segmentation by incorporating a CNN-based adapter module. This adapter extracts high-resolution spatial information from input images and injects it into the ViT through a cross-attention mechanism. Our method preserves the core architecture of ViT, ensuring seamless integration with pretrained foundation models. Extensive experiments show that CellVTA achieves 0.538 mPQ on the CoNIC dataset and 0.506 mPQ on the PanNuke dataset, which significantly outperforms the state-of-the-art cell segmentation methods. Ablation studies confirm the superiority of our approach over other fine-tuning strategies, including decoder-only fine-tuning and full fine-tuning. Our code and models are publicly available at https://github.com/JieZheng-ShanghaiTech/CellVTA.
Conditional Positional Encodings for Vision Transformers
We propose a conditional positional encoding (CPE) scheme for vision Transformers. Unlike previous fixed or learnable positional encodings, which are pre-defined and independent of input tokens, CPE is dynamically generated and conditioned on the local neighborhood of the input tokens. As a result, CPE can easily generalize to the input sequences that are longer than what the model has ever seen during training. Besides, CPE can keep the desired translation-invariance in the image classification task, resulting in improved performance. We implement CPE with a simple Position Encoding Generator (PEG) to get seamlessly incorporated into the current Transformer framework. Built on PEG, we present Conditional Position encoding Vision Transformer (CPVT). We demonstrate that CPVT has visually similar attention maps compared to those with learned positional encodings and delivers outperforming results. Our code is available at https://github.com/Meituan-AutoML/CPVT .
MeshAnything: Artist-Created Mesh Generation with Autoregressive Transformers
Recently, 3D assets created via reconstruction and generation have matched the quality of manually crafted assets, highlighting their potential for replacement. However, this potential is largely unrealized because these assets always need to be converted to meshes for 3D industry applications, and the meshes produced by current mesh extraction methods are significantly inferior to Artist-Created Meshes (AMs), i.e., meshes created by human artists. Specifically, current mesh extraction methods rely on dense faces and ignore geometric features, leading to inefficiencies, complicated post-processing, and lower representation quality. To address these issues, we introduce MeshAnything, a model that treats mesh extraction as a generation problem, producing AMs aligned with specified shapes. By converting 3D assets in any 3D representation into AMs, MeshAnything can be integrated with various 3D asset production methods, thereby enhancing their application across the 3D industry. The architecture of MeshAnything comprises a VQ-VAE and a shape-conditioned decoder-only transformer. We first learn a mesh vocabulary using the VQ-VAE, then train the shape-conditioned decoder-only transformer on this vocabulary for shape-conditioned autoregressive mesh generation. Our extensive experiments show that our method generates AMs with hundreds of times fewer faces, significantly improving storage, rendering, and simulation efficiencies, while achieving precision comparable to previous methods.
Delving into Masked Autoencoders for Multi-Label Thorax Disease Classification
Vision Transformer (ViT) has become one of the most popular neural architectures due to its great scalability, computational efficiency, and compelling performance in many vision tasks. However, ViT has shown inferior performance to Convolutional Neural Network (CNN) on medical tasks due to its data-hungry nature and the lack of annotated medical data. In this paper, we pre-train ViTs on 266,340 chest X-rays using Masked Autoencoders (MAE) which reconstruct missing pixels from a small part of each image. For comparison, CNNs are also pre-trained on the same 266,340 X-rays using advanced self-supervised methods (e.g., MoCo v2). The results show that our pre-trained ViT performs comparably (sometimes better) to the state-of-the-art CNN (DenseNet-121) for multi-label thorax disease classification. This performance is attributed to the strong recipes extracted from our empirical studies for pre-training and fine-tuning ViT. The pre-training recipe signifies that medical reconstruction requires a much smaller proportion of an image (10% vs. 25%) and a more moderate random resized crop range (0.5~1.0 vs. 0.2~1.0) compared with natural imaging. Furthermore, we remark that in-domain transfer learning is preferred whenever possible. The fine-tuning recipe discloses that layer-wise LR decay, RandAug magnitude, and DropPath rate are significant factors to consider. We hope that this study can direct future research on the application of Transformers to a larger variety of medical imaging tasks.
Vision Transformers are Robust Learners
Transformers, composed of multiple self-attention layers, hold strong promises toward a generic learning primitive applicable to different data modalities, including the recent breakthroughs in computer vision achieving state-of-the-art (SOTA) standard accuracy. What remains largely unexplored is their robustness evaluation and attribution. In this work, we study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples. We use six different diverse ImageNet datasets concerning robust classification to conduct a comprehensive performance comparison of ViT models and SOTA convolutional neural networks (CNNs), Big-Transfer. Through a series of six systematically designed experiments, we then present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners. For example, with fewer parameters and similar dataset and pre-training combinations, ViT gives a top-1 accuracy of 28.10% on ImageNet-A which is 4.3x higher than a comparable variant of BiT. Our analyses on image masking, Fourier spectrum sensitivity, and spread on discrete cosine energy spectrum reveal intriguing properties of ViT attributing to improved robustness. Code for reproducing our experiments is available at https://git.io/J3VO0.
Ultra Fast Transformers on FPGAs for Particle Physics Experiments
This work introduces a highly efficient implementation of the transformer architecture on a Field-Programmable Gate Array (FPGA) by using the hls4ml tool. Given the demonstrated effectiveness of transformer models in addressing a wide range of problems, their application in experimental triggers within particle physics becomes a subject of significant interest. In this work, we have implemented critical components of a transformer model, such as multi-head attention and softmax layers. To evaluate the effectiveness of our implementation, we have focused on a particle physics jet flavor tagging problem, employing a public dataset. We recorded latency under 2 mus on the Xilinx UltraScale+ FPGA, which is compatible with hardware trigger requirements at the CERN Large Hadron Collider experiments.
Model Quantization and Hardware Acceleration for Vision Transformers: A Comprehensive Survey
Vision Transformers (ViTs) have recently garnered considerable attention, emerging as a promising alternative to convolutional neural networks (CNNs) in several vision-related applications. However, their large model sizes and high computational and memory demands hinder deployment, especially on resource-constrained devices. This underscores the necessity of algorithm-hardware co-design specific to ViTs, aiming to optimize their performance by tailoring both the algorithmic structure and the underlying hardware accelerator to each other's strengths. Model quantization, by converting high-precision numbers to lower-precision, reduces the computational demands and memory needs of ViTs, allowing the creation of hardware specifically optimized for these quantized algorithms, boosting efficiency. This article provides a comprehensive survey of ViTs quantization and its hardware acceleration. We first delve into the unique architectural attributes of ViTs and their runtime characteristics. Subsequently, we examine the fundamental principles of model quantization, followed by a comparative analysis of the state-of-the-art quantization techniques for ViTs. Additionally, we explore the hardware acceleration of quantized ViTs, highlighting the importance of hardware-friendly algorithm design. In conclusion, this article will discuss ongoing challenges and future research paths. We consistently maintain the related open-source materials at https://github.com/DD-DuDa/awesome-vit-quantization-acceleration.
Twins: Revisiting the Design of Spatial Attention in Vision Transformers
Very recently, a variety of vision transformer architectures for dense prediction tasks have been proposed and they show that the design of spatial attention is critical to their success in these tasks. In this work, we revisit the design of the spatial attention and demonstrate that a carefully-devised yet simple spatial attention mechanism performs favourably against the state-of-the-art schemes. As a result, we propose two vision transformer architectures, namely, Twins-PCPVT and Twins-SVT. Our proposed architectures are highly-efficient and easy to implement, only involving matrix multiplications that are highly optimized in modern deep learning frameworks. More importantly, the proposed architectures achieve excellent performance on a wide range of visual tasks, including image level classification as well as dense detection and segmentation. The simplicity and strong performance suggest that our proposed architectures may serve as stronger backbones for many vision tasks. Our code is released at https://github.com/Meituan-AutoML/Twins .
vHeat: Building Vision Models upon Heat Conduction
A fundamental problem in learning robust and expressive visual representations lies in efficiently estimating the spatial relationships of visual semantics throughout the entire image. In this study, we propose vHeat, a novel vision backbone model that simultaneously achieves both high computational efficiency and global receptive field. The essential idea, inspired by the physical principle of heat conduction, is to conceptualize image patches as heat sources and model the calculation of their correlations as the diffusion of thermal energy. This mechanism is incorporated into deep models through the newly proposed module, the Heat Conduction Operator (HCO), which is physically plausible and can be efficiently implemented using DCT and IDCT operations with a complexity of O(N^{1.5}). Extensive experiments demonstrate that vHeat surpasses Vision Transformers (ViTs) across various vision tasks, while also providing higher inference speeds, reduced FLOPs, and lower GPU memory usage for high-resolution images. The code will be released at https://github.com/MzeroMiko/vHeat.
MPCViT: Searching for Accurate and Efficient MPC-Friendly Vision Transformer with Heterogeneous Attention
Secure multi-party computation (MPC) enables computation directly on encrypted data and protects both data and model privacy in deep learning inference. However, existing neural network architectures, including Vision Transformers (ViTs), are not designed or optimized for MPC and incur significant latency overhead. We observe Softmax accounts for the major latency bottleneck due to a high communication complexity, but can be selectively replaced or linearized without compromising the model accuracy. Hence, in this paper, we propose an MPC-friendly ViT, dubbed MPCViT, to enable accurate yet efficient ViT inference in MPC. Based on a systematic latency and accuracy evaluation of the Softmax attention and other attention variants, we propose a heterogeneous attention optimization space. We also develop a simple yet effective MPC-aware neural architecture search algorithm for fast Pareto optimization. To further boost the inference efficiency, we propose MPCViT+, to jointly optimize the Softmax attention and other network components, including GeLU, matrix multiplication, etc. With extensive experiments, we demonstrate that MPCViT achieves 1.9%, 1.3% and 3.6% higher accuracy with 6.2x, 2.9x and 1.9x latency reduction compared with baseline ViT, MPCFormer and THE-X on the Tiny-ImageNet dataset, respectively. MPCViT+ further achieves a better Pareto front compared with MPCViT. The code and models for evaluation are available at https://github.com/PKU-SEC-Lab/mpcvit.
MatrixVT: Efficient Multi-Camera to BEV Transformation for 3D Perception
This paper proposes an efficient multi-camera to Bird's-Eye-View (BEV) view transformation method for 3D perception, dubbed MatrixVT. Existing view transformers either suffer from poor transformation efficiency or rely on device-specific operators, hindering the broad application of BEV models. In contrast, our method generates BEV features efficiently with only convolutions and matrix multiplications (MatMul). Specifically, we propose describing the BEV feature as the MatMul of image feature and a sparse Feature Transporting Matrix (FTM). A Prime Extraction module is then introduced to compress the dimension of image features and reduce FTM's sparsity. Moreover, we propose the Ring \& Ray Decomposition to replace the FTM with two matrices and reformulate our pipeline to reduce calculation further. Compared to existing methods, MatrixVT enjoys a faster speed and less memory footprint while remaining deploy-friendly. Extensive experiments on the nuScenes benchmark demonstrate that our method is highly efficient but obtains results on par with the SOTA method in object detection and map segmentation tasks
Terminal Velocity Matching
We propose Terminal Velocity Matching (TVM), a generalization of flow matching that enables high-fidelity one- and few-step generative modeling. TVM models the transition between any two diffusion timesteps and regularizes its behavior at its terminal time rather than at the initial time. We prove that TVM provides an upper bound on the 2-Wasserstein distance between data and model distributions when the model is Lipschitz continuous. However, since Diffusion Transformers lack this property, we introduce minimal architectural changes that achieve stable, single-stage training. To make TVM efficient in practice, we develop a fused attention kernel that supports backward passes on Jacobian-Vector Products, which scale well with transformer architectures. On ImageNet-256x256, TVM achieves 3.29 FID with a single function evaluation (NFE) and 1.99 FID with 4 NFEs. It similarly achieves 4.32 1-NFE FID and 2.94 4-NFE FID on ImageNet-512x512, representing state-of-the-art performance for one/few-step models from scratch.
Searching for Efficient Multi-Stage Vision Transformers
Vision Transformer (ViT) demonstrates that Transformer for natural language processing can be applied to computer vision tasks and result in comparable performance to convolutional neural networks (CNN), which have been studied and adopted in computer vision for years. This naturally raises the question of how the performance of ViT can be advanced with design techniques of CNN. To this end, we propose to incorporate two techniques and present ViT-ResNAS, an efficient multi-stage ViT architecture designed with neural architecture search (NAS). First, we propose residual spatial reduction to decrease sequence lengths for deeper layers and utilize a multi-stage architecture. When reducing lengths, we add skip connections to improve performance and stabilize training deeper networks. Second, we propose weight-sharing NAS with multi-architectural sampling. We enlarge a network and utilize its sub-networks to define a search space. A super-network covering all sub-networks is then trained for fast evaluation of their performance. To efficiently train the super-network, we propose to sample and train multiple sub-networks with one forward-backward pass. After that, evolutionary search is performed to discover high-performance network architectures. Experiments on ImageNet demonstrate that ViT-ResNAS achieves better accuracy-MACs and accuracy-throughput trade-offs than the original DeiT and other strong baselines of ViT. Code is available at https://github.com/yilunliao/vit-search.
SAMformer: Unlocking the Potential of Transformers in Time Series Forecasting with Sharpness-Aware Minimization and Channel-Wise Attention
Transformer-based architectures achieved breakthrough performance in natural language processing and computer vision, yet they remain inferior to simpler linear baselines in multivariate long-term forecasting. To better understand this phenomenon, we start by studying a toy linear forecasting problem for which we show that transformers are incapable of converging to their true solution despite their high expressive power. We further identify the attention of transformers as being responsible for this low generalization capacity. Building upon this insight, we propose a shallow lightweight transformer model that successfully escapes bad local minima when optimized with sharpness-aware optimization. We empirically demonstrate that this result extends to all commonly used real-world multivariate time series datasets. In particular, SAMformer surpasses current state-of-the-art methods and is on par with the biggest foundation model MOIRAI while having significantly fewer parameters. The code is available at https://github.com/romilbert/samformer.
Easy and Efficient Transformer : Scalable Inference Solution For large NLP model
Recently, large-scale transformer-based models have been proven to be effective over various tasks across many domains. Nevertheless, applying them in industrial production requires tedious and heavy works to reduce inference costs. To fill such a gap, we introduce a scalable inference solution: Easy and Efficient Transformer (EET), including a series of transformer inference optimization at the algorithm and implementation levels. First, we design highly optimized kernels for long inputs and large hidden sizes. Second, we propose a flexible CUDA memory manager to reduce the memory footprint when deploying a large model. Compared with the state-of-the-art transformer inference library (Faster Transformer v4.0), EET can achieve an average of 1.40-4.20x speedup on the transformer decoder layer with an A100 GPU
AdaptFormer: Adapting Vision Transformers for Scalable Visual Recognition
Pretraining Vision Transformers (ViTs) has achieved great success in visual recognition. A following scenario is to adapt a ViT to various image and video recognition tasks. The adaptation is challenging because of heavy computation and memory storage. Each model needs an independent and complete finetuning process to adapt to different tasks, which limits its transferability to different visual domains. To address this challenge, we propose an effective adaptation approach for Transformer, namely AdaptFormer, which can adapt the pre-trained ViTs into many different image and video tasks efficiently. It possesses several benefits more appealing than prior arts. Firstly, AdaptFormer introduces lightweight modules that only add less than 2% extra parameters to a ViT, while it is able to increase the ViT's transferability without updating its original pre-trained parameters, significantly outperforming the existing 100\% fully fine-tuned models on action recognition benchmarks. Secondly, it can be plug-and-play in different Transformers and scalable to many visual tasks. Thirdly, extensive experiments on five image and video datasets show that AdaptFormer largely improves ViTs in the target domains. For example, when updating just 1.5% extra parameters, it achieves about 10% and 19% relative improvement compared to the fully fine-tuned models on Something-Something~v2 and HMDB51, respectively. Code is available at https://github.com/ShoufaChen/AdaptFormer.
PolyFormer: Referring Image Segmentation as Sequential Polygon Generation
In this work, instead of directly predicting the pixel-level segmentation masks, the problem of referring image segmentation is formulated as sequential polygon generation, and the predicted polygons can be later converted into segmentation masks. This is enabled by a new sequence-to-sequence framework, Polygon Transformer (PolyFormer), which takes a sequence of image patches and text query tokens as input, and outputs a sequence of polygon vertices autoregressively. For more accurate geometric localization, we propose a regression-based decoder, which predicts the precise floating-point coordinates directly, without any coordinate quantization error. In the experiments, PolyFormer outperforms the prior art by a clear margin, e.g., 5.40% and 4.52% absolute improvements on the challenging RefCOCO+ and RefCOCOg datasets. It also shows strong generalization ability when evaluated on the referring video segmentation task without fine-tuning, e.g., achieving competitive 61.5% J&F on the Ref-DAVIS17 dataset.
PP-MobileSeg: Explore the Fast and Accurate Semantic Segmentation Model on Mobile Devices
The success of transformers in computer vision has led to several attempts to adapt them for mobile devices, but their performance remains unsatisfactory in some real-world applications. To address this issue, we propose PP-MobileSeg, a semantic segmentation model that achieves state-of-the-art performance on mobile devices. PP-MobileSeg comprises three novel parts: the StrideFormer backbone, the Aggregated Attention Module (AAM), and the Valid Interpolate Module (VIM). The four-stage StrideFormer backbone is built with MV3 blocks and strided SEA attention, and it is able to extract rich semantic and detailed features with minimal parameter overhead. The AAM first filters the detailed features through semantic feature ensemble voting and then combines them with semantic features to enhance the semantic information. Furthermore, we proposed VIM to upsample the downsampled feature to the resolution of the input image. It significantly reduces model latency by only interpolating classes present in the final prediction, which is the most significant contributor to overall model latency. Extensive experiments show that PP-MobileSeg achieves a superior tradeoff between accuracy, model size, and latency compared to other methods. On the ADE20K dataset, PP-MobileSeg achieves 1.57% higher accuracy in mIoU than SeaFormer-Base with 32.9% fewer parameters and 42.3% faster acceleration on Qualcomm Snapdragon 855. Source codes are available at https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.8.
GenConViT: Deepfake Video Detection Using Generative Convolutional Vision Transformer
Deepfakes have raised significant concerns due to their potential to spread false information and compromise digital media integrity. Current deepfake detection models often struggle to generalize across a diverse range of deepfake generation techniques and video content. In this work, we propose a Generative Convolutional Vision Transformer (GenConViT) for deepfake video detection. Our model combines ConvNeXt and Swin Transformer models for feature extraction, and it utilizes Autoencoder and Variational Autoencoder to learn from the latent data distribution. By learning from the visual artifacts and latent data distribution, GenConViT achieves improved performance in detecting a wide range of deepfake videos. The model is trained and evaluated on DFDC, FF++, TM, DeepfakeTIMIT, and Celeb-DF (v2) datasets. The proposed GenConViT model demonstrates strong performance in deepfake video detection, achieving high accuracy across the tested datasets. While our model shows promising results in deepfake video detection by leveraging visual and latent features, we demonstrate that further work is needed to improve its generalizability, i.e., when encountering out-of-distribution data. Our model provides an effective solution for identifying a wide range of fake videos while preserving media integrity. The open-source code for GenConViT is available at https://github.com/erprogs/GenConViT.
A Survey of Techniques for Optimizing Transformer Inference
Recent years have seen a phenomenal rise in performance and applications of transformer neural networks. The family of transformer networks, including Bidirectional Encoder Representations from Transformer (BERT), Generative Pretrained Transformer (GPT) and Vision Transformer (ViT), have shown their effectiveness across Natural Language Processing (NLP) and Computer Vision (CV) domains. Transformer-based networks such as ChatGPT have impacted the lives of common men. However, the quest for high predictive performance has led to an exponential increase in transformers' memory and compute footprint. Researchers have proposed techniques to optimize transformer inference at all levels of abstraction. This paper presents a comprehensive survey of techniques for optimizing the inference phase of transformer networks. We survey techniques such as knowledge distillation, pruning, quantization, neural architecture search and lightweight network design at the algorithmic level. We further review hardware-level optimization techniques and the design of novel hardware accelerators for transformers. We summarize the quantitative results on the number of parameters/FLOPs and accuracy of several models/techniques to showcase the tradeoff exercised by them. We also outline future directions in this rapidly evolving field of research. We believe that this survey will educate both novice and seasoned researchers and also spark a plethora of research efforts in this field.
MV-Adapter: Multi-view Consistent Image Generation Made Easy
Existing multi-view image generation methods often make invasive modifications to pre-trained text-to-image (T2I) models and require full fine-tuning, leading to (1) high computational costs, especially with large base models and high-resolution images, and (2) degradation in image quality due to optimization difficulties and scarce high-quality 3D data. In this paper, we propose the first adapter-based solution for multi-view image generation, and introduce MV-Adapter, a versatile plug-and-play adapter that enhances T2I models and their derivatives without altering the original network structure or feature space. By updating fewer parameters, MV-Adapter enables efficient training and preserves the prior knowledge embedded in pre-trained models, mitigating overfitting risks. To efficiently model the 3D geometric knowledge within the adapter, we introduce innovative designs that include duplicated self-attention layers and parallel attention architecture, enabling the adapter to inherit the powerful priors of the pre-trained models to model the novel 3D knowledge. Moreover, we present a unified condition encoder that seamlessly integrates camera parameters and geometric information, facilitating applications such as text- and image-based 3D generation and texturing. MV-Adapter achieves multi-view generation at 768 resolution on Stable Diffusion XL (SDXL), and demonstrates adaptability and versatility. It can also be extended to arbitrary view generation, enabling broader applications. We demonstrate that MV-Adapter sets a new quality standard for multi-view image generation, and opens up new possibilities due to its efficiency, adaptability and versatility.
AI-powered virtual tissues from spatial proteomics for clinical diagnostics and biomedical discovery
Spatial proteomics technologies have transformed our understanding of complex tissue architectures by enabling simultaneous analysis of multiple molecular markers and their spatial organization. The high dimensionality of these data, varying marker combinations across experiments and heterogeneous study designs pose unique challenges for computational analysis. Here, we present Virtual Tissues (VirTues), a foundation model framework for biological tissues that operates across the molecular, cellular and tissue scale. VirTues introduces innovations in transformer architecture design, including a novel tokenization scheme that captures both spatial and marker dimensions, and attention mechanisms that scale to high-dimensional multiplex data while maintaining interpretability. Trained on diverse cancer and non-cancer tissue datasets, VirTues demonstrates strong generalization capabilities without task-specific fine-tuning, enabling cross-study analysis and novel marker integration. As a generalist model, VirTues outperforms existing approaches across clinical diagnostics, biological discovery and patient case retrieval tasks, while providing insights into tissue function and disease mechanisms.
